1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include <fstream>
#include <sstream>
#include <iostream>
using namespace cv;
using namespace std;
static
bool mats_equal(const Mat& lhs, const Mat& rhs)
{
if (lhs.channels() != rhs.channels() ||
lhs.depth() != rhs.depth() ||
lhs.size().height != rhs.size().height ||
lhs.size().width != rhs.size().width)
{
return false;
}
Mat diff = (lhs != rhs);
const Scalar s = sum(diff);
for (int i = 0; i < s.channels; ++i)
{
if (s[i] != 0)
{
return false;
}
}
return true;
}
static
bool imread_compare(const string& filepath, int flags = IMREAD_COLOR)
{
vector<Mat> pages;
if (!imreadmulti(filepath, pages, flags) ||
pages.empty())
{
return false;
}
const Mat single = imread(filepath, flags);
return mats_equal(single, pages[0]);
}
TEST(Imgcodecs_imread, regression)
{
const char* const filenames[] =
{
#ifdef HAVE_JASPER
"Rome.jp2",
#endif
#ifdef HAVE_GDCM
"int16-mono1.dcm",
"uint8-mono2.dcm",
"uint16-mono2.dcm",
"uint8-rgb.dcm",
#endif
"color_palette_alpha.png",
"multipage.tif",
"rle.hdr",
"ordinary.bmp",
"rle8.bmp",
"test_1_c1.jpg"
};
const string folder = string(cvtest::TS::ptr()->get_data_path()) + "/readwrite/";
for (size_t i = 0; i < sizeof(filenames) / sizeof(filenames[0]); ++i)
{
const string path = folder + string(filenames[i]);
ASSERT_TRUE(imread_compare(path, IMREAD_UNCHANGED));
ASSERT_TRUE(imread_compare(path, IMREAD_GRAYSCALE));
ASSERT_TRUE(imread_compare(path, IMREAD_COLOR));
ASSERT_TRUE(imread_compare(path, IMREAD_ANYDEPTH));
ASSERT_TRUE(imread_compare(path, IMREAD_ANYCOLOR));
const string ext = path.substr( path.length() - 3 );
if ( ext != "hdr" && ext != "dcm" )
{
// GDAL does not support hdr nor dcm
ASSERT_TRUE(imread_compare(path, IMREAD_LOAD_GDAL));
}
}
}
template<class T>
string to_string(T i)
{
stringstream ss;
string s;
ss << i;
s = ss.str();
return s;
}
/**
* Test for check whether reading exif orientation tag was processed successfully or not
* The test info is the set of 8 images named testExifRotate_{1 to 8}.jpg
* The test image is the square 10x10 points divided by four sub-squares:
* (R corresponds to Red, G to Green, B to Blue, W to white)
* --------- ---------
* | R | G | | G | R |
* |-------| - (tag 1) |-------| - (tag 2)
* | B | W | | W | B |
* --------- ---------
*
* --------- ---------
* | W | B | | B | W |
* |-------| - (tag 3) |-------| - (tag 4)
* | G | R | | R | G |
* --------- ---------
*
* --------- ---------
* | R | B | | G | W |
* |-------| - (tag 5) |-------| - (tag 6)
* | G | W | | R | B |
* --------- ---------
*
* --------- ---------
* | W | G | | B | R |
* |-------| - (tag 7) |-------| - (tag 8)
* | B | R | | W | G |
* --------- ---------
*
*
* Every image contains exif field with orientation tag (0x112)
* After reading each image the corresponding matrix must be read as
* ---------
* | R | G |
* |-------|
* | B | W |
* ---------
*
*/
class CV_GrfmtJpegExifOrientationTest : public cvtest::BaseTest
{
public:
void run(int)
{
try
{
for( int i = 1; i <= 8; ++i)
{
string fileName = "readwrite/testExifOrientation_" + to_string(i) + ".jpg";
m_img = imread(string(ts->get_data_path()) + fileName);
if( !m_img.data )
{
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
}
ts->printf(cvtest::TS::LOG, "start reading image\t%s\n", fileName.c_str());
if( !checkOrientation() )
{
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
}
}
}
catch(...)
