lr.cpp 20.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
///////////////////////////////////////////////////////////////////////////////////////
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.

//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.

// This is a implementation of the Logistic Regression algorithm in C++ in OpenCV.

// AUTHOR:
// Rahul Kavi rahulkavi[at]live[at]com

// # You are free to use, change, or redistribute the code in any way you wish for
// # non-commercial purposes, but please maintain the name of the original author.
// # This code comes with no warranty of any kind.

// #
// # You are free to use, change, or redistribute the code in any way you wish for
// # non-commercial purposes, but please maintain the name of the original author.
// # This code comes with no warranty of any kind.

// # Logistic Regression ALGORITHM


//                           License Agreement
//                For Open Source Computer Vision Library

// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.

// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:

//   * Redistributions of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.

//   * Redistributions in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.

//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.

// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.

#include "precomp.hpp"

using namespace std;

namespace cv {
namespace ml {

class LrParams
{
public:
    LrParams()
    {
        alpha = 0.001;
        num_iters = 1000;
        norm = LogisticRegression::REG_L2;
        train_method = LogisticRegression::BATCH;
        mini_batch_size = 1;
        term_crit = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, num_iters, alpha);
    }

    double alpha; //!< learning rate.
    int num_iters; //!< number of iterations.
    int norm;
    int train_method;
    int mini_batch_size;
    TermCriteria term_crit;
};

class LogisticRegressionImpl CV_FINAL : public LogisticRegression
{
public:

    LogisticRegressionImpl() { }
    virtual ~LogisticRegressionImpl() {}

    inline double getLearningRate() const CV_OVERRIDE { return params.alpha; }
    inline void setLearningRate(double val) CV_OVERRIDE { params.alpha = val; }
    inline int getIterations() const CV_OVERRIDE { return params.num_iters; }
    inline void setIterations(int val) CV_OVERRIDE { params.num_iters = val; }
    inline int getRegularization() const CV_OVERRIDE { return params.norm; }
    inline void setRegularization(int val) CV_OVERRIDE { params.norm = val; }
    inline int getTrainMethod() const CV_OVERRIDE { return params.train_method; }
    inline void setTrainMethod(int val) CV_OVERRIDE { params.train_method = val; }
    inline int getMiniBatchSize() const CV_OVERRIDE { return params.mini_batch_size; }
    inline void setMiniBatchSize(int val) CV_OVERRIDE { params.mini_batch_size = val; }
    inline TermCriteria getTermCriteria() const CV_OVERRIDE { return params.term_crit; }
    inline void setTermCriteria(TermCriteria val) CV_OVERRIDE { params.term_crit = val; }

    virtual bool train( const Ptr<TrainData>& trainData, int=0 ) CV_OVERRIDE;
    virtual float predict(InputArray samples, OutputArray results, int flags=0) const CV_OVERRIDE;
    virtual void clear() CV_OVERRIDE;
    virtual void write(FileStorage& fs) const CV_OVERRIDE;
    virtual void read(const FileNode& fn) CV_OVERRIDE;
    virtual Mat get_learnt_thetas() const CV_OVERRIDE { return learnt_thetas; }
    virtual int getVarCount() const CV_OVERRIDE { return learnt_thetas.cols; }
    virtual bool isTrained() const CV_OVERRIDE { return !learnt_thetas.empty(); }
    virtual bool isClassifier() const CV_OVERRIDE { return true; }
    virtual String getDefaultName() const CV_OVERRIDE { return "opencv_ml_lr"; }
protected:
    Mat calc_sigmoid(const Mat& data) const;
    double compute_cost(const Mat& _data, const Mat& _labels, const Mat& _init_theta);
    void compute_gradient(const Mat& _data, const Mat& _labels, const Mat &_theta, const double _lambda, Mat & _gradient );
    Mat batch_gradient_descent(const Mat& _data, const Mat& _labels, const Mat& _init_theta);
    Mat mini_batch_gradient_descent(const Mat& _data, const Mat& _labels, const Mat& _init_theta);
    bool set_label_map(const Mat& _labels_i);
    Mat remap_labels(const Mat& _labels_i, const map<int, int>& lmap) const;
protected:
    LrParams params;
    Mat learnt_thetas;
    map<int, int> forward_mapper;
    map<int, int> reverse_mapper;
    Mat labels_o;
    Mat labels_n;
};

