1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
/*#******************************************************************************
** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
**
** By downloading, copying, installing or using the software you agree to this license.
** If you do not agree to this license, do not download, install,
** copy or use the software.
**
**
** HVStools : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab.
** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping.
**
** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications)
**
** Creation - enhancement process 2007-2011
** Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France
**
** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr).
** Refer to the following research paper for more information:
** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book:
** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
**
** The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author :
** _take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper:
** ====> B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007
** _take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions.
** ====> more informations in the above cited Jeanny Heraults's book.
**
** License Agreement
** For Open Source Computer Vision Library
**
** Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
**
** For Human Visual System tools (hvstools)
** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved.
**
** Third party copyrights are property of their respective owners.
**
** Redistribution and use in source and binary forms, with or without modification,
** are permitted provided that the following conditions are met:
**
** * Redistributions of source code must retain the above copyright notice,
** this list of conditions and the following disclaimer.
**
** * Redistributions in binary form must reproduce the above copyright notice,
** this list of conditions and the following disclaimer in the documentation
** and/or other materials provided with the distribution.
**
** * The name of the copyright holders may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** This software is provided by the copyright holders and contributors "as is" and
** any express or implied warranties, including, but not limited to, the implied
** warranties of merchantability and fitness for a particular purpose are disclaimed.
** In no event shall the Intel Corporation or contributors be liable for any direct,
** indirect, incidental, special, exemplary, or consequential damages
** (including, but not limited to, procurement of substitute goods or services;
** loss of use, data, or profits; or business interruption) however caused
** and on any theory of liability, whether in contract, strict liability,
** or tort (including negligence or otherwise) arising in any way out of
** the use of this software, even if advised of the possibility of such damage.
*******************************************************************************/
#include "precomp.hpp"
#include <iostream>
#include <cstdlib>
#include "basicretinafilter.hpp"
#include <cmath>
namespace cv
{
// @author Alexandre BENOIT, benoit.alexandre.vision@gmail.com, LISTIC : www.listic.univ-savoie.fr Gipsa-Lab, France: www.gipsa-lab.inpg.fr/
//////////////////////////////////////////////////////////
// BASIC RETINA FILTER
//////////////////////////////////////////////////////////
// Constructor and Desctructor of the basic retina filter
BasicRetinaFilter::BasicRetinaFilter(const unsigned int NBrows, const unsigned int NBcolumns, const unsigned int parametersListSize, const bool useProgressiveFilter)
:_filterOutput(NBrows, NBcolumns),
_localBuffer(NBrows*NBcolumns),
_filteringCoeficientsTable(3*parametersListSize),
_progressiveSpatialConstant(0),// pointer to a local table containing local spatial constant (allocated with the object)
_progressiveGain(0)
{
#ifdef T_BASIC_RETINA_ELEMENT_DEBUG
std::cout<<"BasicRetinaFilter::BasicRetinaFilter: new filter, size="<<NBrows<<", "<<NBcolumns<<std::endl;
#endif
_halfNBrows=_filterOutput.getNBrows()/2;
_halfNBcolumns=_filterOutput.getNBcolumns()/2;
if (useProgressiveFilter)
{
#ifdef T_BASIC_RETINA_ELEMENT_DEBUG
std::cout<<"BasicRetinaFilter::BasicRetinaFilter: _progressiveSpatialConstant_Tbuffer"<<std::endl;
#endif
_progressiveSpatialConstant.resize(_filterOutput.size());
#ifdef T_BASIC_RETINA_ELEMENT_DEBUG
std::cout<<"BasicRetinaFilter::BasicRetinaFilter: new _progressiveGain_Tbuffer"<<NBrows<<", "<<NBcolumns<<std::endl;
#endif
_progressiveGain.resize(_filterOutput.size());
}
#ifdef T_BASIC_RETINA_ELEMENT_DEBUG
std::cout<<"BasicRetinaFilter::BasicRetinaFilter: new filter, size="<<NBrows<<", "<<NBcolumns<<std::endl;
#endif
// set default values
_maxInputValue=256.0;
// reset all buffers
clearAllBuffers();
#ifdef T_BASIC_RETINA_ELEMENT_DEBUG
std::cout<<"BasicRetinaFilter::Init BasicRetinaElement at specified frame size OK, size="<<this->size()<<std::endl;
#endif
}
BasicRetinaFilter::~BasicRetinaFilter()
{
#ifdef BASIC_RETINA_ELEMENT_DEBUG
std::cout<<"BasicRetinaFilter::BasicRetinaElement Deleted OK"<<std::endl;
#endif
}
////////////////////////////////////
// functions of the basic filter