{
ts->set_failed_test_info(cvtest::TS::FAIL_EXCEPTION);
}
}
private:
bool checkOrientation();
Mat m_img;
};
bool CV_GrfmtJpegExifOrientationTest::checkOrientation()
{
Vec3b vec;
int red = 0;
int green = 0;
int blue = 0;
const int colorThresholdHigh = 250;
const int colorThresholdLow = 5;
//Checking the first quadrant (with supposed red)
vec = m_img.at<Vec3b>(2, 2); //some point inside the square
red = vec.val[2];
green = vec.val[1];
blue = vec.val[0];
ts->printf(cvtest::TS::LOG, "RED QUADRANT:\n");
ts->printf(cvtest::TS::LOG, "Red calculated:\t\t%d\n", red);
ts->printf(cvtest::TS::LOG, "Green calculated:\t%d\n", green);
ts->printf(cvtest::TS::LOG, "Blue calculated:\t%d\n", blue);
if( red < colorThresholdHigh ) return false;
if( blue > colorThresholdLow ) return false;
if( green > colorThresholdLow ) return false;
//Checking the second quadrant (with supposed green)
vec = m_img.at<Vec3b>(2, 7); //some point inside the square
red = vec.val[2];
green = vec.val[1];
blue = vec.val[0];
ts->printf(cvtest::TS::LOG, "GREEN QUADRANT:\n");
ts->printf(cvtest::TS::LOG, "Red calculated:\t\t%d\n", red);
ts->printf(cvtest::TS::LOG, "Green calculated:\t%d\n", green);
ts->printf(cvtest::TS::LOG, "Blue calculated:\t%d\n", blue);
if( green < colorThresholdHigh ) return false;
if( red > colorThresholdLow ) return false;
if( blue > colorThresholdLow ) return false;
//Checking the third quadrant (with supposed blue)
vec = m_img.at<Vec3b>(7, 2); //some point inside the square
red = vec.val[2];
green = vec.val[1];
blue = vec.val[0];
ts->printf(cvtest::TS::LOG, "BLUE QUADRANT:\n");
ts->printf(cvtest::TS::LOG, "Red calculated:\t\t%d\n", red);
ts->printf(cvtest::TS::LOG, "Green calculated:\t%d\n", green);
ts->printf(cvtest::TS::LOG, "Blue calculated:\t%d\n", blue);
if( blue < colorThresholdHigh ) return false;
if( red > colorThresholdLow ) return false;
if( green > colorThresholdLow ) return false;
return true;
}
TEST(Imgcodecs_jpeg_exif, setOrientation)
{
CV_GrfmtJpegExifOrientationTest test;
test.safe_run();
}
#ifdef HAVE_JASPER
TEST(Imgcodecs_jasper, regression)
{
const string folder = string(cvtest::TS::ptr()->get_data_path()) + "/readwrite/";
ASSERT_TRUE(imread_compare(folder + "Bretagne2.jp2", IMREAD_COLOR));
ASSERT_TRUE(imread_compare(folder + "Bretagne2.jp2", IMREAD_GRAYSCALE));
ASSERT_TRUE(imread_compare(folder + "Grey.jp2", IMREAD_COLOR));
ASSERT_TRUE(imread_compare(folder + "Grey.jp2", IMREAD_GRAYSCALE));
}
#endif
class CV_GrfmtWriteBigImageTest : public cvtest::BaseTest
{
public:
void run(int)
{
try
{
ts->printf(cvtest::TS::LOG, "start reading big image\n");
Mat img = imread(string(ts->get_data_path()) + "readwrite/read.png");
ts->printf(cvtest::TS::LOG, "finish reading big image\n");
if (img.empty()) ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
ts->printf(cvtest::TS::LOG, "start writing big image\n");
imwrite(cv::tempfile(".png"), img);
ts->printf(cvtest::TS::LOG, "finish writing big image\n");
}
catch(...)
{
ts->set_failed_test_info(cvtest::TS::FAIL_EXCEPTION);
}
ts->set_failed_test_info(cvtest::TS::OK);
}
};
string ext_from_int(int ext)
{
#ifdef HAVE_PNG
if (ext == 0) return ".png";
#endif
if (ext == 1) return ".bmp";
if (ext == 2) return ".pgm";
#ifdef HAVE_TIFF
if (ext == 3) return ".tiff";
#endif
if (ext == 4) return ".pam";
return "";
}
class CV_GrfmtWriteSequenceImageTest : public cvtest::BaseTest
{
public:
void run(int)
{
try
{
const int img_r = 640;
const int img_c = 480;
for (int k = 1; k <= 5; ++k)
{
for (int ext = 0; ext < 5; ++ext) // 0 - png, 1 - bmp, 2 - pgm, 3 - tiff
{
if(ext_from_int(ext).empty())
continue;
for (int num_channels = 1; num_channels <= 4; num_channels++)
