1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2014, Itseez Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencl_kernels_imgproc.hpp"
#include "opencv2/core/hal/intrin.hpp"
#include <deque>
#include "opencv2/core/openvx/ovx_defs.hpp"
#ifdef _MSC_VER
#pragma warning( disable: 4127 ) // conditional expression is constant
#endif
#if CV_SIMD128
#define CV_MALLOC_SIMD128 16
#endif
namespace cv
{
#ifdef HAVE_IPP
static bool ipp_Canny(const Mat& src , const Mat& dx_, const Mat& dy_, Mat& dst, float low, float high, bool L2gradient, int aperture_size)
{
#ifdef HAVE_IPP_IW
CV_INSTRUMENT_REGION_IPP()
#if IPP_DISABLE_PERF_CANNY_MT
if(cv::getNumThreads()>1)
return false;
#endif
::ipp::IwiSize size(dst.cols, dst.rows);
IppDataType type = ippiGetDataType(dst.depth());
int channels = dst.channels();
IppNormType norm = (L2gradient)?ippNormL2:ippNormL1;
if(size.width <= 3 || size.height <= 3)
return false;
if(channels != 1)
return false;
if(type != ipp8u)
return false;
if(src.empty())
{
try
{
::ipp::IwiImage iwSrcDx;
::ipp::IwiImage iwSrcDy;
::ipp::IwiImage iwDst;
ippiGetImage(dx_, iwSrcDx);
ippiGetImage(dy_, iwSrcDy);
ippiGetImage(dst, iwDst);
CV_INSTRUMENT_FUN_IPP(::ipp::iwiFilterCannyDeriv, &iwSrcDx, &iwSrcDy, &iwDst, norm, low, high);
}
catch (::ipp::IwException ex)
{
return false;
}
}
else
{
IppiMaskSize kernel;
if(aperture_size == 3)
kernel = ippMskSize3x3;
else if(aperture_size == 5)
kernel = ippMskSize5x5;
else
return false;
try
{
::ipp::IwiImage iwSrc;
::ipp::IwiImage iwDst;
ippiGetImage(src, iwSrc);
ippiGetImage(dst, iwDst);
CV_INSTRUMENT_FUN_IPP(::ipp::iwiFilterCanny, &iwSrc, &iwDst, ippFilterSobel, kernel, norm, low, high, ippBorderRepl);
}
catch (::ipp::IwException)
{
return false;
}
}
return true;
#else
CV_UNUSED(src); CV_UNUSED(dx_); CV_UNUSED(dy_); CV_UNUSED(dst); CV_UNUSED(low); CV_UNUSED(high); CV_UNUSED(L2gradient); CV_UNUSED(aperture_size);
return false;
#endif
}
#endif
#ifdef HAVE_OPENCL
template <bool useCustomDeriv>
static bool ocl_Canny(InputArray _src, const UMat& dx_, const UMat& dy_, OutputArray _dst, float low_thresh, float high_thresh,
int aperture_size, bool L2gradient, int cn, const Size & size)
{
CV_INSTRUMENT_REGION_OPENCL()
UMat map;
const ocl::Device &dev = ocl::Device::getDefault();
int max_wg_size = (int)dev.maxWorkGroupSize();
int lSizeX = 32;
int lSizeY = max_wg_size / 32;
if (lSizeY == 0)
{
lSizeX = 16;
lSizeY = max_wg_size / 16;
}
if (lSizeY == 0)
{
lSizeY = 1;
}
if (L2gradient)
{
low_thresh = std::min(32767.0f, low_thresh);
high_thresh = std::min(32767.0f, high_thresh);
if (low_thresh > 0)
low_thresh *= low_thresh;
if (high_thresh > 0)
high_thresh *= high_thresh;
}
int low = cvFloor(low_thresh), high = cvFloor(high_thresh);
if (!useCustomDeriv &&
aperture_size == 3 && !_src.isSubmatrix())
{
/*
stage1_with_sobel:
Sobel operator
Calc magnitudes
Non maxima suppression
Double thresholding
*/
char cvt[40];
ocl::Kernel with_sobel("stage1_with_sobel", ocl::imgproc::canny_oclsrc,
format("-D WITH_SOBEL -D cn=%d -D TYPE=%s -D convert_floatN=%s -D floatN=%s -D GRP_SIZEX=%d -D GRP_SIZEY=%d%s",
cn, ocl::memopTypeToStr(_src.depth()),
ocl::convertTypeStr(_src.depth(), CV_32F, cn, cvt),