////////////////////////////////////
// resize all allocated buffers
void BasicRetinaFilter::resize(const unsigned int NBrows, const unsigned int NBcolumns)
{
std::cout<<"BasicRetinaFilter::resize( "<<NBrows<<", "<<NBcolumns<<")"<<std::endl;
// resizing buffers
_filterOutput.resizeBuffer(NBrows, NBcolumns);
// updating variables
_halfNBrows=_filterOutput.getNBrows()/2;
_halfNBcolumns=_filterOutput.getNBcolumns()/2;
_localBuffer.resize(_filterOutput.size());
// in case of spatial adapted filter
if (_progressiveSpatialConstant.size()>0)
{
_progressiveSpatialConstant.resize(_filterOutput.size());
_progressiveGain.resize(_filterOutput.size());
}
// reset buffers
clearAllBuffers();
}
// Change coefficients table
void BasicRetinaFilter::setLPfilterParameters(const float beta, const float tau, const float desired_k, const unsigned int filterIndex)
{
float _beta = beta+tau;
float k=desired_k;
// check if the spatial constant is correct (avoid 0 value to avoid division by 0)
if (desired_k<=0)
{
k=0.001f;
std::cerr<<"BasicRetinaFilter::spatial constant of the low pass filter must be superior to zero !!! correcting parameter setting to 0,001"<<std::endl;
}
float _alpha = k*k;
float _mu = 0.8f;
unsigned int tableOffset=filterIndex*3;
if (k<=0)
{
std::cerr<<"BasicRetinaFilter::spatial filtering coefficient must be superior to zero, correcting value to 0.01"<<std::endl;
_alpha=0.0001f;
}
float _temp = (1.0f+_beta)/(2.0f*_mu*_alpha);
float a = _filteringCoeficientsTable[tableOffset] = 1.0f + _temp - (float)sqrt( (1.0f+_temp)*(1.0f+_temp) - 1.0f);
_filteringCoeficientsTable[1+tableOffset]=(1.0f-a)*(1.0f-a)*(1.0f-a)*(1.0f-a)/(1.0f+_beta);
_filteringCoeficientsTable[2+tableOffset] =tau;
//std::cout<<"BasicRetinaFilter::normal:"<<(1.0-a)*(1.0-a)*(1.0-a)*(1.0-a)/(1.0+_beta)<<" -> old:"<<(1-a)*(1-a)*(1-a)*(1-a)/(1+_beta)<<std::endl;
//std::cout<<"BasicRetinaFilter::a="<<a<<", gain="<<_filteringCoeficientsTable[1+tableOffset]<<", tau="<<tau<<std::endl;
}
void BasicRetinaFilter::setProgressiveFilterConstants_CentredAccuracy(const float beta, const float tau, const float alpha0, const unsigned int filterIndex)
{
// check if dedicated buffers are already allocated, if not create them
if (_progressiveSpatialConstant.size()!=_filterOutput.size())
{
_progressiveSpatialConstant.resize(_filterOutput.size());
_progressiveGain.resize(_filterOutput.size());
}
float _beta = beta+tau;
float _mu=0.8f;
if (alpha0<=0)
{
std::cerr<<"BasicRetinaFilter::spatial filtering coefficient must be superior to zero, correcting value to 0.01"<<std::endl;
//alpha0=0.0001;
}
unsigned int tableOffset=filterIndex*3;
float _alpha=0.8f;
float _temp = (1.0f+_beta)/(2.0f*_mu*_alpha);
float a=_filteringCoeficientsTable[tableOffset] = 1.0f + _temp - (float)sqrt( (1.0f+_temp)*(1.0f+_temp) - 1.0f);
_filteringCoeficientsTable[tableOffset+1]=(1.0f-a)*(1.0f-a)*(1.0f-a)*(1.0f-a)/(1.0f+_beta);
_filteringCoeficientsTable[tableOffset+2] =tau;
float commonFactor=alpha0/(float)sqrt(_halfNBcolumns*_halfNBcolumns+_halfNBrows*_halfNBrows+1.0f);
//memset(_progressiveSpatialConstant, 255, _filterOutput.getNBpixels());
for (unsigned int idColumn=0;idColumn<_halfNBcolumns; ++idColumn)
for (unsigned int idRow=0;idRow<_halfNBrows; ++idRow)
{
// computing local spatial constant
float localSpatialConstantValue=commonFactor*sqrt((float)(idColumn*idColumn)+(float)(idRow*idRow));
if (localSpatialConstantValue>1.0f)
localSpatialConstantValue=1.0f;
_progressiveSpatialConstant[_halfNBcolumns-1+idColumn+_filterOutput.getNBcolumns()*(_halfNBrows-1+idRow)]=localSpatialConstantValue;
_progressiveSpatialConstant[_halfNBcolumns-1-idColumn+_filterOutput.getNBcolumns()*(_halfNBrows-1+idRow)]=localSpatialConstantValue;
_progressiveSpatialConstant[_halfNBcolumns-1+idColumn+_filterOutput.getNBcolumns()*(_halfNBrows-1-idRow)]=localSpatialConstantValue;
_progressiveSpatialConstant[_halfNBcolumns-1-idColumn+_filterOutput.getNBcolumns()*(_halfNBrows-1-idRow)]=localSpatialConstantValue;
// computing local gain
float localGain=(1-localSpatialConstantValue)*(1-localSpatialConstantValue)*(1-localSpatialConstantValue)*(1-localSpatialConstantValue)/(1+_beta);
_progressiveGain[_halfNBcolumns-1+idColumn+_filterOutput.getNBcolumns()*(_halfNBrows-1+idRow)]=localGain;
_progressiveGain[_halfNBcolumns-1-idColumn+_filterOutput.getNBcolumns()*(_halfNBrows-1+idRow)]=localGain;
_progressiveGain[_halfNBcolumns-1+idColumn+_filterOutput.getNBcolumns()*(_halfNBrows-1-idRow)]=localGain;
_progressiveGain[_halfNBcolumns-1-idColumn+_filterOutput.getNBcolumns()*(_halfNBrows-1-idRow)]=localGain;
//std::cout<<commonFactor<<", "<<sqrt((_halfNBcolumns-1-idColumn)+(_halfNBrows-idRow-1))<<", "<<(_halfNBcolumns-1-idColumn)<<", "<<(_halfNBrows-idRow-1)<<", "<<localSpatialConstantValue<<std::endl;
}
}
void BasicRetinaFilter::setProgressiveFilterConstants_CustomAccuracy(const float beta, const float tau, const float k, const std::valarray<float> &accuracyMap, const unsigned int filterIndex)
{
if (accuracyMap.size()!=_filterOutput.size())
{
std::cerr<<"BasicRetinaFilter::setProgressiveFilterConstants_CustomAccuracy: error: input accuracy map does not match filter size, init skept"<<std::endl;
return ;
}
// check if dedicated buffers are already allocated, if not create them
if (_progressiveSpatialConstant.size()!=_filterOutput.size())