{
if (num_channels == 2) continue;
if (num_channels == 4 && ext!=3 /*TIFF*/) continue;
ts->printf(ts->LOG, "image type depth:%d channels:%d ext: %s\n", CV_8U, num_channels, ext_from_int(ext).c_str());
Mat img(img_r * k, img_c * k, CV_MAKETYPE(CV_8U, num_channels), Scalar::all(0));
circle(img, Point2i((img_c * k) / 2, (img_r * k) / 2), std::min((img_r * k), (img_c * k)) / 4 , Scalar::all(255));
string img_path = cv::tempfile(ext_from_int(ext).c_str());
ts->printf(ts->LOG, "writing image : %s\n", img_path.c_str());
imwrite(img_path, img);
ts->printf(ts->LOG, "reading test image : %s\n", img_path.c_str());
Mat img_test = imread(img_path, IMREAD_UNCHANGED);
if (img_test.empty()) ts->set_failed_test_info(ts->FAIL_MISMATCH);
CV_Assert(img.size() == img_test.size());
CV_Assert(img.type() == img_test.type());
CV_Assert(num_channels == img_test.channels());
double n = cvtest::norm(img, img_test, NORM_L2);
if ( n > 1.0)
{
ts->printf(ts->LOG, "norm = %f \n", n);
ts->set_failed_test_info(ts->FAIL_MISMATCH);
}
}
}
#ifdef HAVE_JPEG
for (int num_channels = 1; num_channels <= 3; num_channels+=2)
{
// jpeg
ts->printf(ts->LOG, "image type depth:%d channels:%d ext: %s\n", CV_8U, num_channels, ".jpg");
Mat img(img_r * k, img_c * k, CV_MAKETYPE(CV_8U, num_channels), Scalar::all(0));
circle(img, Point2i((img_c * k) / 2, (img_r * k) / 2), std::min((img_r * k), (img_c * k)) / 4 , Scalar::all(255));
string filename = cv::tempfile(".jpg");
imwrite(filename, img);
ts->printf(ts->LOG, "reading test image : %s\n", filename.c_str());
Mat img_test = imread(filename, IMREAD_UNCHANGED);
if (img_test.empty()) ts->set_failed_test_info(ts->FAIL_MISMATCH);
CV_Assert(img.size() == img_test.size());
CV_Assert(img.type() == img_test.type());
// JPEG format does not provide 100% accuracy
// using fuzzy image comparison
double n = cvtest::norm(img, img_test, NORM_L1);
double expected = 0.05 * img.size().area();
if ( n > expected)
{
ts->printf(ts->LOG, "norm = %f > expected = %f \n", n, expected);
ts->set_failed_test_info(ts->FAIL_MISMATCH);
}
}
#endif
#ifdef HAVE_TIFF
for (int num_channels = 1; num_channels <= 4; num_channels++)
{
if (num_channels == 2) continue;
// tiff
ts->printf(ts->LOG, "image type depth:%d channels:%d ext: %s\n", CV_16U, num_channels, ".tiff");
Mat img(img_r * k, img_c * k, CV_MAKETYPE(CV_16U, num_channels), Scalar::all(0));
circle(img, Point2i((img_c * k) / 2, (img_r * k) / 2), std::min((img_r * k), (img_c * k)) / 4 , Scalar::all(255));
string filename = cv::tempfile(".tiff");
imwrite(filename, img);
ts->printf(ts->LOG, "reading test image : %s\n", filename.c_str());
Mat img_test = imread(filename, IMREAD_UNCHANGED);
if (img_test.empty()) ts->set_failed_test_info(ts->FAIL_MISMATCH);
CV_Assert(img.size() == img_test.size());
ts->printf(ts->LOG, "img : %d ; %d \n", img.channels(), img.depth());
ts->printf(ts->LOG, "img_test : %d ; %d \n", img_test.channels(), img_test.depth());
CV_Assert(img.type() == img_test.type());
double n = cvtest::norm(img, img_test, NORM_L2);
if ( n > 1.0)
{
ts->printf(ts->LOG, "norm = %f \n", n);
ts->set_failed_test_info(ts->FAIL_MISMATCH);
}
}
#endif
}
}
catch(const cv::Exception & e)
{
ts->printf(ts->LOG, "Exception: %s\n" , e.what());
ts->set_failed_test_info(ts->FAIL_MISMATCH);
}
}
};
class CV_GrfmtReadBMPRLE8Test : public cvtest::BaseTest
{
public:
void run(int)
{
try
{
Mat rle = imread(string(ts->get_data_path()) + "readwrite/rle8.bmp");
Mat bmp = imread(string(ts->get_data_path()) + "readwrite/ordinary.bmp");
if (cvtest::norm(rle-bmp, NORM_L2)>1.e-10)
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
}
catch(...)