ocl::typeToStr(CV_MAKE_TYPE(CV_32F, cn)),
lSizeX, lSizeY,
L2gradient ? " -D L2GRAD" : ""));
if (with_sobel.empty())
return false;
UMat src = _src.getUMat();
map.create(size, CV_32S);
with_sobel.args(ocl::KernelArg::ReadOnly(src),
ocl::KernelArg::WriteOnlyNoSize(map),
(float) low, (float) high);
size_t globalsize[2] = { (size_t)size.width, (size_t)size.height },
localsize[2] = { (size_t)lSizeX, (size_t)lSizeY };
if (!with_sobel.run(2, globalsize, localsize, false))
return false;
}
else
{
/*
stage1_without_sobel:
Calc magnitudes
Non maxima suppression
Double thresholding
*/
UMat dx, dy;
if (!useCustomDeriv)
{
Sobel(_src, dx, CV_16S, 1, 0, aperture_size, 1, 0, BORDER_REPLICATE);
Sobel(_src, dy, CV_16S, 0, 1, aperture_size, 1, 0, BORDER_REPLICATE);
}
else
{
dx = dx_;
dy = dy_;
}
ocl::Kernel without_sobel("stage1_without_sobel", ocl::imgproc::canny_oclsrc,
format("-D WITHOUT_SOBEL -D cn=%d -D GRP_SIZEX=%d -D GRP_SIZEY=%d%s",
cn, lSizeX, lSizeY, L2gradient ? " -D L2GRAD" : ""));
if (without_sobel.empty())
return false;
map.create(size, CV_32S);
without_sobel.args(ocl::KernelArg::ReadOnlyNoSize(dx), ocl::KernelArg::ReadOnlyNoSize(dy),
ocl::KernelArg::WriteOnly(map),
low, high);
size_t globalsize[2] = { (size_t)size.width, (size_t)size.height },
localsize[2] = { (size_t)lSizeX, (size_t)lSizeY };
if (!without_sobel.run(2, globalsize, localsize, false))
return false;
}
int PIX_PER_WI = 8;
/*
stage2:
hysteresis (add weak edges if they are connected with strong edges)
*/
int sizey = lSizeY / PIX_PER_WI;
if (sizey == 0)
sizey = 1;
size_t globalsize[2] = { (size_t)size.width, ((size_t)size.height + PIX_PER_WI - 1) / PIX_PER_WI }, localsize[2] = { (size_t)lSizeX, (size_t)sizey };
ocl::Kernel edgesHysteresis("stage2_hysteresis", ocl::imgproc::canny_oclsrc,
format("-D STAGE2 -D PIX_PER_WI=%d -D LOCAL_X=%d -D LOCAL_Y=%d",
PIX_PER_WI, lSizeX, sizey));
if (edgesHysteresis.empty())
return false;
edgesHysteresis.args(ocl::KernelArg::ReadWrite(map));
if (!edgesHysteresis.run(2, globalsize, localsize, false))
return false;
// get edges
ocl::Kernel getEdgesKernel("getEdges", ocl::imgproc::canny_oclsrc,
format("-D GET_EDGES -D PIX_PER_WI=%d", PIX_PER_WI));
if (getEdgesKernel.empty())
return false;
_dst.create(size, CV_8UC1);
UMat dst = _dst.getUMat();
getEdgesKernel.args(ocl::KernelArg::ReadOnly(map), ocl::KernelArg::WriteOnlyNoSize(dst));
return getEdgesKernel.run(2, globalsize, NULL, false);
}
#endif
#define CANNY_PUSH(map, stack) *map = 2, stack.push_back(map)
#define CANNY_CHECK_SIMD(m, high, map, stack) \
if (m > high) \
CANNY_PUSH(map, stack); \
else \
*map = 0
#define CANNY_CHECK(m, high, map, stack) \
if (m > high) \
CANNY_PUSH(map, stack); \
else \
*map = 0; \
continue
class parallelCanny : public ParallelLoopBody
{
public:
parallelCanny(const Mat &_src, Mat &_map, std::deque<uchar*> &borderPeaksParallel,
int _low, int _high, int _aperture_size, bool _L2gradient) :
src(_src), src2(_src), map(_map), _borderPeaksParallel(borderPeaksParallel),
low(_low), high(_high), aperture_size(_aperture_size), L2gradient(_L2gradient)
{
#if CV_SIMD128
haveSIMD = hasSIMD128();
if(haveSIMD)
_map.create(src.rows + 2, (int)alignSize((size_t)(src.cols + CV_MALLOC_SIMD128 + 1), CV_MALLOC_SIMD128), CV_8UC1);