Ptr<LogisticRegression> LogisticRegression::create()
{
    return makePtr<LogisticRegressionImpl>();
}

Ptr<LogisticRegression> LogisticRegression::load(const String& filepath, const String& nodeName)
{
    return Algorithm::load<LogisticRegression>(filepath, nodeName);
}


bool LogisticRegressionImpl::train(const Ptr<TrainData>& trainData, int)
{
    CV_TRACE_FUNCTION_SKIP_NESTED();
    // return value
    bool ok = false;

    if (trainData.empty()) {
        return false;
    }
    clear();
    Mat _data_i = trainData->getSamples();
    Mat _labels_i = trainData->getResponses();

    // check size and type of training data
    CV_Assert( !_labels_i.empty() && !_data_i.empty());
    if(_labels_i.cols != 1)
    {
        CV_Error( CV_StsBadArg, "labels should be a column matrix" );
    }
    if(_data_i.type() != CV_32FC1 || _labels_i.type() != CV_32FC1)
    {
        CV_Error( CV_StsBadArg, "data and labels must be a floating point matrix" );
    }
    if(_labels_i.rows != _data_i.rows)
    {
        CV_Error( CV_StsBadArg, "number of rows in data and labels should be equal" );
    }

    // class labels
    set_label_map(_labels_i);
    Mat labels_l = remap_labels(_labels_i, this->forward_mapper);
    int num_classes = (int) this->forward_mapper.size();
    if(num_classes < 2)
    {
        CV_Error( CV_StsBadArg, "data should have atleast 2 classes" );
    }

    // add a column of ones to the data (bias/intercept term)
    Mat data_t;
    hconcat( cv::Mat::ones( _data_i.rows, 1, CV_32F ), _data_i, data_t );

    // coefficient matrix (zero-initialized)
    Mat thetas;
    Mat init_theta = Mat::zeros(data_t.cols, 1, CV_32F);

    // fit the model (handles binary and multiclass cases)
    Mat new_theta;
    Mat labels;
    if(num_classes == 2)
    {
        labels_l.convertTo(labels, CV_32F);
        if(this->params.train_method == LogisticRegression::BATCH)
            new_theta = batch_gradient_descent(data_t, labels, init_theta);
        else
            new_theta = mini_batch_gradient_descent(data_t, labels, init_theta);
        thetas = new_theta.t();
    }
    else
    {
        /* take each class and rename classes you will get a theta per class
        as in multi class class scenario, we will have n thetas for n classes */
        thetas.create(num_classes, data_t.cols, CV_32F);
        Mat labels_binary;
        int ii = 0;
        for(map<int,int>::iterator it = this->forward_mapper.begin(); it != this->forward_mapper.end(); ++it)
        {
            // one-vs-rest (OvR) scheme
            labels_binary = (labels_l == it->second)/255;
            labels_binary.convertTo(labels, CV_32F);
            if(this->params.train_method == LogisticRegression::BATCH)
                new_theta = batch_gradient_descent(data_t, labels, init_theta);
            else
                new_theta = mini_batch_gradient_descent(data_t, labels, init_theta);
            hconcat(new_theta.t(), thetas.row(ii));
            ii += 1;
        }
    }

    // check that the estimates are stable and finite
    this->learnt_thetas = thetas.clone();
    if( cvIsNaN( (double)sum(this->learnt_thetas)[0] ) )
    {
        CV_Error( CV_StsBadArg, "check training parameters. Invalid training classifier" );
    }

    // success
    ok = true;
    return ok;
}

float LogisticRegressionImpl::predict(InputArray samples, OutputArray results, int flags) const
{
    // check if learnt_mats array is populated
    if(!this->isTrained())
    {
        CV_Error( CV_StsBadArg, "classifier should be trained first" );
    }

    // coefficient matrix
    Mat thetas;
    if ( learnt_thetas.type() == CV_32F )
    {
        thetas = learnt_thetas;
    }
    else
    {
        this->learnt_thetas.convertTo( thetas, CV_32F );
    }
    CV_Assert(thetas.rows > 0);

    // data samples
    Mat data = samples.getMat();
    if(data.type() != CV_32F)
    {
        CV_Error( CV_StsBadArg, "data must be of floating type" );
    }