{
ts->set_failed_test_info(cvtest::TS::FAIL_EXCEPTION);
}
ts->set_failed_test_info(cvtest::TS::OK);
}
};
#ifdef HAVE_PNG
TEST(Imgcodecs_Image, write_big) { CV_GrfmtWriteBigImageTest test; test.safe_run(); }
#endif
TEST(Imgcodecs_Image, write_imageseq) { CV_GrfmtWriteSequenceImageTest test; test.safe_run(); }
TEST(Imgcodecs_Image, read_bmp_rle8) { CV_GrfmtReadBMPRLE8Test test; test.safe_run(); }
#ifdef HAVE_PNG
class CV_GrfmtPNGEncodeTest : public cvtest::BaseTest
{
public:
void run(int)
{
try
{
vector<uchar> buff;
Mat im = Mat::zeros(1000,1000, CV_8U);
//randu(im, 0, 256);
vector<int> param;
param.push_back(IMWRITE_PNG_COMPRESSION);
param.push_back(3); //default(3) 0-9.
cv::imencode(".png" ,im ,buff, param);
// hangs
Mat im2 = imdecode(buff,IMREAD_ANYDEPTH);
}
catch(...)
{
ts->set_failed_test_info(cvtest::TS::FAIL_EXCEPTION);
}
ts->set_failed_test_info(cvtest::TS::OK);
}
};
TEST(Imgcodecs_Image, encode_png) { CV_GrfmtPNGEncodeTest test; test.safe_run(); }
TEST(Imgcodecs_ImreadVSCvtColor, regression)
{
cvtest::TS& ts = *cvtest::TS::ptr();
const int MAX_MEAN_DIFF = 1;
const int MAX_ABS_DIFF = 10;
string imgName = string(ts.get_data_path()) + "/../cv/shared/lena.png";
Mat original_image = imread(imgName);
Mat gray_by_codec = imread(imgName, 0);
Mat gray_by_cvt;
cvtColor(original_image, gray_by_cvt, CV_BGR2GRAY);
Mat diff;
absdiff(gray_by_codec, gray_by_cvt, diff);
double actual_avg_diff = (double)mean(diff)[0];
double actual_maxval, actual_minval;
minMaxLoc(diff, &actual_minval, &actual_maxval);
//printf("actual avg = %g, actual maxdiff = %g, npixels = %d\n", actual_avg_diff, actual_maxval, (int)diff.total());
EXPECT_LT(actual_avg_diff, MAX_MEAN_DIFF);
EXPECT_LT(actual_maxval, MAX_ABS_DIFF);
}
//Test OpenCV issue 3075 is solved
class CV_GrfmtReadPNGColorPaletteWithAlphaTest : public cvtest::BaseTest
{
public:
void run(int)
{
try
{
// First Test : Read PNG with alpha, imread flag -1
Mat img = imread(string(ts->get_data_path()) + "readwrite/color_palette_alpha.png",-1);
if (img.empty()) ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
ASSERT_TRUE(img.channels() == 4);
unsigned char* img_data = img.ptr();
// Verification first pixel is red in BGRA
ASSERT_TRUE(img_data[0] == 0x00);
ASSERT_TRUE(img_data[1] == 0x00);
ASSERT_TRUE(img_data[2] == 0xFF);
ASSERT_TRUE(img_data[3] == 0xFF);
// Verification second pixel is red in BGRA
ASSERT_TRUE(img_data[4] == 0x00);
ASSERT_TRUE(img_data[5] == 0x00);
ASSERT_TRUE(img_data[6] == 0xFF);
ASSERT_TRUE(img_data[7] == 0xFF);
// Second Test : Read PNG without alpha, imread flag -1
img = imread(string(ts->get_data_path()) + "readwrite/color_palette_no_alpha.png",-1);
if (img.empty()) ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
ASSERT_TRUE(img.channels() == 3);
img_data = img.ptr();
// Verification first pixel is red in BGR
ASSERT_TRUE(img_data[0] == 0x00);
ASSERT_TRUE(img_data[1] == 0x00);
ASSERT_TRUE(img_data[2] == 0xFF);
// Verification second pixel is red in BGR
ASSERT_TRUE(img_data[3] == 0x00);
ASSERT_TRUE(img_data[4] == 0x00);
ASSERT_TRUE(img_data[5] == 0xFF);
// Third Test : Read PNG with alpha, imread flag 1
img = imread(string(ts->get_data_path()) + "readwrite/color_palette_alpha.png",1);
if (img.empty()) ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
ASSERT_TRUE(img.channels() == 3);
img_data = img.ptr();
// Verification first pixel is red in BGR
ASSERT_TRUE(img_data[0] == 0x00);
ASSERT_TRUE(img_data[1] == 0x00);
ASSERT_TRUE(img_data[2] == 0xFF);
// Verification second pixel is red in BGR
ASSERT_TRUE(img_data[3] == 0x00);
ASSERT_TRUE(img_data[4] == 0x00);
ASSERT_TRUE(img_data[5] == 0xFF);
// Fourth Test : Read PNG without alpha, imread flag 1
img = imread(string(ts->get_data_path()) + "readwrite/color_palette_no_alpha.png",1);
if (img.empty()) ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
ASSERT_TRUE(img.channels() == 3);
img_data = img.ptr();
// Verification first pixel is red in BGR
ASSERT_TRUE(img_data[0] == 0x00);
ASSERT_TRUE(img_data[1] == 0x00);
ASSERT_TRUE(img_data[2] == 0xFF);
// Verification second pixel is red in BGR
ASSERT_TRUE(img_data[3] == 0x00);
ASSERT_TRUE(img_data[4] == 0x00);
ASSERT_TRUE(img_data[5] == 0xFF);
}
catch(...)
