icf-sc.cu 20.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include <cuda_invoker.hpp>
#include <float.h>
#include <stdio.h>

namespace cv { namespace softcascade { namespace internal {
void error(const char *error_string, const char *file, const int line, const char *func);
}}}
#if defined(__GNUC__)
    #define cudaSafeCall(expr)  ___cudaSafeCall(expr, __FILE__, __LINE__, __func__)
#else /* defined(__CUDACC__) || defined(__MSVC__) */
    #define cudaSafeCall(expr)  ___cudaSafeCall(expr, __FILE__, __LINE__)
#endif

static inline void ___cudaSafeCall(cudaError_t err, const char *file, const int line, const char *func = "")
{
    if (cudaSuccess != err) cv::softcascade::internal::error(cudaGetErrorString(err), file, line, func);
}

#ifndef CV_PI
    #define CV_PI   3.1415926535897932384626433832795
#endif

namespace cv { namespace softcascade { namespace device {

typedef unsigned char uchar;

    template <int FACTOR>
    __device__ __forceinline__ uchar shrink(const uchar* ptr, const int pitch, const int y, const int x)
    {
        int out = 0;
#pragma unroll
        for(int dy = 0; dy < FACTOR; ++dy)
#pragma unroll
            for(int dx = 0; dx < FACTOR; ++dx)
            {
                out += ptr[dy * pitch + dx];
            }

        return static_cast<uchar>(out / (FACTOR * FACTOR));
    }

    template<int FACTOR>
    __global__ void shrink(const uchar* __restrict__ hogluv, const int inPitch,
                                 uchar* __restrict__ shrank, const int outPitch )
    {
        const int y = blockIdx.y * blockDim.y + threadIdx.y;
        const int x = blockIdx.x * blockDim.x + threadIdx.x;

        const uchar* ptr = hogluv + (FACTOR * y) * inPitch + (FACTOR * x);

        shrank[ y * outPitch + x] = shrink<FACTOR>(ptr, inPitch, y, x);
    }

    void shrink(const cv::gpu::PtrStepSzb& channels, cv::gpu::PtrStepSzb shrunk)
    {
        dim3 block(32, 8);
        dim3 grid(shrunk.cols / 32, shrunk.rows / 8);
        shrink<4><<<grid, block>>>((uchar*)channels.ptr(), channels.step, (uchar*)shrunk.ptr(), shrunk.step);
        cudaSafeCall(cudaDeviceSynchronize());
    }

    __device__ __forceinline__ void luv(const float& b, const float& g, const float& r, uchar& __l, uchar& __u, uchar& __v)
    {
        // rgb -> XYZ
        float x = 0.412453f * r + 0.357580f * g + 0.180423f * b;
        float y = 0.212671f * r + 0.715160f * g + 0.072169f * b;
        float z = 0.019334f * r + 0.119193f * g + 0.950227f * b;

        // computed for D65
        const float _ur = 0.19783303699678276f;
        const float _vr = 0.46833047435252234f;

        const float divisor = fmax((x + 15.f * y + 3.f * z), FLT_EPSILON);
        const float _u = __fdividef(4.f * x, divisor);
        const float _v = __fdividef(9.f * y, divisor);

        float hack = static_cast<float>(__float2int_rn(y * 2047)) / 2047;
        const float L = fmax(0.f, ((116.f * cbrtf(hack)) - 16.f));
        const float U = 13.f * L * (_u - _ur);
        const float V = 13.f * L * (_v - _vr);

        // L in [0, 100], u in [-134, 220], v in [-140, 122]
        __l = static_cast<uchar>( L * (255.f / 100.f));
        __u = static_cast<uchar>((U + 134.f) * (255.f / (220.f + 134.f )));
        __v = static_cast<uchar>((V + 140.f) * (255.f / (122.f + 140.f )));
    }

