test_eigen.cpp 14.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "test_precomp.hpp"
#include <time.h>

using namespace cv;
using namespace std;

#define sign(a) a > 0 ? 1 : a == 0 ? 0 : -1

#define CORE_EIGEN_ERROR_COUNT 1
#define CORE_EIGEN_ERROR_SIZE  2
#define CORE_EIGEN_ERROR_DIFF  3
#define CORE_EIGEN_ERROR_ORTHO 4
#define CORE_EIGEN_ERROR_ORDER 5

#define MESSAGE_ERROR_COUNT "Matrix of eigen values must have the same rows as source matrix and 1 column."
#define MESSAGE_ERROR_SIZE "Source matrix and matrix of eigen vectors must have the same sizes."
#define MESSAGE_ERROR_DIFF_1 "Accurasy of eigen values computing less than required."
#define MESSAGE_ERROR_DIFF_2 "Accuracy of eigen vectors computing less than required."
#define MESSAGE_ERROR_ORTHO "Matrix of eigen vectors is not orthogonal."
#define MESSAGE_ERROR_ORDER "Eigen values are not sorted in ascending order."

const int COUNT_NORM_TYPES = 3;
const int NORM_TYPE[COUNT_NORM_TYPES] = {cv::NORM_L1, cv::NORM_L2, cv::NORM_INF};

enum TASK_TYPE_EIGEN {VALUES, VECTORS};

class Core_EigenTest: public cvtest::BaseTest
{
public:

    Core_EigenTest();
    ~Core_EigenTest();

protected:

    bool test_values(const cv::Mat& src);												// complex test for eigen without vectors
    bool check_full(int type);													// compex test for symmetric matrix
    virtual void run (int) = 0;													// main testing method

protected:

    float eps_val_32, eps_vec_32;
    float eps_val_64, eps_vec_64;
    int ntests;

    bool check_pair_count(const cv::Mat& src, const cv::Mat& evalues, int low_index = -1, int high_index = -1);
    bool check_pair_count(const cv::Mat& src, const cv::Mat& evalues, const cv::Mat& evectors, int low_index = -1, int high_index = -1);
    bool check_pairs_order(const cv::Mat& eigen_values);											// checking order of eigen values & vectors (it should be none up)
    bool check_orthogonality(const cv::Mat& U);												// checking is matrix of eigen vectors orthogonal
    bool test_pairs(const cv::Mat& src);													// complex test for eigen with vectors

    void print_information(const size_t norm_idx, const cv::Mat& src, double diff, double max_diff);
};

class Core_EigenTest_Scalar : public Core_EigenTest
{
public:
    Core_EigenTest_Scalar() : Core_EigenTest() {}
    ~Core_EigenTest_Scalar();

    virtual void run(int) = 0;
};

class Core_EigenTest_Scalar_32 : public Core_EigenTest_Scalar
{
public:
    Core_EigenTest_Scalar_32() : Core_EigenTest_Scalar() {}
    ~Core_EigenTest_Scalar_32();

    void run(int);
};

class Core_EigenTest_Scalar_64 : public Core_EigenTest_Scalar
{
public:
    Core_EigenTest_Scalar_64() : Core_EigenTest_Scalar() {}
    ~Core_EigenTest_Scalar_64();
    void run(int);
};

class Core_EigenTest_32 : public Core_EigenTest
{
public:
    Core_EigenTest_32(): Core_EigenTest() {}
    ~Core_EigenTest_32() {}
    void run(int);
};

class Core_EigenTest_64 : public Core_EigenTest
{
public:
    Core_EigenTest_64(): Core_EigenTest() {}
    ~Core_EigenTest_64() {}
    void run(int);
};

Core_EigenTest_Scalar::~Core_EigenTest_Scalar() {}
Core_EigenTest_Scalar_32::~Core_EigenTest_Scalar_32() {}
Core_EigenTest_Scalar_64::~Core_EigenTest_Scalar_64() {}

void Core_EigenTest_Scalar_32::run(int)
{
    for (int i = 0; i < ntests; ++i)
    {
        float value = cv::randu<float>();
        cv::Mat src(1, 1, CV_32FC1, Scalar::all((float)value));
        test_values(src);
    }
}

void Core_EigenTest_Scalar_64::run(int)
{
    for (int i = 0; i < ntests; ++i)
    {
        float value = cv::randu<float>();
        cv::Mat src(1, 1, CV_64FC1, Scalar::all((double)value));
        test_values(src);
    }
}

void Core_EigenTest_32::run(int) { check_full(CV_32FC1); }
void Core_EigenTest_64::run(int) { check_full(CV_64FC1); }