{
ts->set_failed_test_info(cvtest::TS::FAIL_EXCEPTION);
}
ts->set_failed_test_info(cvtest::TS::OK);
}
};
TEST(Imgcodecs_Image, read_png_color_palette_with_alpha) { CV_GrfmtReadPNGColorPaletteWithAlphaTest test; test.safe_run(); }
#endif
#ifdef HAVE_JPEG
TEST(Imgcodecs_Jpeg, encode_empty)
{
cv::Mat img;
std::vector<uchar> jpegImg;
ASSERT_THROW(cv::imencode(".jpg", img, jpegImg), cv::Exception);
}
TEST(Imgcodecs_Jpeg, encode_decode_progressive_jpeg)
{
cvtest::TS& ts = *cvtest::TS::ptr();
string input = string(ts.get_data_path()) + "../cv/shared/lena.png";
cv::Mat img = cv::imread(input);
ASSERT_FALSE(img.empty());
std::vector<int> params;
params.push_back(IMWRITE_JPEG_PROGRESSIVE);
params.push_back(1);
string output_progressive = cv::tempfile(".jpg");
EXPECT_NO_THROW(cv::imwrite(output_progressive, img, params));
cv::Mat img_jpg_progressive = cv::imread(output_progressive);
string output_normal = cv::tempfile(".jpg");
EXPECT_NO_THROW(cv::imwrite(output_normal, img));
cv::Mat img_jpg_normal = cv::imread(output_normal);
EXPECT_EQ(0, cvtest::norm(img_jpg_progressive, img_jpg_normal, NORM_INF));
remove(output_progressive.c_str());
}
TEST(Imgcodecs_Jpeg, encode_decode_optimize_jpeg)
{
cvtest::TS& ts = *cvtest::TS::ptr();
string input = string(ts.get_data_path()) + "../cv/shared/lena.png";
cv::Mat img = cv::imread(input);
ASSERT_FALSE(img.empty());
std::vector<int> params;
params.push_back(IMWRITE_JPEG_OPTIMIZE);
params.push_back(1);
string output_optimized = cv::tempfile(".jpg");
EXPECT_NO_THROW(cv::imwrite(output_optimized, img, params));
cv::Mat img_jpg_optimized = cv::imread(output_optimized);
string output_normal = cv::tempfile(".jpg");
EXPECT_NO_THROW(cv::imwrite(output_normal, img));
cv::Mat img_jpg_normal = cv::imread(output_normal);
EXPECT_EQ(0, cvtest::norm(img_jpg_optimized, img_jpg_normal, NORM_INF));
remove(output_optimized.c_str());
}
TEST(Imgcodecs_Jpeg, encode_decode_rst_jpeg)
{
cvtest::TS& ts = *cvtest::TS::ptr();
string input = string(ts.get_data_path()) + "../cv/shared/lena.png";
cv::Mat img = cv::imread(input);
ASSERT_FALSE(img.empty());
std::vector<int> params;
params.push_back(IMWRITE_JPEG_RST_INTERVAL);
params.push_back(1);
string output_rst = cv::tempfile(".jpg");
EXPECT_NO_THROW(cv::imwrite(output_rst, img, params));
cv::Mat img_jpg_rst = cv::imread(output_rst);
string output_normal = cv::tempfile(".jpg");
EXPECT_NO_THROW(cv::imwrite(output_normal, img));
cv::Mat img_jpg_normal = cv::imread(output_normal);
EXPECT_EQ(0, cvtest::norm(img_jpg_rst, img_jpg_normal, NORM_INF));
remove(output_rst.c_str());
}
#endif
#ifdef HAVE_TIFF
// these defines are used to resolve conflict between tiff.h and opencv2/core/types_c.h
#define uint64 uint64_hack_
#define int64 int64_hack_
#include "tiff.h"
#ifdef ANDROID
// Test disabled as it uses a lot of memory.
// It is killed with SIGKILL by out of memory killer.