    __global__ void bgr2Luv_d(const uchar* rgb, const int rgbPitch, uchar* luvg, const int luvgPitch)
    {
        const int y = blockIdx.y * blockDim.y + threadIdx.y;
        const int x = blockIdx.x * blockDim.x + threadIdx.x;

        uchar3 color = ((uchar3*)(rgb + rgbPitch * y))[x];
        uchar l, u, v;
        luv(color.x / 255.f, color.y / 255.f, color.z / 255.f, l, u, v);

        luvg[luvgPitch *  y + x] = l;
        luvg[luvgPitch * (y + 480) + x] = u;
        luvg[luvgPitch * (y + 2 * 480) + x] = v;
    }

    void bgr2Luv(const cv::gpu::PtrStepSzb& bgr, cv::gpu::PtrStepSzb luv)
    {
        dim3 block(32, 8);
        dim3 grid(bgr.cols / 32, bgr.rows / 8);

        bgr2Luv_d<<<grid, block>>>((const uchar*)bgr.ptr(0), bgr.step, (uchar*)luv.ptr(0), luv.step);

        cudaSafeCall(cudaDeviceSynchronize());
    }

    template<bool isDefaultNum>
    __device__ __forceinline__ int fast_angle_bin(const float& dx, const float& dy)
    {
        const float angle_quantum = CV_PI / 6.f;
        float angle = atan2(dx, dy) + (angle_quantum / 2.f);

        if (angle < 0) angle += CV_PI;

        const float angle_scaling = 1.f / angle_quantum;
        return static_cast<int>(angle * angle_scaling) % 6;
    }

    template<>
    __device__ __forceinline__ int fast_angle_bin<true>(const float& dy, const float& dx)
    {
        int index = 0;

        float max_dot = fabs(dx);

        {
            const float dot_product = fabs(dx * 0.8660254037844386f + dy * 0.5f);

            if(dot_product > max_dot)
            {
                max_dot = dot_product;
                index = 1;
            }
        }
        {
            const float dot_product = fabs(dy * 0.8660254037844386f + dx * 0.5f);

            if(dot_product > max_dot)
            {
                max_dot = dot_product;
                index = 2;
            }
        }
        {
            int i = 3;
            float2 bin_vector_i;
            bin_vector_i.x = ::cos(i * (CV_PI / 6.f));
            bin_vector_i.y = ::sin(i * (CV_PI / 6.f));

            const float dot_product = fabs(dx * bin_vector_i.x + dy * bin_vector_i.y);
            if(dot_product > max_dot)
            {
                max_dot = dot_product;
                index = i;
            }
        }
        {
            const float dot_product = fabs(dx * (-0.4999999999999998f) + dy * 0.8660254037844387f);
            if(dot_product > max_dot)
            {
                max_dot = dot_product;
                index = 4;
            }
        }
        {
            const float dot_product = fabs(dx * (-0.8660254037844387f) + dy * 0.49999999999999994f);
            if(dot_product > max_dot)
            {
                max_dot = dot_product;
                index = 5;
            }
        }
        return index;
    }

    texture<uchar,  cudaTextureType2D, cudaReadModeElementType> tgray;

    template<bool isDefaultNum>
    __global__ void gray2hog(cv::gpu::PtrStepSzb mag)
    {
        const int x = blockIdx.x * blockDim.x + threadIdx.x;
        const int y = blockIdx.y * blockDim.y + threadIdx.y;

        const float dx = tex2D(tgray, x + 1, y + 0) - tex2D(tgray, x - 1, y - 0);
        const float dy = tex2D(tgray, x + 0, y + 1) - tex2D(tgray, x - 0, y - 1);

        const float magnitude = sqrtf((dx * dx) + (dy * dy)) * (1.0f / sqrtf(2));
        const uchar cmag = static_cast<uchar>(magnitude);

        mag( 480 * 6 + y, x) = cmag;
        mag( 480 * fast_angle_bin<isDefaultNum>(dy, dx) + y, x) = cmag;
    }

    void gray2hog(const cv::gpu::PtrStepSzb& gray, cv::gpu::PtrStepSzb mag, const int bins)
    {
        dim3 block(32, 8);
        dim3 grid(gray.cols / 32, gray.rows / 8);

        cudaChannelFormatDesc desc = cudaCreateChannelDesc<uchar>();
        cudaSafeCall( cudaBindTexture2D(0, tgray, gray.data, desc, gray.cols, gray.rows, gray.step) );

        if (bins == 6)
            gray2hog<true><<<grid, block>>>(mag);
        else
            gray2hog<false><<<grid, block>>>(mag);