else
#endif
_map.create(src.rows + 2, src.cols + 2, CV_8UC1);
map = _map;
map.row(0).setTo(1);
map.row(src.rows + 1).setTo(1);
mapstep = map.cols;
needGradient = true;
cn = src.channels();
}
parallelCanny(const Mat &_dx, const Mat &_dy, Mat &_map, std::deque<uchar*> &borderPeaksParallel,
int _low, int _high, bool _L2gradient) :
src(_dx), src2(_dy), map(_map), _borderPeaksParallel(borderPeaksParallel),
low(_low), high(_high), aperture_size(0), L2gradient(_L2gradient)
{
#if CV_SIMD128
haveSIMD = hasSIMD128();
if(haveSIMD)
_map.create(src.rows + 2, (int)alignSize((size_t)(src.cols + CV_MALLOC_SIMD128 + 1), CV_MALLOC_SIMD128), CV_8UC1);
else
#endif
_map.create(src.rows + 2, src.cols + 2, CV_8UC1);
map = _map;
map.row(0).setTo(1);
map.row(src.rows + 1).setTo(1);
mapstep = map.cols;
needGradient = false;
cn = src.channels();
}
~parallelCanny() {}
parallelCanny& operator=(const parallelCanny&) { return *this; }
void operator()(const Range &boundaries) const
{
Mat dx, dy;
AutoBuffer<short> dxMax(0), dyMax(0);
std::deque<uchar*> stack, borderPeaksLocal;
const int rowStart = max(0, boundaries.start - 1), rowEnd = min(src.rows, boundaries.end + 1);
int *_mag_p, *_mag_a, *_mag_n;
short *_dx, *_dy, *_dx_a = NULL, *_dy_a = NULL, *_dx_n = NULL, *_dy_n = NULL;
uchar *_pmap;
if(needGradient)
{
Sobel(src.rowRange(rowStart, rowEnd), dx, CV_16S, 1, 0, aperture_size, 1, 0, BORDER_REPLICATE);
Sobel(src.rowRange(rowStart, rowEnd), dy, CV_16S, 0, 1, aperture_size, 1, 0, BORDER_REPLICATE);
}
else
{
dx = src.rowRange(rowStart, rowEnd);
dy = src2.rowRange(rowStart, rowEnd);
}
if(cn > 1)
{
dxMax.allocate(2 * dx.cols);
dyMax.allocate(2 * dy.cols);
_dx_a = (short*)dxMax;
_dx_n = _dx_a + dx.cols;
_dy_a = (short*)dyMax;
_dy_n = _dy_a + dy.cols;
}
// _mag_p: previous row, _mag_a: actual row, _mag_n: next row
#if CV_SIMD128
AutoBuffer<int> buffer(3 * (mapstep * cn + CV_MALLOC_SIMD128));
_mag_p = alignPtr((int*)buffer + 1, CV_MALLOC_SIMD128);
_mag_a = alignPtr(_mag_p + mapstep * cn, CV_MALLOC_SIMD128);
_mag_n = alignPtr(_mag_a + mapstep * cn, CV_MALLOC_SIMD128);
#else
AutoBuffer<int> buffer(3 * (mapstep * cn));
_mag_p = (int*)buffer + 1;
_mag_a = _mag_p + mapstep * cn;
_mag_n = _mag_a + mapstep * cn;
#endif
// For the first time when just 2 rows are filled and for left and right borders
if(rowStart == boundaries.start)
memset(_mag_n - 1, 0, mapstep * sizeof(int));
else
_mag_n[src.cols] = _mag_n[-1] = 0;
_mag_a[src.cols] = _mag_a[-1] = _mag_p[src.cols] = _mag_p[-1] = 0;
// calculate magnitude and angle of gradient, perform non-maxima suppression.
// fill the map with one of the following values:
// 0 - the pixel might belong to an edge
// 1 - the pixel can not belong to an edge
// 2 - the pixel does belong to an edge
for (int i = rowStart; i <= boundaries.end; ++i)
{
// Scroll the ring buffer
std::swap(_mag_n, _mag_a);
std::swap(_mag_n, _mag_p);
if(i < rowEnd)
{
// Next row calculation
_dx = dx.ptr<short>(i - rowStart);
_dy = dy.ptr<short>(i - rowStart);
if (L2gradient)
{
int j = 0, width = src.cols * cn;
#if CV_SIMD128
if (haveSIMD)
{
for ( ; j <= width - 8; j += 8)
{
v_int16x8 v_dx = v_load((const short*)(_dx + j));