TEST(Imgcodecs_Tiff, DISABLED_decode_tile16384x16384)
#else
TEST(Imgcodecs_Tiff, decode_tile16384x16384)
#endif
{
// see issue #2161
cv::Mat big(16384, 16384, CV_8UC1, cv::Scalar::all(0));
string file3 = cv::tempfile(".tiff");
string file4 = cv::tempfile(".tiff");
std::vector<int> params;
params.push_back(TIFFTAG_ROWSPERSTRIP);
params.push_back(big.rows);
cv::imwrite(file4, big, params);
cv::imwrite(file3, big.colRange(0, big.cols - 1), params);
big.release();
try
{
cv::imread(file3, IMREAD_UNCHANGED);
EXPECT_NO_THROW(cv::imread(file4, IMREAD_UNCHANGED));
}
catch(const std::bad_alloc&)
{
// have no enough memory
}
remove(file3.c_str());
remove(file4.c_str());
}
TEST(Imgcodecs_Tiff, write_read_16bit_big_little_endian)
{
// see issue #2601 "16-bit Grayscale TIFF Load Failures Due to Buffer Underflow and Endianness"
// Setup data for two minimal 16-bit grayscale TIFF files in both endian formats
uchar tiff_sample_data[2][86] = { {
// Little endian
0x49, 0x49, 0x2a, 0x00, 0x0c, 0x00, 0x00, 0x00, 0xad, 0xde, 0xef, 0xbe, 0x06, 0x00, 0x00, 0x01,
0x03, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x01, 0x01, 0x03, 0x00, 0x01, 0x00,
0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x01, 0x03, 0x00, 0x01, 0x00, 0x00, 0x00, 0x10, 0x00,
0x00, 0x00, 0x06, 0x01, 0x03, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x11, 0x01,
0x04, 0x00, 0x01, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x17, 0x01, 0x04, 0x00, 0x01, 0x00,
0x00, 0x00, 0x04, 0x00, 0x00, 0x00 }, {
// Big endian
0x4d, 0x4d, 0x00, 0x2a, 0x00, 0x00, 0x00, 0x0c, 0xde, 0xad, 0xbe, 0xef, 0x00, 0x06, 0x01, 0x00,
0x00, 0x03, 0x00, 0x00, 0x00, 0x01, 0x00, 0x02, 0x00, 0x00, 0x01, 0x01, 0x00, 0x03, 0x00, 0x00,
0x00, 0x01, 0x00, 0x01, 0x00, 0x00, 0x01, 0x02, 0x00, 0x03, 0x00, 0x00, 0x00, 0x01, 0x00, 0x10,
0x00, 0x00, 0x01, 0x06, 0x00, 0x03, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00, 0x00, 0x01, 0x11,
0x00, 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x08, 0x01, 0x17, 0x00, 0x04, 0x00, 0x00,
0x00, 0x01, 0x00, 0x00, 0x00, 0x04 }
};
// Test imread() for both a little endian TIFF and big endian TIFF
for (int i = 0; i < 2; i++)
{
string filename = cv::tempfile(".tiff");
// Write sample TIFF file
FILE* fp = fopen(filename.c_str(), "wb");
ASSERT_TRUE(fp != NULL);
ASSERT_EQ((size_t)1, fwrite(tiff_sample_data, 86, 1, fp));
fclose(fp);
Mat img = imread(filename, IMREAD_UNCHANGED);
EXPECT_EQ(1, img.rows);
EXPECT_EQ(2, img.cols);
EXPECT_EQ(CV_16U, img.type());
EXPECT_EQ(sizeof(ushort), img.elemSize());
EXPECT_EQ(1, img.channels());
EXPECT_EQ(0xDEAD, img.at<ushort>(0,0));
EXPECT_EQ(0xBEEF, img.at<ushort>(0,1));
remove(filename.c_str());
}
}
class CV_GrfmtReadTifTiledWithNotFullTiles: public cvtest::BaseTest
{
public:
void run(int)
{
try
{
/* see issue #3472 - dealing with tiled images where the tile size is
* not a multiple of image size.
* The tiled images were created with 'convert' from ImageMagick,
* using the command 'convert <input> -define tiff:tile-geometry=128x128 -depth [8|16] <output>
* Note that the conversion to 16 bits expands the range from 0-255 to 0-255*255,
* so the test converts back but rounding errors cause small differences.
*/
cv::Mat img = imread(string(ts->get_data_path()) + "readwrite/non_tiled.tif",-1);
if (img.empty()) ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
ASSERT_TRUE(img.channels() == 3);
cv::Mat tiled8 = imread(string(ts->get_data_path()) + "readwrite/tiled_8.tif", -1);
if (tiled8.empty()) ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
ASSERT_PRED_FORMAT2(cvtest::MatComparator(0, 0), img, tiled8);
cv::Mat tiled16 = imread(string(ts->get_data_path()) + "readwrite/tiled_16.tif", -1);
if (tiled16.empty()) ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
ASSERT_TRUE(tiled16.elemSize() == 6);
tiled16.convertTo(tiled8, CV_8UC3, 1./256.);
ASSERT_PRED_FORMAT2(cvtest::MatComparator(2, 0), img, tiled8);
// What about 32, 64 bit?