        cudaSafeCall(cudaDeviceSynchronize());
    }

    // ToDo: use textures or uncached load instruction.
    __global__ void magToHist(const uchar* __restrict__ mag,
                              const float* __restrict__ angle, const int angPitch,
                                    uchar* __restrict__ hog,   const int hogPitch, const int fh)
    {
        const int y = blockIdx.y * blockDim.y + threadIdx.y;
        const int x = blockIdx.x * blockDim.x + threadIdx.x;

        const int bin = (int)(angle[y * angPitch + x]);
        const uchar val = mag[y * hogPitch + x];
        hog[((fh * bin) + y) * hogPitch + x] = val;
    }

    void fillBins(cv::gpu::PtrStepSzb hogluv, const cv::gpu::PtrStepSzf& nangle,
                  const int fw,  const int fh, const int bins, cudaStream_t stream )
    {
        const uchar* mag = (const uchar*)hogluv.ptr(fh * bins);
        uchar* hog = (uchar*)hogluv.ptr();
        const float* angle = (const float*)nangle.ptr();

        dim3 block(32, 8);
        dim3 grid(fw / 32, fh / 8);

        magToHist<<<grid, block, 0, stream>>>(mag, angle, nangle.step / sizeof(float), hog, hogluv.step, fh);
        if (!stream)
        {
            cudaSafeCall( cudaGetLastError() );
            cudaSafeCall( cudaDeviceSynchronize() );
        }
    }

    __device__ __forceinline__ float overlapArea(const Detection &a, const Detection &b)
    {
        int w = ::min(a.x + a.w, b.x + b.w) - ::max(a.x, b.x);
        int h = ::min(a.y + a.h, b.y + b.h) - ::max(a.y, b.y);

        return (w < 0 || h < 0)? 0.f : (float)(w * h);
    }

    texture<uint4,  cudaTextureType2D, cudaReadModeElementType> tdetections;

    __global__ void overlap(const uint* n, uchar* overlaps)
    {
        const int idx = threadIdx.x;
        const int total = *n;

        for (int i = idx + 1; i < total; i += 192)
        {
            const uint4 _a = tex2D(tdetections, i, 0);
            const Detection& a = *((Detection*)(&_a));
            bool excluded = false;

            for (int j = i + 1; j < total; ++j)
            {
                const uint4 _b = tex2D(tdetections, j, 0);
                const Detection& b = *((Detection*)(&_b));
                float ovl = overlapArea(a, b) / ::min(a.w * a.h, b.w * b.h);

                if (ovl > 0.65f)
                {
                    int suppessed = (a.confidence > b.confidence)? j : i;
                    overlaps[suppessed] = 1;
                    excluded = excluded || (suppessed == i);
                }

            #if defined __CUDA_ARCH__ && (__CUDA_ARCH__ >= 120)
                if (__all(excluded)) break;
            #endif
            }
        }
    }

    __global__ void collect(const uint* n, uchar* overlaps, uint* ctr, uint4* suppressed)
    {
        const int idx = threadIdx.x;
        const int total = *n;

        for (int i = idx; i < total; i += 192)
        {
            if (!overlaps[i])
            {
                int oidx = atomicInc(ctr, 50);
                suppressed[oidx] = tex2D(tdetections, i + 1, 0);
            }
        }
    }

    void suppress(const cv::gpu::PtrStepSzb& objects, cv::gpu::PtrStepSzb overlaps, cv::gpu::PtrStepSzi ndetections,
        cv::gpu::PtrStepSzb suppressed, cudaStream_t stream)
    {
        int block = 192;
        int grid = 1;

        cudaChannelFormatDesc desc = cudaCreateChannelDesc<uint4>();
        size_t offset;
        cudaSafeCall( cudaBindTexture2D(&offset, tdetections, objects.data, desc, objects.cols / sizeof(uint4), objects.rows, objects.step));

        overlap<<<grid, block>>>((uint*)ndetections.ptr(0), (uchar*)overlaps.ptr(0));
        collect<<<grid, block>>>((uint*)ndetections.ptr(0), (uchar*)overlaps.ptr(0), (uint*)suppressed.ptr(0), ((uint4*)suppressed.ptr(0)) + 1);

        if (!stream)
        {
            cudaSafeCall( cudaGetLastError());
            cudaSafeCall( cudaDeviceSynchronize());
        }
    }

    template<typename Policy>
    struct PrefixSum
    {
    __device_inline__ static void apply(float& impact)
        {
    #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 300
    #pragma unroll
            // scan on shuffle functions
            for (int i = 1; i < Policy::WARP; i *= 2)
            {
                const float n = __shfl_up(impact, i, Policy::WARP);