v_int16x8 v_dy = v_load((const short*)(_dy + j));
v_int32x4 v_dxp_low, v_dxp_high;
v_int32x4 v_dyp_low, v_dyp_high;
v_expand(v_dx, v_dxp_low, v_dxp_high);
v_expand(v_dy, v_dyp_low, v_dyp_high);
v_store_aligned((int *)(_mag_n + j), v_dxp_low*v_dxp_low+v_dyp_low*v_dyp_low);
v_store_aligned((int *)(_mag_n + j + 4), v_dxp_high*v_dxp_high+v_dyp_high*v_dyp_high);
}
}
#endif
for ( ; j < width; ++j)
_mag_n[j] = int(_dx[j])*_dx[j] + int(_dy[j])*_dy[j];
}
else
{
int j = 0, width = src.cols * cn;
#if CV_SIMD128
if (haveSIMD)
{
for(; j <= width - 8; j += 8)
{
v_int16x8 v_dx = v_load((const short *)(_dx + j));
v_int16x8 v_dy = v_load((const short *)(_dy + j));
v_dx = v_reinterpret_as_s16(v_abs(v_dx));
v_dy = v_reinterpret_as_s16(v_abs(v_dy));
v_int32x4 v_dx_ml, v_dy_ml, v_dx_mh, v_dy_mh;
v_expand(v_dx, v_dx_ml, v_dx_mh);
v_expand(v_dy, v_dy_ml, v_dy_mh);
v_store_aligned((int *)(_mag_n + j), v_dx_ml + v_dy_ml);
v_store_aligned((int *)(_mag_n + j + 4), v_dx_mh + v_dy_mh);
}
}
#endif
for ( ; j < width; ++j)
_mag_n[j] = std::abs(int(_dx[j])) + std::abs(int(_dy[j]));
}
if(cn > 1)
{
std::swap(_dx_n, _dx_a);
std::swap(_dy_n, _dy_a);
for(int j = 0, jn = 0; j < src.cols; ++j, jn += cn)
{
int maxIdx = jn;
for(int k = 1; k < cn; ++k)
if(_mag_n[jn + k] > _mag_n[maxIdx]) maxIdx = jn + k;
_mag_n[j] = _mag_n[maxIdx];
_dx_n[j] = _dx[maxIdx];
_dy_n[j] = _dy[maxIdx];
}
_mag_n[src.cols] = 0;
}
// at the very beginning we do not have a complete ring
// buffer of 3 magnitude rows for non-maxima suppression
if (i <= boundaries.start)
continue;
}
else
{
memset(_mag_n - 1, 0, mapstep * sizeof(int));
if(cn > 1)
{
std::swap(_dx_n, _dx_a);
std::swap(_dy_n, _dy_a);
}
}
// From here actual src row is (i - 1)
// Set left and right border to 1
#if CV_SIMD128
if(haveSIMD)
_pmap = map.ptr<uchar>(i) + CV_MALLOC_SIMD128;
else
#endif
_pmap = map.ptr<uchar>(i) + 1;
_pmap[src.cols] =_pmap[-1] = 1;
if(cn == 1)
{
_dx = dx.ptr<short>(i - rowStart - 1);
_dy = dy.ptr<short>(i - rowStart - 1);
}
else
{
_dx = _dx_a;
_dy = _dy_a;
}
const int TG22 = 13573;
int j = 0;
#if CV_SIMD128
if (haveSIMD)
{
const v_int32x4 v_low = v_setall_s32(low);
const v_int8x16 v_one = v_setall_s8(1);
for (; j <= src.cols - 32; j += 32)
{
v_int32x4 v_m1 = v_load_aligned((const int*)(_mag_a + j));
v_int32x4 v_m2 = v_load_aligned((const int*)(_mag_a + j + 4));
v_int32x4 v_m3 = v_load_aligned((const int*)(_mag_a + j + 8));
v_int32x4 v_m4 = v_load_aligned((const int*)(_mag_a + j + 12));
v_int32x4 v_cmp1 = v_m1 > v_low;
v_int32x4 v_cmp2 = v_m2 > v_low;
v_int32x4 v_cmp3 = v_m3 > v_low;
v_int32x4 v_cmp4 = v_m4 > v_low;
v_m1 = v_load_aligned((const int*)(_mag_a + j + 16));
v_m2 = v_load_aligned((const int*)(_mag_a + j + 20));
v_m3 = v_load_aligned((const int*)(_mag_a + j + 24));
v_m4 = v_load_aligned((const int*)(_mag_a + j + 28));
v_store_aligned((signed char*)(_pmap + j), v_one);
v_store_aligned((signed char*)(_pmap + j + 16), v_one);
v_int16x8 v_cmp80 = v_pack(v_cmp1, v_cmp2);
v_int16x8 v_cmp81 = v_pack(v_cmp3, v_cmp4);
v_cmp1 = v_m1 > v_low;
v_cmp2 = v_m2 > v_low;
v_cmp3 = v_m3 > v_low;
v_cmp4 = v_m4 > v_low;
v_int8x16 v_cmp = v_pack(v_cmp80, v_cmp81);
v_cmp80 = v_pack(v_cmp1, v_cmp2);