}
catch(...)
{
ts->set_failed_test_info(cvtest::TS::FAIL_EXCEPTION);
}
ts->set_failed_test_info(cvtest::TS::OK);
}
};
TEST(Imgcodecs_Tiff, decode_tile_remainder)
{
CV_GrfmtReadTifTiledWithNotFullTiles test; test.safe_run();
}
TEST(Imgcodecs_Tiff, decode_infinite_rowsperstrip)
{
const uchar sample_data[142] = {
0x49, 0x49, 0x2a, 0x00, 0x10, 0x00, 0x00, 0x00, 0x56, 0x54,
0x56, 0x5a, 0x59, 0x55, 0x5a, 0x00, 0x0a, 0x00, 0x00, 0x01,
0x03, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x01, 0x01, 0x03, 0x00, 0x01, 0x00, 0x00, 0x00, 0x07, 0x00,
0x00, 0x00, 0x02, 0x01, 0x03, 0x00, 0x01, 0x00, 0x00, 0x00,
0x08, 0x00, 0x00, 0x00, 0x03, 0x01, 0x03, 0x00, 0x01, 0x00,
0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x06, 0x01, 0x03, 0x00,
0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x11, 0x01,
0x04, 0x00, 0x01, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00,
0x15, 0x01, 0x03, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00,
0x00, 0x00, 0x16, 0x01, 0x04, 0x00, 0x01, 0x00, 0x00, 0x00,
0xff, 0xff, 0xff, 0xff, 0x17, 0x01, 0x04, 0x00, 0x01, 0x00,
0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x1c, 0x01, 0x03, 0x00,
0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00
};
const string filename = cv::tempfile(".tiff");
std::ofstream outfile(filename.c_str(), std::ofstream::binary);
outfile.write(reinterpret_cast<const char *>(sample_data), sizeof sample_data);
outfile.close();
EXPECT_NO_THROW(cv::imread(filename, IMREAD_UNCHANGED));
remove(filename.c_str());
}
class CV_GrfmtReadTifMultiPage : public cvtest::BaseTest
{
private:
void compare(int flags)
{
const string folder = string(cvtest::TS::ptr()->get_data_path()) + "/readwrite/";
const int page_count = 6;
vector<Mat> pages;
bool res = imreadmulti(folder + "multipage.tif", pages, flags);
ASSERT_TRUE(res == true);
ASSERT_EQ(static_cast<size_t>(page_count), pages.size());
for (int i = 0; i < page_count; i++)
{
char buffer[256];
sprintf(buffer, "%smultipage_p%d.tif", folder.c_str(), i + 1);
const string filepath(buffer);
const Mat page = imread(filepath, flags);
ASSERT_TRUE(mats_equal(page, pages[i]));
}
}
public:
void run(int)
{
compare(IMREAD_UNCHANGED);
compare(IMREAD_GRAYSCALE);
compare(IMREAD_COLOR);
compare(IMREAD_ANYDEPTH);
compare(IMREAD_ANYCOLOR);
// compare(IMREAD_LOAD_GDAL); // GDAL does not support multi-page TIFFs
}
};
TEST(Imgcodecs_Tiff, decode_multipage)
{
CV_GrfmtReadTifMultiPage test; test.safe_run();
}
TEST(Imgcodecs_Tiff, imdecode_no_exception_temporary_file_removed)
{
cvtest::TS& ts = *cvtest::TS::ptr();
string input = string(ts.get_data_path()) + "../cv/shared/lena.png";
cv::Mat img = cv::imread(input);
ASSERT_FALSE(img.empty());
std::vector<uchar> buf;
EXPECT_NO_THROW(cv::imencode(".tiff", img, buf));
EXPECT_NO_THROW(cv::imdecode(buf, IMREAD_UNCHANGED));
}
#endif
#ifdef HAVE_WEBP
TEST(Imgcodecs_WebP, encode_decode_lossless_webp)
{
cvtest::TS& ts = *cvtest::TS::ptr();
string input = string(ts.get_data_path()) + "../cv/shared/lena.png";
cv::Mat img = cv::imread(input);
ASSERT_FALSE(img.empty());
string output = cv::tempfile(".webp");
EXPECT_NO_THROW(cv::imwrite(output, img)); // lossless
cv::Mat img_webp = cv::imread(output);
std::vector<unsigned char> buf;
FILE * wfile = NULL;
wfile = fopen(output.c_str(), "rb");
if (wfile != NULL)
{
fseek(wfile, 0, SEEK_END);
size_t wfile_size = ftell(wfile);