{
_progressiveSpatialConstant.resize(accuracyMap.size());
_progressiveGain.resize(accuracyMap.size());
}
float _beta = beta+tau;
float _alpha=k*k;
float _mu=0.8f;
if (k<=0)
{
std::cerr<<"BasicRetinaFilter::spatial filtering coefficient must be superior to zero, correcting value to 0.01"<<std::endl;
//alpha0=0.0001;
}
unsigned int tableOffset=filterIndex*3;
float _temp = (1.0f+_beta)/(2.0f*_mu*_alpha);
float a=_filteringCoeficientsTable[tableOffset] = 1.0f + _temp - (float)sqrt( (1.0f+_temp)*(1.0f+_temp) - 1.0f);
_filteringCoeficientsTable[tableOffset+1]=(1.0f-a)*(1.0f-a)*(1.0f-a)*(1.0f-a)/(1.0f+_beta);
_filteringCoeficientsTable[tableOffset+2] =tau;
//memset(_progressiveSpatialConstant, 255, _filterOutput.getNBpixels());
for (unsigned int idColumn=0;idColumn<_filterOutput.getNBcolumns(); ++idColumn)
for (unsigned int idRow=0;idRow<_filterOutput.getNBrows(); ++idRow)
{
// computing local spatial constant
unsigned int index=idColumn+idRow*_filterOutput.getNBcolumns();
float localSpatialConstantValue=_a*accuracyMap[index];
if (localSpatialConstantValue>1)
localSpatialConstantValue=1;
_progressiveSpatialConstant[index]=localSpatialConstantValue;
// computing local gain
float localGain=(1.0f-localSpatialConstantValue)*(1.0f-localSpatialConstantValue)*(1.0f-localSpatialConstantValue)*(1.0f-localSpatialConstantValue)/(1.0f+_beta);
_progressiveGain[index]=localGain;
//std::cout<<commonFactor<<", "<<sqrt((_halfNBcolumns-1-idColumn)+(_halfNBrows-idRow-1))<<", "<<(_halfNBcolumns-1-idColumn)<<", "<<(_halfNBrows-idRow-1)<<", "<<localSpatialConstantValue<<std::endl;
}
}
///////////////////////////////////////////////////////////////////////
/// Local luminance adaptation functions
// run local adaptation filter and save result in _filterOutput
const std::valarray<float> &BasicRetinaFilter::runFilter_LocalAdapdation(const std::valarray<float> &inputFrame, const std::valarray<float> &localLuminance)
{
_localLuminanceAdaptation(get_data(inputFrame), get_data(localLuminance), &_filterOutput[0]);
return _filterOutput;
}
// run local adaptation filter at a specific output adress
void BasicRetinaFilter::runFilter_LocalAdapdation(const std::valarray<float> &inputFrame, const std::valarray<float> &localLuminance, std::valarray<float> &outputFrame)
{
_localLuminanceAdaptation(get_data(inputFrame), get_data(localLuminance), &outputFrame[0]);
}
// run local adaptation filter and save result in _filterOutput with autonomous low pass filtering before adaptation
const std::valarray<float> &BasicRetinaFilter::runFilter_LocalAdapdation_autonomous(const std::valarray<float> &inputFrame)
{
_spatiotemporalLPfilter(get_data(inputFrame), &_filterOutput[0]);
_localLuminanceAdaptation(get_data(inputFrame), &_filterOutput[0], &_filterOutput[0]);
return _filterOutput;
}
// run local adaptation filter at a specific output adress with autonomous low pass filtering before adaptation
void BasicRetinaFilter::runFilter_LocalAdapdation_autonomous(const std::valarray<float> &inputFrame, std::valarray<float> &outputFrame)
{
_spatiotemporalLPfilter(get_data(inputFrame), &_filterOutput[0]);
_localLuminanceAdaptation(get_data(inputFrame), &_filterOutput[0], &outputFrame[0]);
}
// local luminance adaptation of the input in regard of localLuminance buffer, the input is rewrited and becomes the output
void BasicRetinaFilter::_localLuminanceAdaptation(float *inputOutputFrame, const float *localLuminance)
{
_localLuminanceAdaptation(inputOutputFrame, localLuminance, inputOutputFrame, false);
/* const float *localLuminancePTR=localLuminance;
float *inputOutputFramePTR=inputOutputFrame;
for (register unsigned int IDpixel=0 ; IDpixel<_filterOutput.getNBpixels() ; ++IDpixel, ++inputOutputFramePTR)
{
float X0=*(localLuminancePTR++)*_localLuminanceFactor+_localLuminanceAddon;
*(inputOutputFramePTR) = (_maxInputValue+X0)**inputOutputFramePTR/(*inputOutputFramePTR +X0+0.00000000001);
}
*/
}
// local luminance adaptation of the input in regard of localLuminance buffer
void BasicRetinaFilter::_localLuminanceAdaptation(const float *inputFrame, const float *localLuminance, float *outputFrame, const bool updateLuminanceMean)
{
if (updateLuminanceMean)
{ float meanLuminance=0;
const float *luminancePTR=inputFrame;
for (unsigned int i=0;i<_filterOutput.getNBpixels();++i)
meanLuminance+=*(luminancePTR++);
meanLuminance/=_filterOutput.getNBpixels();
//float tempMeanValue=meanLuminance+_meanInputValue*_tau;
updateCompressionParameter(meanLuminance);
}
#ifdef MAKE_PARALLEL
cv::parallel_for_(cv::Range(0,_filterOutput.getNBpixels()), Parallel_localAdaptation(localLuminance, inputFrame, outputFrame, _localLuminanceFactor, _localLuminanceAddon, _maxInputValue));
#else
//std::cout<<meanLuminance<<std::endl;
const float *localLuminancePTR=localLuminance;
const float *inputFramePTR=inputFrame;
float *outputFramePTR=outputFrame;
for (register unsigned int IDpixel=0 ; IDpixel<_filterOutput.getNBpixels() ; ++IDpixel, ++inputFramePTR, ++outputFramePTR)
{
float X0=*(localLuminancePTR++)*_localLuminanceFactor+_localLuminanceAddon;
// TODO : the following line can lead to a divide by zero ! A small offset is added, take care if the offset is too large in case of High Dynamic Range images which can use very small values...