    // add a column of ones to the data (bias/intercept term)
    Mat data_t;
    hconcat( cv::Mat::ones( data.rows, 1, CV_32F ), data, data_t );
    CV_Assert(data_t.cols == thetas.cols);

    // predict class labels for samples (handles binary and multiclass cases)
    Mat labels_c;
    Mat pred_m;
    Mat temp_pred;
    if(thetas.rows == 1)
    {
        // apply sigmoid function
        temp_pred = calc_sigmoid(data_t * thetas.t());
        CV_Assert(temp_pred.cols==1);
        pred_m = temp_pred.clone();

        // if greater than 0.5, predict class 0 or predict class 1
        temp_pred = (temp_pred > 0.5f) / 255;
        temp_pred.convertTo(labels_c, CV_32S);
    }
    else
    {
        // apply sigmoid function
        pred_m.create(data_t.rows, thetas.rows, data.type());
        for(int i = 0; i < thetas.rows; i++)
        {
            temp_pred = calc_sigmoid(data_t * thetas.row(i).t());
            vconcat(temp_pred, pred_m.col(i));
        }

        // predict class with the maximum output
        Point max_loc;
        Mat labels;
        for(int i = 0; i < pred_m.rows; i++)
        {
            temp_pred = pred_m.row(i);
            minMaxLoc( temp_pred, NULL, NULL, NULL, &max_loc );
            labels.push_back(max_loc.x);
        }
        labels.convertTo(labels_c, CV_32S);
    }

    // return label of the predicted class. class names can be 1,2,3,...
    Mat pred_labs = remap_labels(labels_c, this->reverse_mapper);
    pred_labs.convertTo(pred_labs, CV_32S);

    // return either the labels or the raw output
    if ( results.needed() )
    {
        if ( flags & StatModel::RAW_OUTPUT )
        {
            pred_m.copyTo( results );
        }
        else
        {
            pred_labs.copyTo(results);
        }
    }

    return ( pred_labs.empty() ? 0.f : static_cast<float>(pred_labs.at<int>(0)) );
}

Mat LogisticRegressionImpl::calc_sigmoid(const Mat& data) const
{
    CV_TRACE_FUNCTION();
    Mat dest;
    exp(-data, dest);
    return 1.0/(1.0+dest);
}

double LogisticRegressionImpl::compute_cost(const Mat& _data, const Mat& _labels, const Mat& _init_theta)
{
    CV_TRACE_FUNCTION();
    float llambda = 0;                   /*changed llambda from int to float to solve issue #7924*/
    int m;
    int n;
    double cost = 0;
    double rparameter = 0;
    Mat theta_b;
    Mat theta_c;
    Mat d_a;
    Mat d_b;

    m = _data.rows;
    n = _data.cols;

    theta_b = _init_theta(Range(1, n), Range::all());

    if (params.norm != REG_DISABLE)
    {
        llambda = 1;
    }

    if(this->params.norm == LogisticRegression::REG_L1)
    {
        rparameter = (llambda/(2*m)) * sum(theta_b)[0];
    }
    else
    {
        // assuming it to be L2 by default
        multiply(theta_b, theta_b, theta_c, 1);
        rparameter = (llambda/(2*m)) * sum(theta_c)[0];
    }

    d_a = calc_sigmoid(_data * _init_theta);
    log(d_a, d_a);
    multiply(d_a, _labels, d_a);

    // use the fact that: log(1 - sigmoid(x)) = log(sigmoid(-x))
    d_b = calc_sigmoid(- _data * _init_theta);
    log(d_b, d_b);
    multiply(d_b, 1-_labels, d_b);

    cost = (-1.0/m) * (sum(d_a)[0] + sum(d_b)[0]);
    cost = cost + rparameter;

    if(cvIsNaN( cost ) == 1)
    {
        CV_Error( CV_StsBadArg, "check training parameters. Invalid training classifier" );
    }

    return cost;
}

struct LogisticRegressionImpl_ComputeDradient_Impl : ParallelLoopBody
{
    const Mat* data;
    const Mat* theta;
    const Mat* pcal_a;
    Mat* gradient;
    double lambda;