v_cmp81 = v_pack(v_cmp3, v_cmp4);
unsigned int mask = v_signmask(v_cmp);
v_cmp = v_pack(v_cmp80, v_cmp81);
mask |= v_signmask(v_cmp) << 16;
if (mask)
{
int k = j;
do
{
int l = trailingZeros32(mask);
k += l;
mask >>= l;
int m = _mag_a[k];
short xs = _dx[k];
short ys = _dy[k];
int x = (int)std::abs(xs);
int y = (int)std::abs(ys) << 15;
int tg22x = x * TG22;
if (y < tg22x)
{
if (m > _mag_a[k - 1] && m >= _mag_a[k + 1])
{
CANNY_CHECK_SIMD(m, high, (_pmap+k), stack);
}
}
else
{
int tg67x = tg22x + (x << 16);
if (y > tg67x)
{
if (m > _mag_p[k] && m >= _mag_n[k])
{
CANNY_CHECK_SIMD(m, high, (_pmap+k), stack);
}
}
else
{
int s = (xs ^ ys) < 0 ? -1 : 1;
if(m > _mag_p[k - s] && m > _mag_n[k + s])
{
CANNY_CHECK_SIMD(m, high, (_pmap+k), stack);
}
}
}
++k;
} while((mask >>= 1));
}
}
if (j <= src.cols - 16)
{
v_int32x4 v_m1 = v_load_aligned((const int*)(_mag_a + j));
v_int32x4 v_m2 = v_load_aligned((const int*)(_mag_a + j + 4));
v_int32x4 v_m3 = v_load_aligned((const int*)(_mag_a + j + 8));
v_int32x4 v_m4 = v_load_aligned((const int*)(_mag_a + j + 12));
v_store_aligned((signed char*)(_pmap + j), v_one);
v_int32x4 v_cmp1 = v_m1 > v_low;
v_int32x4 v_cmp2 = v_m2 > v_low;
v_int32x4 v_cmp3 = v_m3 > v_low;
v_int32x4 v_cmp4 = v_m4 > v_low;
v_int16x8 v_cmp80 = v_pack(v_cmp1, v_cmp2);
v_int16x8 v_cmp81 = v_pack(v_cmp3, v_cmp4);
v_int8x16 v_cmp = v_pack(v_cmp80, v_cmp81);
unsigned int mask = v_signmask(v_cmp);
if (mask)
{
int k = j;
do
{
int l = trailingZeros32(mask);
k += l;
mask >>= l;
int m = _mag_a[k];
short xs = _dx[k];
short ys = _dy[k];
int x = (int)std::abs(xs);
int y = (int)std::abs(ys) << 15;
int tg22x = x * TG22;
if (y < tg22x)
{
if (m > _mag_a[k - 1] && m >= _mag_a[k + 1])
{
CANNY_CHECK_SIMD(m, high, (_pmap+k), stack);
}
}
else
{
int tg67x = tg22x + (x << 16);
if (y > tg67x)
{
if (m > _mag_p[k] && m >= _mag_n[k])
{
CANNY_CHECK_SIMD(m, high, (_pmap+k), stack);
}
}
else
{
int s = (xs ^ ys) < 0 ? -1 : 1;
if(m > _mag_p[k - s] && m > _mag_n[k + s])
{
CANNY_CHECK_SIMD(m, high, (_pmap+k), stack);
}
}
}
++k;
} while((mask >>= 1));
}
j += 16;
}
}
#endif
for (; j < src.cols; j++)
{
int m = _mag_a[j];
if (m > low)
{
short xs = _dx[j];
short ys = _dy[j];
int x = (int)std::abs(xs);
int y = (int)std::abs(ys) << 15;
int tg22x = x * TG22;
if (y < tg22x)
{
if (m > _mag_a[j - 1] && m >= _mag_a[j + 1])
{
CANNY_CHECK(m, high, (_pmap+j), stack);
}
}
else
{
int tg67x = tg22x + (x << 16);
if (y > tg67x)
{
if (m > _mag_p[j] && m >= _mag_n[j])
{
CANNY_CHECK(m, high, (_pmap+j), stack);
}
}
else
{
int s = (xs ^ ys) < 0 ? -1 : 1;
if(m > _mag_p[j - s] && m > _mag_n[j + s])
{
CANNY_CHECK(m, high, (_pmap+j), stack);
}
}
}
}
_pmap[j] = 1;
}
}
// Not for first row of first slice or last row of last slice
uchar *pmapLower = (rowStart == 0) ? map.data : (map.data + (boundaries.start + 2) * mapstep);
uint pmapDiff = (uint)(((rowEnd == src.rows) ? map.datalimit : (map.data + boundaries.end * mapstep)) - pmapLower);
// now track the edges (hysteresis thresholding)
while (!stack.empty())
{
uchar *m = stack.back();
stack.pop_back();
// Stops thresholding from expanding to other slices by sending pixels in the borders of each
// slice in a queue to be serially processed later.