*(outputFramePTR) = (_maxInputValue+X0)**inputFramePTR/(*inputFramePTR +X0+0.00000000001);
//std::cout<<"BasicRetinaFilter::inputFrame[IDpixel]=%f, X0=%f, outputFrame[IDpixel]=%f\n", inputFrame[IDpixel], X0, outputFrame[IDpixel]);
}
#endif
}
// local adaptation applied on a range of values which can be positive and negative
void BasicRetinaFilter::_localLuminanceAdaptationPosNegValues(const float *inputFrame, const float *localLuminance, float *outputFrame)
{
const float *localLuminancePTR=localLuminance;
const float *inputFramePTR=inputFrame;
float *outputFramePTR=outputFrame;
float factor=_maxInputValue*2.0f/(float)CV_PI;
for (register unsigned int IDpixel=0 ; IDpixel<_filterOutput.getNBpixels() ; ++IDpixel, ++inputFramePTR)
{
float X0=*(localLuminancePTR++)*_localLuminanceFactor+_localLuminanceAddon;
*(outputFramePTR++) = factor*atan(*inputFramePTR/X0);//(_maxInputValue+X0)**inputFramePTR/(*inputFramePTR +X0);
//std::cout<<"BasicRetinaFilter::inputFrame[IDpixel]=%f, X0=%f, outputFrame[IDpixel]=%f\n", inputFrame[IDpixel], X0, outputFrame[IDpixel]);
}
}
///////////////////////////////////////////////////////////////////////
/// Spatio temporal Low Pass filter functions
// run LP filter and save result in the basic retina element buffer
const std::valarray<float> &BasicRetinaFilter::runFilter_LPfilter(const std::valarray<float> &inputFrame, const unsigned int filterIndex)
{
_spatiotemporalLPfilter(get_data(inputFrame), &_filterOutput[0], filterIndex);
return _filterOutput;
}
// run LP filter for a new frame input and save result at a specific output adress
void BasicRetinaFilter::runFilter_LPfilter(const std::valarray<float> &inputFrame, std::valarray<float> &outputFrame, const unsigned int filterIndex)
{
_spatiotemporalLPfilter(get_data(inputFrame), &outputFrame[0], filterIndex);
}
// run LP filter on the input data and rewrite it
void BasicRetinaFilter::runFilter_LPfilter_Autonomous(std::valarray<float> &inputOutputFrame, const unsigned int filterIndex)
{
unsigned int coefTableOffset=filterIndex*3;
/**********/
_a=_filteringCoeficientsTable[coefTableOffset];
_gain=_filteringCoeficientsTable[1+coefTableOffset];
_tau=_filteringCoeficientsTable[2+coefTableOffset];
// launch the serie of 1D directional filters in order to compute the 2D low pass filter
_horizontalCausalFilter(&inputOutputFrame[0], 0, _filterOutput.getNBrows());
_horizontalAnticausalFilter(&inputOutputFrame[0], 0, _filterOutput.getNBrows());
_verticalCausalFilter(&inputOutputFrame[0], 0, _filterOutput.getNBcolumns());
_verticalAnticausalFilter_multGain(&inputOutputFrame[0], 0, _filterOutput.getNBcolumns());
}
// run LP filter for a new frame input and save result at a specific output adress
void BasicRetinaFilter::_spatiotemporalLPfilter(const float *inputFrame, float *outputFrame, const unsigned int filterIndex)
{
unsigned int coefTableOffset=filterIndex*3;
/**********/
_a=_filteringCoeficientsTable[coefTableOffset];
_gain=_filteringCoeficientsTable[1+coefTableOffset];
_tau=_filteringCoeficientsTable[2+coefTableOffset];
// launch the serie of 1D directional filters in order to compute the 2D low pass filter
_horizontalCausalFilter_addInput(inputFrame, outputFrame, 0,_filterOutput.getNBrows());
_horizontalAnticausalFilter(outputFrame, 0, _filterOutput.getNBrows());
_verticalCausalFilter(outputFrame, 0, _filterOutput.getNBcolumns());
_verticalAnticausalFilter_multGain(outputFrame, 0, _filterOutput.getNBcolumns());
}
// run SQUARING LP filter for a new frame input and save result at a specific output adress
float BasicRetinaFilter::_squaringSpatiotemporalLPfilter(const float *inputFrame, float *outputFrame, const unsigned int filterIndex)
{
unsigned int coefTableOffset=filterIndex*3;
/**********/
_a=_filteringCoeficientsTable[coefTableOffset];
_gain=_filteringCoeficientsTable[1+coefTableOffset];
_tau=_filteringCoeficientsTable[2+coefTableOffset];