                if (threadIdx.x >= i)
                    impact += n;
            }
    #else
            __shared__ volatile float ptr[Policy::STA_X * Policy::STA_Y];

            const int idx = threadIdx.y * Policy::STA_X + threadIdx.x;

            ptr[idx] = impact;

            if ( threadIdx.x >=  1) ptr [idx ] = (ptr [idx -  1] + ptr [idx]);
            if ( threadIdx.x >=  2) ptr [idx ] = (ptr [idx -  2] + ptr [idx]);
            if ( threadIdx.x >=  4) ptr [idx ] = (ptr [idx -  4] + ptr [idx]);
            if ( threadIdx.x >=  8) ptr [idx ] = (ptr [idx -  8] + ptr [idx]);
            if ( threadIdx.x >= 16) ptr [idx ] = (ptr [idx - 16] + ptr [idx]);

            impact = ptr[idx];
    #endif
        }
    };

    texture<int,  cudaTextureType2D, cudaReadModeElementType> thogluv;

    template<bool isUp>
    __device__ __forceinline__ float rescale(const Level& level, Node& node)
    {
        uchar4& scaledRect = node.rect;
        float relScale = level.relScale;
        float farea = (scaledRect.z - scaledRect.x) * (scaledRect.w - scaledRect.y);

        // rescale
        scaledRect.x = __float2int_rn(relScale * scaledRect.x);
        scaledRect.y = __float2int_rn(relScale * scaledRect.y);
        scaledRect.z = __float2int_rn(relScale * scaledRect.z);
        scaledRect.w = __float2int_rn(relScale * scaledRect.w);

        float sarea = (scaledRect.z - scaledRect.x) * (scaledRect.w - scaledRect.y);

        const float expected_new_area = farea * relScale * relScale;
        float approx = (sarea == 0)? 1: __fdividef(sarea, expected_new_area);

        float rootThreshold = (node.threshold & 0x0FFFFFFFU) * approx * level.scaling[(node.threshold >> 28) > 6];

        return rootThreshold;
    }

    template<>
    __device__ __forceinline__ float rescale<true>(const Level& level, Node& node)
    {
        uchar4& scaledRect = node.rect;
        float relScale = level.relScale;
        float farea = scaledRect.z * scaledRect.w;

        // rescale
        scaledRect.x = __float2int_rn(relScale * scaledRect.x);
        scaledRect.y = __float2int_rn(relScale * scaledRect.y);
        scaledRect.z = __float2int_rn(relScale * scaledRect.z);
        scaledRect.w = __float2int_rn(relScale * scaledRect.w);

        float sarea = scaledRect.z * scaledRect.w;

        const float expected_new_area = farea * relScale * relScale;
        float approx = __fdividef(sarea, expected_new_area);

        float rootThreshold = (node.threshold & 0x0FFFFFFFU) * approx * level.scaling[(node.threshold >> 28) > 6];

        return rootThreshold;
    }

    template<bool isUp>
    __device__ __forceinline__ int get(int x, int y, uchar4 area)
    {
        int a = tex2D(thogluv, x + area.x, y + area.y);
        int b = tex2D(thogluv, x + area.z, y + area.y);
        int c = tex2D(thogluv, x + area.z, y + area.w);
        int d = tex2D(thogluv, x + area.x, y + area.w);

        return (a - b + c - d);
    }

    template<>
    __device__ __forceinline__ int get<true>(int x, int y, uchar4 area)
    {
        x += area.x;
        y += area.y;

        int a = tex2D(thogluv, x, y);
        int b = tex2D(thogluv, x + area.z, y);
        int c = tex2D(thogluv, x + area.z, y + area.w);
        int d = tex2D(thogluv, x, y + area.w);

        return (a - b + c - d);
    }

    texture<float2,  cudaTextureType2D, cudaReadModeElementType> troi;

template<typename Policy>
template<bool isUp>
__device_inline__ void CascadeInvoker<Policy>::detect(Detection* objects, const uint ndetections, uint* ctr, const int downscales) const
{
    const int y = blockIdx.y * blockDim.y + threadIdx.y;
    const int x = blockIdx.x;

    // load Level
    __shared__ Level level;