Core_EigenTest::Core_EigenTest()
: eps_val_32(1e-3f), eps_vec_32(12e-3f),
  eps_val_64(1e-4f), eps_vec_64(1e-3f), ntests(100) {}
Core_EigenTest::~Core_EigenTest() {}

bool Core_EigenTest::check_pair_count(const cv::Mat& src, const cv::Mat& evalues, int low_index, int high_index)
{
    int n = src.rows, s = sign(high_index);
    if (!( (evalues.rows == n - max<int>(0, low_index) - ((int)((n/2.0)*(s*s-s)) + (1+s-s*s)*(n - (high_index+1)))) && (evalues.cols == 1)))
    {
        std::cout << endl; std::cout << "Checking sizes of eigen values matrix " << evalues << "..." << endl;
        std::cout << "Number of rows: " << evalues.rows << "   Number of cols: " << evalues.cols << endl;
        std::cout << "Size of src symmetric matrix: " << src.rows << " * " << src.cols << endl; std::cout << endl;
        CV_Error(CORE_EIGEN_ERROR_COUNT, MESSAGE_ERROR_COUNT);
        return false;
    }
    return true;
}

bool Core_EigenTest::check_pair_count(const cv::Mat& src, const cv::Mat& evalues, const cv::Mat& evectors, int low_index, int high_index)
{
    int n = src.rows, s = sign(high_index);
    int right_eigen_pair_count = n - max<int>(0, low_index) - ((int)((n/2.0)*(s*s-s)) + (1+s-s*s)*(n - (high_index+1)));

    if (!(evectors.rows == right_eigen_pair_count && evectors.cols == right_eigen_pair_count))
    {
        std::cout << endl; std::cout << "Checking sizes of eigen vectors matrix " << evectors << "..." << endl;
        std::cout << "Number of rows: " << evectors.rows << "   Number of cols: " << evectors.cols << endl;
        std:: cout << "Size of src symmetric matrix: " << src.rows << " * " << src.cols << endl; std::cout << endl;
        CV_Error (CORE_EIGEN_ERROR_SIZE, MESSAGE_ERROR_SIZE);
        return false;
    }

    if (!(evalues.rows == right_eigen_pair_count && evalues.cols == 1))
    {
        std::cout << endl; std::cout << "Checking sizes of eigen values matrix " << evalues << "..." << endl;
        std::cout << "Number of rows: " << evalues.rows << "   Number of cols: " << evalues.cols << endl;
        std:: cout << "Size of src symmetric matrix: " << src.rows << " * " << src.cols << endl; std::cout << endl;
        CV_Error (CORE_EIGEN_ERROR_COUNT, MESSAGE_ERROR_COUNT);
        return false;
    }

    return true;
}

void Core_EigenTest::print_information(const size_t norm_idx, const cv::Mat& src, double diff, double max_diff)
{
    switch (NORM_TYPE[norm_idx])
    {
    case cv::NORM_L1: std::cout << "L1"; break;
    case cv::NORM_L2: std::cout << "L2"; break;
    case cv::NORM_INF: std::cout << "INF"; break;
    default: break;
    }

    cout << "-criteria... " << endl;
    cout << "Source size: " << src.rows << " * " << src.cols << endl;
    cout << "Difference between original eigen vectors matrix and result: " << diff << endl;
    cout << "Maximum allowed difference: " << max_diff << endl; cout << endl;
}

bool Core_EigenTest::check_orthogonality(const cv::Mat& U)
{
    int type = U.type();
    double eps_vec = type == CV_32FC1 ? eps_vec_32 : eps_vec_64;
    cv::Mat UUt; cv::mulTransposed(U, UUt, false);

    cv::Mat E = Mat::eye(U.rows, U.cols, type);

    for (int i = 0; i < COUNT_NORM_TYPES; ++i)
    {
        double diff = cvtest::norm(UUt, E, NORM_TYPE[i]);
        if (diff > eps_vec)
        {
            std::cout << endl; std::cout << "Checking orthogonality of matrix " << U << ": ";
            print_information(i, U, diff, eps_vec);
            CV_Error(CORE_EIGEN_ERROR_ORTHO, MESSAGE_ERROR_ORTHO);
            return false;
        }
    }

    return true;
}

bool Core_EigenTest::check_pairs_order(const cv::Mat& eigen_values)
{
    switch (eigen_values.type())
    {
    case CV_32FC1:
        {
            for (int i = 0; i < (int)(eigen_values.total() - 1); ++i)
                if (!(eigen_values.at<float>(i, 0) > eigen_values.at<float>(i+1, 0)))
                {
                std::cout << endl; std::cout << "Checking order of eigen values vector " << eigen_values << "..." << endl;
                std::cout << "Pair of indexes with non ascending of eigen values: (" << i << ", " << i+1 << ")." << endl;
                std::cout << endl;
                CV_Error(CORE_EIGEN_ERROR_ORDER, MESSAGE_ERROR_ORDER);
                return false;
            }