// launch the serie of 1D directional filters in order to compute the 2D low pass filter
_squaringHorizontalCausalFilter(inputFrame, outputFrame, 0, _filterOutput.getNBrows());
_horizontalAnticausalFilter(outputFrame, 0, _filterOutput.getNBrows());
_verticalCausalFilter(outputFrame, 0, _filterOutput.getNBcolumns());
return _verticalAnticausalFilter_returnMeanValue(outputFrame, 0, _filterOutput.getNBcolumns());
}
/////////////////////////////////////////////////
// standard version of the 1D low pass filters
// horizontal causal filter which adds the input inside
void BasicRetinaFilter::_horizontalCausalFilter(float *outputFrame, unsigned int IDrowStart, unsigned int IDrowEnd)
{
//#pragma omp parallel for
for (unsigned int IDrow=IDrowStart; IDrow<IDrowEnd; ++IDrow)
{
register float* outputPTR=outputFrame+(IDrowStart+IDrow)*_filterOutput.getNBcolumns();
register float result=0;
for (unsigned int index=0; index<_filterOutput.getNBcolumns(); ++index)
{
result = *(outputPTR)+ _a* result;
*(outputPTR++) = result;
}
}
}
// horizontal causal filter which adds the input inside
void BasicRetinaFilter::_horizontalCausalFilter_addInput(const float *inputFrame, float *outputFrame, unsigned int IDrowStart, unsigned int IDrowEnd)
{
#ifdef MAKE_PARALLEL
cv::parallel_for_(cv::Range(IDrowStart,IDrowEnd), Parallel_horizontalCausalFilter_addInput(inputFrame, outputFrame, IDrowStart, _filterOutput.getNBcolumns(), _a, _tau));
#else
for (unsigned int IDrow=IDrowStart; IDrow<IDrowEnd; ++IDrow)
{
register float* outputPTR=outputFrame+(IDrowStart+IDrow)*_filterOutput.getNBcolumns();
register const float* inputPTR=inputFrame+(IDrowStart+IDrow)*_filterOutput.getNBcolumns();
register float result=0;
for (unsigned int index=0; index<_filterOutput.getNBcolumns(); ++index)
{
result = *(inputPTR++) + _tau**(outputPTR)+ _a* result;
*(outputPTR++) = result;
}
}
#endif
}
// horizontal anticausal filter (basic way, no add on)
void BasicRetinaFilter::_horizontalAnticausalFilter(float *outputFrame, unsigned int IDrowStart, unsigned int IDrowEnd)
{
#ifdef MAKE_PARALLEL
cv::parallel_for_(cv::Range(IDrowStart,IDrowEnd), Parallel_horizontalAnticausalFilter(outputFrame, IDrowEnd, _filterOutput.getNBcolumns(), _a ));
#else
for (unsigned int IDrow=IDrowStart; IDrow<IDrowEnd; ++IDrow)
{
register float* outputPTR=outputFrame+(IDrowEnd-IDrow)*(_filterOutput.getNBcolumns())-1;
register float result=0;
for (unsigned int index=0; index<_filterOutput.getNBcolumns(); ++index)
{
result = *(outputPTR)+ _a* result;
*(outputPTR--) = result;
}
}
#endif
}
// horizontal anticausal filter which multiplies the output by _gain
void BasicRetinaFilter::_horizontalAnticausalFilter_multGain(float *outputFrame, unsigned int IDrowStart, unsigned int IDrowEnd)
{
//#pragma omp parallel for
for (unsigned int IDrow=IDrowStart; IDrow<IDrowEnd; ++IDrow)
{
register float* outputPTR=outputFrame+(IDrowEnd-IDrow)*(_filterOutput.getNBcolumns())-1;
register float result=0;
for (unsigned int index=0; index<_filterOutput.getNBcolumns(); ++index)
{
result = *(outputPTR)+ _a* result;
*(outputPTR--) = _gain*result;
}
}
}
// vertical anticausal filter
void BasicRetinaFilter::_verticalCausalFilter(float *outputFrame, unsigned int IDcolumnStart, unsigned int IDcolumnEnd)
{
#ifdef MAKE_PARALLEL
cv::parallel_for_(cv::Range(IDcolumnStart,IDcolumnEnd), Parallel_verticalCausalFilter(outputFrame, _filterOutput.getNBrows(), _filterOutput.getNBcolumns(), _a ));
#else
for (unsigned int IDcolumn=IDcolumnStart; IDcolumn<IDcolumnEnd; ++IDcolumn)
{
register float result=0;
register float *outputPTR=outputFrame+IDcolumn;
for (unsigned int index=0; index<_filterOutput.getNBrows(); ++index)
{
result = *(outputPTR) + _a * result;
*(outputPTR) = result;
outputPTR+=_filterOutput.getNBcolumns();
}
}
#endif
}
// vertical anticausal filter (basic way, no add on)
void BasicRetinaFilter::_verticalAnticausalFilter(float *outputFrame, unsigned int IDcolumnStart, unsigned int IDcolumnEnd)
{