    LogisticRegressionImpl_ComputeDradient_Impl(const Mat& _data, const Mat &_theta, const Mat& _pcal_a, const double _lambda, Mat & _gradient)
        : data(&_data)
        , theta(&_theta)
        , pcal_a(&_pcal_a)
        , gradient(&_gradient)
        , lambda(_lambda)
    {

    }

    void operator()(const cv::Range& r) const CV_OVERRIDE
    {
        const Mat& _data  = *data;
        const Mat &_theta = *theta;
        Mat & _gradient   = *gradient;
        const Mat & _pcal_a = *pcal_a;
        const int m = _data.rows;
        Mat pcal_ab;

        for (int ii = r.start; ii<r.end; ii++)
        {
            Mat pcal_b = _data(Range::all(), Range(ii,ii+1));
            multiply(_pcal_a, pcal_b, pcal_ab, 1);

            _gradient.row(ii) = (1.0/m)*sum(pcal_ab)[0] + (lambda/m) * _theta.row(ii);
        }
    }
};

void LogisticRegressionImpl::compute_gradient(const Mat& _data, const Mat& _labels, const Mat &_theta, const double _lambda, Mat & _gradient )
{
    CV_TRACE_FUNCTION();
    const int m = _data.rows;
    Mat pcal_a, pcal_b, pcal_ab;

    const Mat z = _data * _theta;

    CV_Assert( _gradient.rows == _theta.rows && _gradient.cols == _theta.cols );

    pcal_a = calc_sigmoid(z) - _labels;
    pcal_b = _data(Range::all(), Range(0,1));
    multiply(pcal_a, pcal_b, pcal_ab, 1);

    _gradient.row(0) = ((float)1/m) * sum(pcal_ab)[0];

    //cout<<"for each training data entry"<<endl;
    LogisticRegressionImpl_ComputeDradient_Impl invoker(_data, _theta, pcal_a, _lambda, _gradient);
    cv::parallel_for_(cv::Range(1, _gradient.rows), invoker);
}


Mat LogisticRegressionImpl::batch_gradient_descent(const Mat& _data, const Mat& _labels, const Mat& _init_theta)
{
    CV_TRACE_FUNCTION();
    // implements batch gradient descent
    if(this->params.alpha<=0)
    {
        CV_Error( CV_StsBadArg, "check training parameters (learning rate) for the classifier" );
    }

    if(this->params.num_iters <= 0)
    {
        CV_Error( CV_StsBadArg, "number of iterations cannot be zero or a negative number" );
    }

    int llambda = 0;
    int m;
    Mat theta_p = _init_theta.clone();
    Mat gradient( theta_p.rows, theta_p.cols, theta_p.type() );
    m = _data.rows;

    if (params.norm != REG_DISABLE)
    {
        llambda = 1;
    }

    for(int i = 0;i<this->params.num_iters;i++)
    {
        // this seems to only be called to ensure that cost is not NaN
        compute_cost(_data, _labels, theta_p);

        compute_gradient( _data, _labels, theta_p, llambda, gradient );

        theta_p = theta_p - ( static_cast<double>(this->params.alpha)/m)*gradient;
    }
    return theta_p;
}

Mat LogisticRegressionImpl::mini_batch_gradient_descent(const Mat& _data, const Mat& _labels, const Mat& _init_theta)
{
    // implements batch gradient descent
    int lambda_l = 0;
    int m;
    int j = 0;
    int size_b = this->params.mini_batch_size;

    if(this->params.mini_batch_size <= 0 || this->params.alpha == 0)
    {
        CV_Error( CV_StsBadArg, "check training parameters for the classifier" );
    }

    if(this->params.num_iters <= 0)
    {
        CV_Error( CV_StsBadArg, "number of iterations cannot be zero or a negative number" );
    }

    Mat theta_p = _init_theta.clone();
    Mat gradient( theta_p.rows, theta_p.cols, theta_p.type() );
    Mat data_d;
    Mat labels_l;

    if (params.norm != REG_DISABLE)
    {
        lambda_l = 1;
    }

    for(int i = 0;i<this->params.term_crit.maxCount;i++)
    {
        if(j+size_b<=_data.rows)
        {
            data_d = _data(Range(j,j+size_b), Range::all());
            labels_l = _labels(Range(j,j+size_b),Range::all());
        }
        else
        {
            data_d = _data(Range(j, _data.rows), Range::all());
            labels_l = _labels(Range(j, _labels.rows),Range::all());
        }

        m = data_d.rows;