            break;
        }

    case CV_64FC1:
        {
            for (int i = 0; i < (int)(eigen_values.total() - 1); ++i)
                if (!(eigen_values.at<double>(i, 0) > eigen_values.at<double>(i+1, 0)))
                {
                    std::cout << endl; std::cout << "Checking order of eigen values vector " << eigen_values << "..." << endl;
                    std::cout << "Pair of indexes with non ascending of eigen values: (" << i << ", " << i+1 << ")." << endl;
                    std::cout << endl;
                    CV_Error(CORE_EIGEN_ERROR_ORDER, "Eigen values are not sorted in ascending order.");
                    return false;
                }

            break;
        }

    default:;
    }

    return true;
}

bool Core_EigenTest::test_pairs(const cv::Mat& src)
{
    int type = src.type();
    double eps_vec = type == CV_32FC1 ? eps_vec_32 : eps_vec_64;

    cv::Mat eigen_values, eigen_vectors;

    cv::eigen(src, eigen_values, eigen_vectors);

    if (!check_pair_count(src, eigen_values, eigen_vectors))
        return false;

    if (!check_orthogonality (eigen_vectors))
        return false;

    if (!check_pairs_order(eigen_values))
        return false;

    cv::Mat eigen_vectors_t; cv::transpose(eigen_vectors, eigen_vectors_t);

    cv::Mat src_evec(src.rows, src.cols, type);
    src_evec = src*eigen_vectors_t;

    cv::Mat eval_evec(src.rows, src.cols, type);

    switch (type)
    {
    case CV_32FC1:
        {
            for (int i = 0; i < src.cols; ++i)
            {
                cv::Mat tmp = eigen_values.at<float>(i, 0) * eigen_vectors_t.col(i);
                for (int j = 0; j < src.rows; ++j) eval_evec.at<float>(j, i) = tmp.at<float>(j, 0);
            }

            break;
        }

    case CV_64FC1:
        {
            for (int i = 0; i < src.cols; ++i)
            {
                cv::Mat tmp = eigen_values.at<double>(i, 0) * eigen_vectors_t.col(i);
                for (int j = 0; j < src.rows; ++j) eval_evec.at<double>(j, i) = tmp.at<double>(j, 0);
            }

            break;
        }

    default:;
    }

    cv::Mat disparity = src_evec - eval_evec;

    for (int i = 0; i < COUNT_NORM_TYPES; ++i)
    {
        double diff = cvtest::norm(disparity, NORM_TYPE[i]);
        if (diff > eps_vec)
        {
            std::cout << endl; std::cout << "Checking accuracy of eigen vectors computing for matrix " << src << ": ";
            print_information(i, src, diff, eps_vec);
            CV_Error(CORE_EIGEN_ERROR_DIFF, MESSAGE_ERROR_DIFF_2);
            return false;
        }
    }

    return true;
}

bool Core_EigenTest::test_values(const cv::Mat& src)
{
    int type = src.type();
    double eps_val = type == CV_32FC1 ? eps_val_32 : eps_val_64;

    cv::Mat eigen_values_1, eigen_values_2, eigen_vectors;

    if (!test_pairs(src)) return false;

    cv::eigen(src, eigen_values_1, eigen_vectors);
    cv::eigen(src, eigen_values_2);

    if (!check_pair_count(src, eigen_values_2)) return false;

    for (int i = 0; i < COUNT_NORM_TYPES; ++i)
    {
        double diff = cvtest::norm(eigen_values_1, eigen_values_2, NORM_TYPE[i]);
        if (diff > eps_val)
        {
            std::cout << endl; std::cout << "Checking accuracy of eigen values computing for matrix " << src << ": ";
            print_information(i, src, diff, eps_val);
            CV_Error(CORE_EIGEN_ERROR_DIFF, MESSAGE_ERROR_DIFF_1);
            return false;
        }
    }

    return true;
}

bool Core_EigenTest::check_full(int type)
{
    const int MAX_DEGREE = 7;

    srand((unsigned int)time(0));

    for (int i = 0; i < ntests; ++i)
    {
        int src_size = (int)(std::pow(2.0, (rand()%MAX_DEGREE)+1.));

        cv::Mat src(src_size, src_size, type);

        for (int j = 0; j < src.rows; ++j)
            for (int k = j; k < src.cols; ++k)
                if (type == CV_32FC1)  src.at<float>(k, j) = src.at<float>(j, k) = cv::randu<float>();
        else	src.at<double>(k, j) = src.at<double>(j, k) = cv::randu<double>();

        if (!test_values(src)) return false;
    }

    return true;
}

TEST(Core_Eigen, scalar_32) {Core_EigenTest_Scalar_32 test; test.safe_run(); }
TEST(Core_Eigen, scalar_64) {Core_EigenTest_Scalar_64 test; test.safe_run(); }
TEST(Core_Eigen, vector_32) { Core_EigenTest_32 test; test.safe_run(); }
TEST(Core_Eigen, vector_64) { Core_EigenTest_64 test; test.safe_run(); }