float* offset=outputFrame+_filterOutput.getNBpixels()-_filterOutput.getNBcolumns();
//#pragma omp parallel for
for (unsigned int IDcolumn=IDcolumnStart; IDcolumn<IDcolumnEnd; ++IDcolumn)
{
register float result=0;
register float *outputPTR=offset+IDcolumn;
for (unsigned int index=0; index<_filterOutput.getNBrows(); ++index)
{
result = *(outputPTR) + _a * result;
*(outputPTR) = result;
outputPTR-=_filterOutput.getNBcolumns();
}
}
}
// vertical anticausal filter which multiplies the output by _gain
void BasicRetinaFilter::_verticalAnticausalFilter_multGain(float *outputFrame, unsigned int IDcolumnStart, unsigned int IDcolumnEnd)
{
#ifdef MAKE_PARALLEL
cv::parallel_for_(cv::Range(IDcolumnStart,IDcolumnEnd), Parallel_verticalAnticausalFilter_multGain(outputFrame, _filterOutput.getNBrows(), _filterOutput.getNBcolumns(), _a, _gain ));
#else
float* offset=outputFrame+_filterOutput.getNBpixels()-_filterOutput.getNBcolumns();
//#pragma omp parallel for
for (unsigned int IDcolumn=IDcolumnStart; IDcolumn<IDcolumnEnd; ++IDcolumn)
{
register float result=0;
register float *outputPTR=offset+IDcolumn;
for (unsigned int index=0; index<_filterOutput.getNBrows(); ++index)
{
result = *(outputPTR) + _a * result;
*(outputPTR) = _gain*result;
outputPTR-=_filterOutput.getNBcolumns();
}
}
#endif
}
/////////////////////////////////////////
// specific modifications of 1D filters
// -> squaring horizontal causal filter
void BasicRetinaFilter::_squaringHorizontalCausalFilter(const float *inputFrame, float *outputFrame, unsigned int IDrowStart, unsigned int IDrowEnd)
{
register float* outputPTR=outputFrame+IDrowStart*_filterOutput.getNBcolumns();
register const float* inputPTR=inputFrame+IDrowStart*_filterOutput.getNBcolumns();
for (unsigned int IDrow=IDrowStart; IDrow<IDrowEnd; ++IDrow)
{
register float result=0;
for (unsigned int index=0; index<_filterOutput.getNBcolumns(); ++index)
{
result = *(inputPTR)**(inputPTR) + _tau**(outputPTR)+ _a* result;
*(outputPTR++) = result;
++inputPTR;
}
}
}
// vertical anticausal filter that returns the mean value of its result
float BasicRetinaFilter::_verticalAnticausalFilter_returnMeanValue(float *outputFrame, unsigned int IDcolumnStart, unsigned int IDcolumnEnd)
{
register float meanValue=0;
float* offset=outputFrame+_filterOutput.getNBpixels()-_filterOutput.getNBcolumns();
for (unsigned int IDcolumn=IDcolumnStart; IDcolumn<IDcolumnEnd; ++IDcolumn)
{
register float result=0;
register float *outputPTR=offset+IDcolumn;
for (unsigned int index=0; index<_filterOutput.getNBrows(); ++index)
{
result = *(outputPTR) + _a * result;
*(outputPTR) = _gain*result;
meanValue+=*(outputPTR);
outputPTR-=_filterOutput.getNBcolumns();
}
}
return meanValue/(float)_filterOutput.getNBpixels();
}
// LP filter with integration in specific areas (regarding true values of a binary parameters image)
void BasicRetinaFilter::_localSquaringSpatioTemporalLPfilter(const float *inputFrame, float *LPfilterOutput, const unsigned int *integrationAreas, const unsigned int filterIndex)
{
unsigned int coefTableOffset=filterIndex*3;
_a=_filteringCoeficientsTable[coefTableOffset+0];
_gain=_filteringCoeficientsTable[coefTableOffset+1];
_tau=_filteringCoeficientsTable[coefTableOffset+2];
// launch the serie of 1D directional filters in order to compute the 2D low pass filter
_local_squaringHorizontalCausalFilter(inputFrame, LPfilterOutput, 0, _filterOutput.getNBrows(), integrationAreas);
_local_horizontalAnticausalFilter(LPfilterOutput, 0, _filterOutput.getNBrows(), integrationAreas);
_local_verticalCausalFilter(LPfilterOutput, 0, _filterOutput.getNBcolumns(), integrationAreas);
_local_verticalAnticausalFilter_multGain(LPfilterOutput, 0, _filterOutput.getNBcolumns(), integrationAreas);
}
// LP filter on specific parts of the picture instead of all the image
// same functions (some of them) but take a binary flag to allow integration, false flag means, no data change at the output...