if((unsigned)(m - pmapLower) < pmapDiff)
{
if (!m[-mapstep-1]) CANNY_PUSH((m-mapstep-1), stack);
if (!m[-mapstep]) CANNY_PUSH((m-mapstep), stack);
if (!m[-mapstep+1]) CANNY_PUSH((m-mapstep+1), stack);
if (!m[-1]) CANNY_PUSH((m-1), stack);
if (!m[1]) CANNY_PUSH((m+1), stack);
if (!m[mapstep-1]) CANNY_PUSH((m+mapstep-1), stack);
if (!m[mapstep]) CANNY_PUSH((m+mapstep), stack);
if (!m[mapstep+1]) CANNY_PUSH((m+mapstep+1), stack);
}
else
{
borderPeaksLocal.push_back(m);
ptrdiff_t mapstep2 = m < pmapLower ? mapstep : -mapstep;
if (!m[-1]) CANNY_PUSH((m-1), stack);
if (!m[1]) CANNY_PUSH((m+1), stack);
if (!m[mapstep2-1]) CANNY_PUSH((m+mapstep2-1), stack);
if (!m[mapstep2]) CANNY_PUSH((m+mapstep2), stack);
if (!m[mapstep2+1]) CANNY_PUSH((m+mapstep2+1), stack);
}
}
if(!borderPeaksLocal.empty())
{
AutoLock lock(mutex);
_borderPeaksParallel.insert(_borderPeaksParallel.end(), borderPeaksLocal.begin(), borderPeaksLocal.end());
}
}
private:
const Mat &src, &src2;
Mat ↦
std::deque<uchar*> &_borderPeaksParallel;
int low, high, aperture_size;
bool L2gradient, needGradient;
ptrdiff_t mapstep;
int cn;
#if CV_SIMD128
bool haveSIMD;
#endif
mutable Mutex mutex;
};
class finalPass : public ParallelLoopBody
{
public:
finalPass(const Mat &_map, Mat &_dst) :
map(_map), dst(_dst)
{
dst = _dst;
#if CV_SIMD128
haveSIMD = hasSIMD128();
#endif
}
~finalPass() {}
finalPass& operator=(const finalPass&) {return *this;}
void operator()(const Range &boundaries) const
{
// the final pass, form the final image
for (int i = boundaries.start; i < boundaries.end; i++)
{
int j = 0;
uchar *pdst = dst.ptr<uchar>(i);
uchar *pmap;
#if CV_SIMD128
if(haveSIMD)
pmap = (uchar*)map.ptr<uchar>(i + 1) + CV_MALLOC_SIMD128;
else
#endif
pmap = (uchar*)map.ptr<uchar>(i + 1) + 1;
#if CV_SIMD128
if(haveSIMD) {
const v_int8x16 v_zero = v_setzero_s8();
for(; j <= dst.cols - 32; j += 32) {
v_uint8x16 v_pmap1 = v_load_aligned((const unsigned char*)(pmap + j));
v_uint8x16 v_pmap2 = v_load_aligned((const unsigned char*)(pmap + j + 16));
v_uint16x8 v_pmaplo1, v_pmaphi1, v_pmaplo2, v_pmaphi2;
v_expand(v_pmap1, v_pmaplo1, v_pmaphi1);
v_expand(v_pmap2, v_pmaplo2, v_pmaphi2);
v_pmaplo1 = v_pmaplo1 >> 1;
v_pmaphi1 = v_pmaphi1 >> 1;
v_pmaplo2 = v_pmaplo2 >> 1;
v_pmaphi2 = v_pmaphi2 >> 1;
v_pmap1 = v_pack(v_pmaplo1, v_pmaphi1);
v_pmap2 = v_pack(v_pmaplo2, v_pmaphi2);
v_pmap1 = v_reinterpret_as_u8(v_zero - v_reinterpret_as_s8(v_pmap1));
v_pmap2 = v_reinterpret_as_u8(v_zero - v_reinterpret_as_s8(v_pmap2));
v_store((pdst + j), v_pmap1);
v_store((pdst + j + 16), v_pmap2);
}
if(j <= dst.cols - 16) {
v_uint8x16 v_pmap = v_load_aligned((const unsigned char*)(pmap + j));
v_uint16x8 v_pmaplo;
v_uint16x8 v_pmaphi;
v_expand(v_pmap, v_pmaplo, v_pmaphi);
v_pmaplo = v_pmaplo >> 1;
v_pmaphi = v_pmaphi >> 1;
v_pmap = v_pack(v_pmaplo, v_pmaphi);
v_pmap = v_reinterpret_as_u8(v_zero - v_reinterpret_as_s8(v_pmap));
v_store((pdst + j), v_pmap);
j += 16;
}
if(j <= dst.cols - 8) {
v_uint8x16 v_pmap = v_load_halves((const unsigned char*)(pmap + j), (const unsigned char*)(pmap + j));
v_uint16x8 v_pmaplo;
v_uint16x8 v_pmaphi;
v_expand(v_pmap, v_pmaplo, v_pmaphi);
v_pmaplo = v_pmaplo >> 1;
v_pmaphi = v_pmaphi >> 1;
v_pmap = v_pack(v_pmaplo, v_pmaphi);
v_pmap = v_reinterpret_as_u8(v_zero - v_reinterpret_as_s8(v_pmap));
v_store_low((pdst + j), v_pmap);
j += 8;
}
}
#endif
for (; j < dst.cols; j++)
pdst[j] = (uchar)-(pmap[j] >> 1);
}
}
private:
const Mat ↦
Mat &dst;
#if CV_SIMD128
bool haveSIMD;
#endif
};
#ifdef HAVE_OPENVX
namespace ovx {
template <> inline bool skipSmallImages<VX_KERNEL_CANNY_EDGE_DETECTOR>(int w, int h) { return w*h < 640 * 480; }