fseek(wfile, 0, SEEK_SET);
buf.resize(wfile_size);
size_t data_size = fread(&buf[0], 1, wfile_size, wfile);
if(wfile)
{
fclose(wfile);
}
if (data_size != wfile_size)
{
EXPECT_TRUE(false);
}
}
remove(output.c_str());
cv::Mat decode = cv::imdecode(buf, IMREAD_COLOR);
ASSERT_FALSE(decode.empty());
EXPECT_TRUE(cvtest::norm(decode, img_webp, NORM_INF) == 0);
ASSERT_FALSE(img_webp.empty());
EXPECT_TRUE(cvtest::norm(img, img_webp, NORM_INF) == 0);
}
TEST(Imgcodecs_WebP, encode_decode_lossy_webp)
{
cvtest::TS& ts = *cvtest::TS::ptr();
std::string input = std::string(ts.get_data_path()) + "../cv/shared/lena.png";
cv::Mat img = cv::imread(input);
ASSERT_FALSE(img.empty());
for(int q = 100; q>=0; q-=20)
{
std::vector<int> params;
params.push_back(IMWRITE_WEBP_QUALITY);
params.push_back(q);
string output = cv::tempfile(".webp");
EXPECT_NO_THROW(cv::imwrite(output, img, params));
cv::Mat img_webp = cv::imread(output);
remove(output.c_str());
EXPECT_FALSE(img_webp.empty());
EXPECT_EQ(3, img_webp.channels());
EXPECT_EQ(512, img_webp.cols);
EXPECT_EQ(512, img_webp.rows);
}
}
TEST(Imgcodecs_WebP, encode_decode_with_alpha_webp)
{
cvtest::TS& ts = *cvtest::TS::ptr();
std::string input = std::string(ts.get_data_path()) + "../cv/shared/lena.png";
cv::Mat img = cv::imread(input);
ASSERT_FALSE(img.empty());
std::vector<cv::Mat> imgs;
cv::split(img, imgs);
imgs.push_back(cv::Mat(imgs[0]));
imgs[imgs.size() - 1] = cv::Scalar::all(128);
cv::merge(imgs, img);
string output = cv::tempfile(".webp");
EXPECT_NO_THROW(cv::imwrite(output, img));
cv::Mat img_webp = cv::imread(output);
remove(output.c_str());
EXPECT_FALSE(img_webp.empty());
EXPECT_EQ(4, img_webp.channels());
EXPECT_EQ(512, img_webp.cols);
EXPECT_EQ(512, img_webp.rows);
}
#endif
TEST(Imgcodecs_Hdr, regression)
{
string folder = string(cvtest::TS::ptr()->get_data_path()) + "/readwrite/";
string name_rle = folder + "rle.hdr";
string name_no_rle = folder + "no_rle.hdr";
Mat img_rle = imread(name_rle, -1);
ASSERT_FALSE(img_rle.empty()) << "Could not open " << name_rle;
Mat img_no_rle = imread(name_no_rle, -1);
ASSERT_FALSE(img_no_rle.empty()) << "Could not open " << name_no_rle;
double min = 0.0, max = 1.0;
minMaxLoc(abs(img_rle - img_no_rle), &min, &max);
ASSERT_FALSE(max > DBL_EPSILON);
string tmp_file_name = tempfile(".hdr");
vector<int>param(1);
for(int i = 0; i < 2; i++) {
param[0] = i;
imwrite(tmp_file_name, img_rle, param);
Mat written_img = imread(tmp_file_name, -1);
ASSERT_FALSE(written_img.empty()) << "Could not open " << tmp_file_name;
minMaxLoc(abs(img_rle - written_img), &min, &max);
ASSERT_FALSE(max > DBL_EPSILON);
}
}
TEST(Imgcodecs_Pam, readwrite)
{
string folder = string(cvtest::TS::ptr()->get_data_path()) + "readwrite/";
string filepath = folder + "lena.pam";
cv::Mat img = cv::imread(filepath);
ASSERT_FALSE(img.empty());
std::vector<int> params;
params.push_back(IMWRITE_PAM_TUPLETYPE);
params.push_back(IMWRITE_PAM_FORMAT_RGB);
string writefile = cv::tempfile(".pam");
EXPECT_NO_THROW(cv::imwrite(writefile, img, params));
cv::Mat reread = cv::imread(writefile);
string writefile_no_param = cv::tempfile(".pam");
EXPECT_NO_THROW(cv::imwrite(writefile_no_param, img));
cv::Mat reread_no_param = cv::imread(writefile_no_param);
EXPECT_EQ(0, cvtest::norm(reread, reread_no_param, NORM_INF));
EXPECT_EQ(0, cvtest::norm(img, reread, NORM_INF));
}