// this function take an image in input and squares it befor computing
void BasicRetinaFilter::_local_squaringHorizontalCausalFilter(const float *inputFrame, float *outputFrame, unsigned int IDrowStart, unsigned int IDrowEnd, const unsigned int *integrationAreas)
{
register float* outputPTR=outputFrame+IDrowStart*_filterOutput.getNBcolumns();
register const float* inputPTR=inputFrame+IDrowStart*_filterOutput.getNBcolumns();
const unsigned int *integrationAreasPTR=integrationAreas;
for (unsigned int IDrow=IDrowStart; IDrow<IDrowEnd; ++IDrow)
{
register float result=0;
for (unsigned int index=0; index<_filterOutput.getNBcolumns(); ++index)
{
if (*(integrationAreasPTR++))
result = *(inputPTR)**(inputPTR) + _tau**(outputPTR)+ _a* result;
else
result=0;
*(outputPTR++) = result;
++inputPTR;
}
}
}
void BasicRetinaFilter::_local_horizontalAnticausalFilter(float *outputFrame, unsigned int IDrowStart, unsigned int IDrowEnd, const unsigned int *integrationAreas)
{
register float* outputPTR=outputFrame+IDrowEnd*(_filterOutput.getNBcolumns())-1;
const unsigned int *integrationAreasPTR=integrationAreas;
for (unsigned int IDrow=IDrowStart; IDrow<IDrowEnd; ++IDrow)
{
register float result=0;
for (unsigned int index=0; index<_filterOutput.getNBcolumns(); ++index)
{
if (*(integrationAreasPTR++))
result = *(outputPTR)+ _a* result;
else
result=0;
*(outputPTR--) = result;
}
}
}
void BasicRetinaFilter::_local_verticalCausalFilter(float *outputFrame, unsigned int IDcolumnStart, unsigned int IDcolumnEnd, const unsigned int *integrationAreas)
{
const unsigned int *integrationAreasPTR=integrationAreas;
for (unsigned int IDcolumn=IDcolumnStart; IDcolumn<IDcolumnEnd; ++IDcolumn)
{
register float result=0;
register float *outputPTR=outputFrame+IDcolumn;
for (unsigned int index=0; index<_filterOutput.getNBrows(); ++index)
{
if (*(integrationAreasPTR++))
result = *(outputPTR)+ _a* result;
else
result=0;
*(outputPTR) = result;
outputPTR+=_filterOutput.getNBcolumns();
}
}
}
// this functions affects _gain at the output
void BasicRetinaFilter::_local_verticalAnticausalFilter_multGain(float *outputFrame, unsigned int IDcolumnStart, unsigned int IDcolumnEnd, const unsigned int *integrationAreas)
{
const unsigned int *integrationAreasPTR=integrationAreas;
float* offset=outputFrame+_filterOutput.getNBpixels()-_filterOutput.getNBcolumns();
for (unsigned int IDcolumn=IDcolumnStart; IDcolumn<IDcolumnEnd; ++IDcolumn)
{
register float result=0;
register float *outputPTR=offset+IDcolumn;
for (unsigned int index=0; index<_filterOutput.getNBrows(); ++index)
{
if (*(integrationAreasPTR++))
result = *(outputPTR)+ _a* result;
else
result=0;
*(outputPTR) = _gain*result;
outputPTR-=_filterOutput.getNBcolumns();
}
}
}
////////////////////////////////////////////////////
// run LP filter for a new frame input and save result at a specific output adress
// -> USE IRREGULAR SPATIAL CONSTANT
// irregular filter computed from a buffer and rewrites it
void BasicRetinaFilter::_spatiotemporalLPfilter_Irregular(float *inputOutputFrame, const unsigned int filterIndex)
{
if (_progressiveGain.size()==0)
{
std::cerr<<"BasicRetinaFilter::runProgressiveFilter: cannot perform filtering, no progressive filter settled up"<<std::endl;
return;
}
unsigned int coefTableOffset=filterIndex*3;
/**********/
//_a=_filteringCoeficientsTable[coefTableOffset];
_tau=_filteringCoeficientsTable[2+coefTableOffset];
// launch the serie of 1D directional filters in order to compute the 2D low pass filter
_horizontalCausalFilter_Irregular(inputOutputFrame, 0, (int)_filterOutput.getNBrows());
_horizontalAnticausalFilter_Irregular(inputOutputFrame, 0, (int)_filterOutput.getNBrows(), &_progressiveSpatialConstant[0]);
_verticalCausalFilter_Irregular(inputOutputFrame, 0, (int)_filterOutput.getNBcolumns(), &_progressiveSpatialConstant[0]);
_verticalAnticausalFilter_Irregular_multGain(inputOutputFrame, 0, (int)_filterOutput.getNBcolumns());
}
// irregular filter computed from a buffer and puts result on another
void BasicRetinaFilter::_spatiotemporalLPfilter_Irregular(const float *inputFrame, float *outputFrame, const unsigned int filterIndex)
{
if (_progressiveGain.size()==0)
{
std::cerr<<"BasicRetinaFilter::runProgressiveFilter: cannot perform filtering, no progressive filter settled up"<<std::endl;
return;
}
unsigned int coefTableOffset=filterIndex*3;
/**********/
//_a=_filteringCoeficientsTable[coefTableOffset];
_tau=_filteringCoeficientsTable[2+coefTableOffset];
// launch the serie of 1D directional filters in order to compute the 2D low pass filter
_horizontalCausalFilter_Irregular_addInput(inputFrame, outputFrame, 0, (int)_filterOutput.getNBrows());