}
static bool openvx_canny(const Mat& src, Mat& dst, int loVal, int hiVal, int kSize, bool useL2)
{
using namespace ivx;
Context context = ovx::getOpenVXContext();
try
{
Image _src = Image::createFromHandle(
context,
Image::matTypeToFormat(src.type()),
Image::createAddressing(src),
src.data );
Image _dst = Image::createFromHandle(
context,
Image::matTypeToFormat(dst.type()),
Image::createAddressing(dst),
dst.data );
Threshold threshold = Threshold::createRange(context, VX_TYPE_UINT8, saturate_cast<uchar>(loVal), saturate_cast<uchar>(hiVal));
#if 0
// the code below is disabled because vxuCannyEdgeDetector()
// ignores context attribute VX_CONTEXT_IMMEDIATE_BORDER
// FIXME: may fail in multithread case
border_t prevBorder = context.immediateBorder();
context.setImmediateBorder(VX_BORDER_REPLICATE);
IVX_CHECK_STATUS( vxuCannyEdgeDetector(context, _src, threshold, kSize, (useL2 ? VX_NORM_L2 : VX_NORM_L1), _dst) );
context.setImmediateBorder(prevBorder);
#else
// alternative code without vxuCannyEdgeDetector()
Graph graph = Graph::create(context);
ivx::Node node = ivx::Node(vxCannyEdgeDetectorNode(graph, _src, threshold, kSize, (useL2 ? VX_NORM_L2 : VX_NORM_L1), _dst) );
node.setBorder(VX_BORDER_REPLICATE);
graph.verify();
graph.process();
#endif
#ifdef VX_VERSION_1_1
_src.swapHandle();
_dst.swapHandle();
#endif
}
catch(const WrapperError& e)
{
VX_DbgThrow(e.what());
}
catch(const RuntimeError& e)
{
VX_DbgThrow(e.what());
}
return true;
}
#endif // HAVE_OPENVX
void Canny( InputArray _src, OutputArray _dst,
double low_thresh, double high_thresh,
int aperture_size, bool L2gradient )
{
CV_INSTRUMENT_REGION()
CV_Assert( _src.depth() == CV_8U );
const Size size = _src.size();
_dst.create(size, CV_8U);
if (!L2gradient && (aperture_size & CV_CANNY_L2_GRADIENT) == CV_CANNY_L2_GRADIENT)
{
// backward compatibility
aperture_size &= ~CV_CANNY_L2_GRADIENT;
L2gradient = true;
}
if ((aperture_size & 1) == 0 || (aperture_size != -1 && (aperture_size < 3 || aperture_size > 7)))
CV_Error(CV_StsBadFlag, "Aperture size should be odd between 3 and 7");
if (low_thresh > high_thresh)
std::swap(low_thresh, high_thresh);
CV_OCL_RUN(_dst.isUMat() && (_src.channels() == 1 || _src.channels() == 3),
ocl_Canny<false>(_src, UMat(), UMat(), _dst, (float)low_thresh, (float)high_thresh, aperture_size, L2gradient, _src.channels(), size))
Mat src = _src.getMat(), dst = _dst.getMat();
CV_OVX_RUN(
false && /* disabling due to accuracy issues */
src.type() == CV_8UC1 &&
!src.isSubmatrix() &&
src.cols >= aperture_size &&
src.rows >= aperture_size &&
!ovx::skipSmallImages<VX_KERNEL_CANNY_EDGE_DETECTOR>(src.cols, src.rows),
openvx_canny(
src,
dst,
cvFloor(low_thresh),
cvFloor(high_thresh),
aperture_size,
L2gradient ) )
#ifdef HAVE_TEGRA_OPTIMIZATION
if (tegra::useTegra() && tegra::canny(src, dst, low_thresh, high_thresh, aperture_size, L2gradient))
return;
#endif
CV_IPP_RUN_FAST(ipp_Canny(src, Mat(), Mat(), dst, (float)low_thresh, (float)high_thresh, L2gradient, aperture_size))
if (L2gradient)
{
low_thresh = std::min(32767.0, low_thresh);
high_thresh = std::min(32767.0, high_thresh);
if (low_thresh > 0) low_thresh *= low_thresh;
if (high_thresh > 0) high_thresh *= high_thresh;
}
int low = cvFloor(low_thresh);
int high = cvFloor(high_thresh);
// If Scharr filter: aperture size is 3, ksize2 is 1
int ksize2 = aperture_size < 0 ? 1 : aperture_size / 2;
// Minimum number of threads should be 1, maximum should not exceed number of CPU's, because of overhead
int numOfThreads = std::max(1, std::min(getNumThreads(), getNumberOfCPUs()));
// Make a fallback for pictures with too few rows.