        // this seems to only be called to ensure that cost is not NaN
        compute_cost(data_d, labels_l, theta_p);

        compute_gradient(data_d, labels_l, theta_p, lambda_l, gradient);

        theta_p = theta_p - ( static_cast<double>(this->params.alpha)/m)*gradient;

        j += this->params.mini_batch_size;

        // if parsed through all data variables
        if (j >= _data.rows) {
            j = 0;
        }
    }
    return theta_p;
}

bool LogisticRegressionImpl::set_label_map(const Mat &_labels_i)
{
    // this function creates two maps to map user defined labels to program friendly labels two ways.
    int ii = 0;
    Mat labels;

    this->labels_o = Mat(0,1, CV_8U);
    this->labels_n = Mat(0,1, CV_8U);

    _labels_i.convertTo(labels, CV_32S);

    for(int i = 0;i<labels.rows;i++)
    {
        this->forward_mapper[labels.at<int>(i)] += 1;
    }

    for(map<int,int>::iterator it = this->forward_mapper.begin(); it != this->forward_mapper.end(); ++it)
    {
        this->forward_mapper[it->first] = ii;
        this->labels_o.push_back(it->first);
        this->labels_n.push_back(ii);
        ii += 1;
    }

    for(map<int,int>::iterator it = this->forward_mapper.begin(); it != this->forward_mapper.end(); ++it)
    {
        this->reverse_mapper[it->second] = it->first;
    }

    return true;
}

Mat LogisticRegressionImpl::remap_labels(const Mat& _labels_i, const map<int, int>& lmap) const
{
    Mat labels;
    _labels_i.convertTo(labels, CV_32S);

    Mat new_labels = Mat::zeros(labels.rows, labels.cols, labels.type());

    CV_Assert( !lmap.empty() );

    for(int i =0;i<labels.rows;i++)
    {
        map<int, int>::const_iterator val = lmap.find(labels.at<int>(i,0));
        CV_Assert(val != lmap.end());
        new_labels.at<int>(i,0) = val->second;
    }
    return new_labels;
}

void LogisticRegressionImpl::clear()
{
    this->learnt_thetas.release();
    this->labels_o.release();
    this->labels_n.release();
}

void LogisticRegressionImpl::write(FileStorage& fs) const
{
    // check if open
    if(fs.isOpened() == 0)
    {
        CV_Error(CV_StsBadArg,"file can't open. Check file path");
    }
    writeFormat(fs);
    string desc = "Logistic Regression Classifier";
    fs<<"classifier"<<desc.c_str();
    fs<<"alpha"<<this->params.alpha;
    fs<<"iterations"<<this->params.num_iters;
    fs<<"norm"<<this->params.norm;
    fs<<"train_method"<<this->params.train_method;
    if(this->params.train_method == LogisticRegression::MINI_BATCH)
    {
        fs<<"mini_batch_size"<<this->params.mini_batch_size;
    }
    fs<<"learnt_thetas"<<this->learnt_thetas;
    fs<<"n_labels"<<this->labels_n;
    fs<<"o_labels"<<this->labels_o;
}

void LogisticRegressionImpl::read(const FileNode& fn)
{
    // check if empty
    if(fn.empty())
    {
        CV_Error( CV_StsBadArg, "empty FileNode object" );
    }

    this->params.alpha = (double)fn["alpha"];
    this->params.num_iters = (int)fn["iterations"];
    this->params.norm = (int)fn["norm"];
    this->params.train_method = (int)fn["train_method"];

    if(this->params.train_method == LogisticRegression::MINI_BATCH)
    {
        this->params.mini_batch_size = (int)fn["mini_batch_size"];
    }

    fn["learnt_thetas"] >> this->learnt_thetas;
    fn["o_labels"] >> this->labels_o;
    fn["n_labels"] >> this->labels_n;

    for(int ii =0;ii<labels_o.rows;ii++)
    {
        this->forward_mapper[labels_o.at<int>(ii,0)] = labels_n.at<int>(ii,0);
        this->reverse_mapper[labels_n.at<int>(ii,0)] = labels_o.at<int>(ii,0);
    }
}

}
}

/* End of file. */