_horizontalAnticausalFilter_Irregular(outputFrame, 0, (int)_filterOutput.getNBrows(), &_progressiveSpatialConstant[0]);
_verticalCausalFilter_Irregular(outputFrame, 0, (int)_filterOutput.getNBcolumns(), &_progressiveSpatialConstant[0]);
_verticalAnticausalFilter_Irregular_multGain(outputFrame, 0, (int)_filterOutput.getNBcolumns());
}
// 1D filters with irregular spatial constant
// horizontal causal filter wich runs on its input buffer
void BasicRetinaFilter::_horizontalCausalFilter_Irregular(float *outputFrame, unsigned int IDrowStart, unsigned int IDrowEnd)
{
register float* outputPTR=outputFrame+IDrowStart*_filterOutput.getNBcolumns();
register const float* spatialConstantPTR=&_progressiveSpatialConstant[0]+IDrowStart*_filterOutput.getNBcolumns();
for (unsigned int IDrow=IDrowStart; IDrow<IDrowEnd; ++IDrow)
{
register float result=0;
for (unsigned int index=0; index<_filterOutput.getNBcolumns(); ++index)
{
result = *(outputPTR)+ *(spatialConstantPTR++)* result;
*(outputPTR++) = result;
}
}
}
// horizontal causal filter with add input
void BasicRetinaFilter::_horizontalCausalFilter_Irregular_addInput(const float *inputFrame, float *outputFrame, unsigned int IDrowStart, unsigned int IDrowEnd)
{
register float* outputPTR=outputFrame+IDrowStart*_filterOutput.getNBcolumns();
register const float* inputPTR=inputFrame+IDrowStart*_filterOutput.getNBcolumns();
register const float* spatialConstantPTR=&_progressiveSpatialConstant[0]+IDrowStart*_filterOutput.getNBcolumns();
for (unsigned int IDrow=IDrowStart; IDrow<IDrowEnd; ++IDrow)
{
register float result=0;
for (unsigned int index=0; index<_filterOutput.getNBcolumns(); ++index)
{
result = *(inputPTR++) + _tau**(outputPTR)+ *(spatialConstantPTR++)* result;
*(outputPTR++) = result;
}
}
}
// horizontal anticausal filter (basic way, no add on)
void BasicRetinaFilter::_horizontalAnticausalFilter_Irregular(float *outputFrame, unsigned int IDrowStart, unsigned int IDrowEnd, const float *spatialConstantBuffer)
{
#ifdef MAKE_PARALLEL
cv::parallel_for_(cv::Range(IDrowStart,IDrowEnd), Parallel_horizontalAnticausalFilter_Irregular(outputFrame, spatialConstantBuffer, IDrowEnd, _filterOutput.getNBcolumns()));
#else
register float* outputPTR=outputFrame+IDrowEnd*(_filterOutput.getNBcolumns())-1;
register const float* spatialConstantPTR=spatialConstantBuffer+IDrowEnd*(_filterOutput.getNBcolumns())-1;
for (unsigned int IDrow=IDrowStart; IDrow<IDrowEnd; ++IDrow)
{
register float result=0;
for (unsigned int index=0; index<_filterOutput.getNBcolumns(); ++index)
{
result = *(outputPTR)+ *(spatialConstantPTR--)* result;
*(outputPTR--) = result;
}
}
#endif
}
// vertical anticausal filter
void BasicRetinaFilter::_verticalCausalFilter_Irregular(float *outputFrame, unsigned int IDcolumnStart, unsigned int IDcolumnEnd, const float *spatialConstantBuffer)
{
#ifdef MAKE_PARALLEL
cv::parallel_for_(cv::Range(IDcolumnStart,IDcolumnEnd), Parallel_verticalCausalFilter_Irregular(outputFrame, spatialConstantBuffer, _filterOutput.getNBrows(), _filterOutput.getNBcolumns()));
#else
for (unsigned int IDcolumn=IDcolumnStart; IDcolumn<IDcolumnEnd; ++IDcolumn)
{
register float result=0;
register float *outputPTR=outputFrame+IDcolumn;
register const float *spatialConstantPTR=spatialConstantBuffer+IDcolumn;
for (unsigned int index=0; index<_filterOutput.getNBrows(); ++index)
{
result = *(outputPTR) + *(spatialConstantPTR) * result;
*(outputPTR) = result;
outputPTR+=_filterOutput.getNBcolumns();
spatialConstantPTR+=_filterOutput.getNBcolumns();
}
}
#endif
}
// vertical anticausal filter which multiplies the output by _gain
void BasicRetinaFilter::_verticalAnticausalFilter_Irregular_multGain(float *outputFrame, unsigned int IDcolumnStart, unsigned int IDcolumnEnd)
{
float* outputOffset=outputFrame+_filterOutput.getNBpixels()-_filterOutput.getNBcolumns();
const float* constantOffset=&_progressiveSpatialConstant[0]+_filterOutput.getNBpixels()-_filterOutput.getNBcolumns();
const float* gainOffset=&_progressiveGain[0]+_filterOutput.getNBpixels()-_filterOutput.getNBcolumns();
for (unsigned int IDcolumn=IDcolumnStart; IDcolumn<IDcolumnEnd; ++IDcolumn)
{
register float result=0;
register float *outputPTR=outputOffset+IDcolumn;
register const float *spatialConstantPTR=constantOffset+IDcolumn;
register const float *progressiveGainPTR=gainOffset+IDcolumn;
for (unsigned int index=0; index<_filterOutput.getNBrows(); ++index)
{
result = *(outputPTR) + *(spatialConstantPTR) * result;
*(outputPTR) = *(progressiveGainPTR)*result;
outputPTR-=_filterOutput.getNBcolumns();
spatialConstantPTR-=_filterOutput.getNBcolumns();
progressiveGainPTR-=_filterOutput.getNBcolumns();
}
}
}
}