    // check POI
    __shared__ volatile char roiCache[Policy::STA_Y];

    if (!threadIdx.y && !threadIdx.x)
        ((float2*)roiCache)[threadIdx.x] = tex2D(troi, blockIdx.y, x);

    __syncthreads();

    if (!roiCache[threadIdx.y]) return;

    if (!threadIdx.x)
        level = levels[downscales + blockIdx.z];

    if(x >= level.workRect.x || y >= level.workRect.y) return;

    int st = level.octave * level.step;
    const int stEnd = st + level.step;

    const int hogluvStep = gridDim.y * Policy::STA_Y;
    float confidence = 0.f;
    for(; st < stEnd; st += Policy::WARP)
    {
        const int nId = (st + threadIdx.x) * 3;

        Node node = nodes[nId];

        float threshold = rescale<isUp>(level, node);
        int sum = get<isUp>(x, y + (node.threshold >> 28) * hogluvStep, node.rect);

        int next = 1 + (int)(sum >= threshold);

        node = nodes[nId + next];
        threshold = rescale<isUp>(level, node);
        sum = get<isUp>(x, y + (node.threshold >> 28) * hogluvStep, node.rect);

        const int lShift = (next - 1) * 2 + (int)(sum >= threshold);
        float impact = leaves[(st + threadIdx.x) * 4 + lShift];

        PrefixSum<Policy>::apply(impact);

    #if __CUDA_ARCH__ >= 120
        if(__any((confidence + impact <= stages[(st + threadIdx.x)]))) st += 2048;
    #endif
    #if __CUDA_ARCH__ >= 300
        impact = __shfl(impact, 31);
    #endif

        confidence += impact;
    }

    if(!threadIdx.x && st == stEnd &&  ((confidence - FLT_EPSILON) >= 0))
    {
        int idx = atomicInc(ctr, ndetections);
        objects[idx] = Detection(__float2int_rn(x * Policy::SHRINKAGE),
            __float2int_rn(y * Policy::SHRINKAGE), level.objSize.x, level.objSize.y, confidence);
    }
}

template<typename Policy, bool isUp>
__global__ void soft_cascade(const CascadeInvoker<Policy> invoker, Detection* objects, const uint n, uint* ctr, const int downs)
{
    invoker.template detect<isUp>(objects, n, ctr, downs);
}

template<typename Policy>
void CascadeInvoker<Policy>::operator()(const cv::gpu::PtrStepSzb& roi, const cv::gpu::PtrStepSzi& hogluv,
    cv::gpu::PtrStepSz<uchar4> objects, const int downscales, const cudaStream_t& stream) const
{
    int fw = roi.rows;
    int fh = roi.cols;

    dim3 grid(fw, fh / Policy::STA_Y, downscales);

    uint* ctr = (uint*)(objects.ptr(0));
    Detection* det = ((Detection*)objects.ptr(0)) + 1;
    uint max_det = objects.cols / sizeof(Detection);

    cudaChannelFormatDesc desc = cudaCreateChannelDesc<int>();
    cudaSafeCall( cudaBindTexture2D(0, thogluv, hogluv.data, desc, hogluv.cols, hogluv.rows, hogluv.step));

    cudaChannelFormatDesc desc_roi = cudaCreateChannelDesc<typename Policy::roi_type>();
    cudaSafeCall( cudaBindTexture2D(0, troi, roi.data, desc_roi, roi.cols / Policy::STA_Y, roi.rows, roi.step));

    const CascadeInvoker<Policy> inv = *this;

    soft_cascade<Policy, false><<<grid, Policy::block(), 0, stream>>>(inv, det, max_det, ctr, 0);
    cudaSafeCall( cudaGetLastError());

    grid = dim3(fw, fh / Policy::STA_Y, min(38, scales) - downscales);
    soft_cascade<Policy, true><<<grid, Policy::block(), 0, stream>>>(inv, det, max_det, ctr, downscales);

    if (!stream)
    {
        cudaSafeCall( cudaGetLastError());
        cudaSafeCall( cudaDeviceSynchronize());
    }
}

template void CascadeInvoker<GK107PolicyX4>::operator()(const cv::gpu::PtrStepSzb& roi, const cv::gpu::PtrStepSzi& hogluv,
    cv::gpu::PtrStepSz<uchar4> objects, const int downscales, const cudaStream_t& stream) const;

}}}