int grainSize = src.rows / numOfThreads;
int minGrainSize = 2 * (ksize2 + 1);
if (grainSize < minGrainSize)
numOfThreads = std::max(1, src.rows / minGrainSize);
Mat map;
std::deque<uchar*> stack;
parallel_for_(Range(0, src.rows), parallelCanny(src, map, stack, low, high, aperture_size, L2gradient), numOfThreads);
// now track the edges (hysteresis thresholding)
ptrdiff_t mapstep = map.cols;
while (!stack.empty())
{
uchar* m = stack.back();
stack.pop_back();
if (!m[-mapstep-1]) CANNY_PUSH((m-mapstep-1), stack);
if (!m[-mapstep]) CANNY_PUSH((m-mapstep), stack);
if (!m[-mapstep+1]) CANNY_PUSH((m-mapstep+1), stack);
if (!m[-1]) CANNY_PUSH((m-1), stack);
if (!m[1]) CANNY_PUSH((m+1), stack);
if (!m[mapstep-1]) CANNY_PUSH((m+mapstep-1), stack);
if (!m[mapstep]) CANNY_PUSH((m+mapstep), stack);
if (!m[mapstep+1]) CANNY_PUSH((m+mapstep+1), stack);
}
parallel_for_(Range(0, src.rows), finalPass(map, dst), src.total()/(double)(1<<16));
}
void Canny( InputArray _dx, InputArray _dy, OutputArray _dst,
double low_thresh, double high_thresh,
bool L2gradient )
{
CV_INSTRUMENT_REGION()
CV_Assert(_dx.dims() == 2);
CV_Assert(_dx.type() == CV_16SC1 || _dx.type() == CV_16SC3);
CV_Assert(_dy.type() == _dx.type());
CV_Assert(_dx.sameSize(_dy));
if (low_thresh > high_thresh)
std::swap(low_thresh, high_thresh);
const Size size = _dx.size();
CV_OCL_RUN(_dst.isUMat(),
ocl_Canny<true>(UMat(), _dx.getUMat(), _dy.getUMat(), _dst, (float)low_thresh, (float)high_thresh, 0, L2gradient, _dx.channels(), size))
_dst.create(size, CV_8U);
Mat dst = _dst.getMat();
Mat dx = _dx.getMat();
Mat dy = _dy.getMat();
CV_IPP_RUN_FAST(ipp_Canny(Mat(), dx, dy, dst, (float)low_thresh, (float)high_thresh, L2gradient, 0))
if (L2gradient)
{
low_thresh = std::min(32767.0, low_thresh);
high_thresh = std::min(32767.0, high_thresh);
if (low_thresh > 0) low_thresh *= low_thresh;
if (high_thresh > 0) high_thresh *= high_thresh;
}
int low = cvFloor(low_thresh);
int high = cvFloor(high_thresh);
std::deque<uchar*> stack;
Mat map;
// Minimum number of threads should be 1, maximum should not exceed number of CPU's, because of overhead
int numOfThreads = std::max(1, std::min(getNumThreads(), getNumberOfCPUs()));
if (dx.rows / numOfThreads < 3)
numOfThreads = std::max(1, dx.rows / 3);
parallel_for_(Range(0, dx.rows), parallelCanny(dx, dy, map, stack, low, high, L2gradient), numOfThreads);
// now track the edges (hysteresis thresholding)
ptrdiff_t mapstep = map.cols;
while (!stack.empty())
{
uchar* m = stack.back();
stack.pop_back();
if (!m[-mapstep-1]) CANNY_PUSH((m-mapstep-1), stack);
if (!m[-mapstep]) CANNY_PUSH((m-mapstep), stack);
if (!m[-mapstep+1]) CANNY_PUSH((m-mapstep+1), stack);
if (!m[-1]) CANNY_PUSH((m-1), stack);
if (!m[1]) CANNY_PUSH((m+1), stack);
if (!m[mapstep-1]) CANNY_PUSH((m+mapstep-1), stack);
if (!m[mapstep]) CANNY_PUSH((m+mapstep), stack);
if (!m[mapstep+1]) CANNY_PUSH((m+mapstep+1), stack);
}
parallel_for_(Range(0, dx.rows), finalPass(map, dst), dx.total()/(double)(1<<16));
}
} // namespace cv
void cvCanny( const CvArr* image, CvArr* edges, double threshold1,
double threshold2, int aperture_size )
{
cv::Mat src = cv::cvarrToMat(image), dst = cv::cvarrToMat(edges);
CV_Assert( src.size == dst.size && src.depth() == CV_8U && dst.type() == CV_8U );
cv::Canny(src, dst, threshold1, threshold2, aperture_size & 255,
(aperture_size & CV_CANNY_L2_GRADIENT) != 0);
}
/* End of file. */