1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
#!/usr/bin/env python
import cv2, re, glob
import numpy as np
import matplotlib.pyplot as plt
from itertools import izip
""" Convert numPy matrices with rectangles and confidences to sorted list of detections."""
def convert2detections(rects, confs, crop_factor = 0.125):
if rects is None:
return []
dts = zip(*[rects.tolist(), confs.tolist()])
dts = zip(dts[0][0], dts[0][1])
dts = [Detection(r,c) for r, c in dts]
dts.sort(lambda x, y : -1 if (x.conf - y.conf) > 0 else 1)
for dt in dts:
dt.crop(crop_factor)
return dts
""" Create new instance of soft cascade."""
def cascade(min_scale, max_scale, nscales, f):
# where we use nms cv::SoftCascadeDetector::DOLLAR == 2
c = cv2.softcascade_Detector(min_scale, max_scale, nscales, 2)
xml = cv2.FileStorage(f, 0)
dom = xml.getFirstTopLevelNode()
assert c.load(dom)
return c
""" Compute prefix sum for en array."""
def cumsum(n):
cum = []
y = 0
for i in n:
y += i
cum.append(y)
return cum
""" Compute x and y arrays for ROC plot."""
def computeROC(confidenses, tp, nannotated, nframes, ignored):
confidenses, tp, ignored = zip(*sorted(zip(confidenses, tp, ignored), reverse = True))
fp = [(1 - x) for x in tp]
fp = [(x - y) for x, y in izip(fp, ignored)]
fp = cumsum(fp)
tp = cumsum(tp)
miss_rate = [(1 - x / (nannotated + 0.000001)) for x in tp]
fppi = [x / float(nframes) for x in fp]
return fppi, miss_rate
""" Crop rectangle by factor."""
def crop_rect(rect, factor):
val_x = factor * float(rect[2])
val_y = factor * float(rect[3])
x = [int(rect[0] + val_x), int(rect[1] + val_y), int(rect[2] - 2.0 * val_x), int(rect[3] - 2.0 * val_y)]
return x
""" Initialize plot axises."""
def initPlot(name):
plt.xlabel("fppi")
plt.ylabel("miss rate")
plt.title(name)
plt.grid(True)
plt.xscale('log')
plt.yscale('log')
""" Draw plot."""
def plotLogLog(fppi, miss_rate, c):
plt.loglog(fppi, miss_rate, color = c, linewidth = 2)
""" Show resulted plot."""
def showPlot(file_name, labels):
plt.axis((pow(10, -3), pow(10, 1), .035, 1))
plt.yticks( [0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.64, 0.8, 1], ['.05', '.10', '.20', '.30', '.40', '.50', '.64', '.80', '1'] )
plt.legend(labels, loc = "lower left")
plt.savefig(file_name)
plt.show()
""" Filter true positives and ignored detections for cascade detector output."""
def match(gts, dts):
matches_gt = [0]*len(gts)
matches_dt = [0]*len(dts)
matches_ignore = [0]*len(dts)
if len(gts) == 0:
return matches_dt, matches_ignore
# Cartesian product for each detection BB_dt with each BB_gt
overlaps = [[dt.overlap(gt) for gt in gts]for dt in dts]
for idx, row in enumerate(overlaps):
imax = row.index(max(row))
# try to match ground truth
if (matches_gt[imax] == 0 and row[imax] > 0.5):
matches_gt[imax] = 1
matches_dt[idx] = 1
for idx, dt in enumerate(dts):
# try to math ignored
if matches_dt[idx] == 0:
row = gts
row = [i for i in row if (i[3] - i[1]) < 53 or (i[3] - i[1]) > 256]
for each in row:
if dts[idx].overlapIgnored(each) > 0.5:
matches_ignore[idx] = 1
return matches_dt, matches_ignore
""" Draw detections or ground truth on image."""
def draw_rects(img, rects, color, l = lambda x, y : x + y):
if rects is not None:
for x1, y1, x2, y2 in rects:
cv2.rectangle(img, (x1, y1), (l(x1, x2), l(y1, y2)), color, 2)
def draw_dt(img, dts, color, l = lambda x, y : x + y):
if dts is not None:
for dt in dts:
bb = dt.bb
x1, y1, x2, y2 = dt.bb[0], dt.bb[1], dt.bb[2], dt.bb[3]
cv2.rectangle(img, (x1, y1), (l(x1, x2), l(y1, y2)), color, 2)
class Detection:
def __init__(self, bb, conf):
self.bb = bb
self.conf = conf
self.matched = False
def crop(self, factor):
self.bb = crop_rect(self.bb, factor)
# we use rect-style for dt and box style for gt. ToDo: fix it
def overlap(self, b):
a = self.bb
w = min( a[0] + a[2], b[2]) - max(a[0], b[0]);
h = min( a[1] + a[3], b[3]) - max(a[1], b[1]);
cross_area = 0.0 if (w < 0 or h < 0) else float(w * h)
union_area = (a[2] * a[3]) + ((b[2] - b[0]) * (b[3] - b[1])) - cross_area;
return cross_area / union_area
# we use rect-style for dt and box style for gt. ToDo: fix it
def overlapIgnored(self, b):
a = self.bb
w = min( a[0] + a[2], b[2]) - max(a[0], b[0]);
h = min( a[1] + a[3], b[3]) - max(a[1], b[1]);
cross_area = 0.0 if (w < 0 or h < 0) else float(w * h)
self_area = (a[2] * a[3]);
return cross_area / self_area
def mark_matched(self):
self.matched = True
"""Parse INPIA annotation format"""
def parse_inria(ipath, f):
bbs = []
path = None
for l in f:
box = None
if l.startswith("Bounding box"):
b = [x.strip() for x in l.split(":")[1].split("-")]
c = [x[1:-1].split(",") for x in b]
d = [int(x) for x in sum(c, [])]
bbs.append(d)
if l.startswith("Image filename"):
path = l.split('"')[-2]
return Sample(path, bbs)
def glob_set(pattern):
return [__n for __n in glob.iglob(pattern)]
""" Parse ETH idl file. """
def parse_idl(f):
map = {}
for l in open(f):
l = re.sub(r"^\"left\/", "{\"", l)
l = re.sub(r"\:", ":[", l)
l = re.sub(r"(\;|\.)$", "]}", l)
map.update(eval(l))
return map
""" Normalize detection box to unified aspect ration."""
def norm_box(box, ratio):
middle = float(box[0] + box[2]) / 2.0
new_half_width = float(box[3] - box[1]) * ratio / 2.0
return (int(round(middle - new_half_width)), box[1], int(round(middle + new_half_width)), box[3])
""" Process array of boxes."""
def norm_acpect_ratio(boxes, ratio):
return [ norm_box(box, ratio) for box in boxes]
""" Filter detections out of extended range. """
def filter_for_range(boxes, scale_range, ext_ratio):
boxes = norm_acpect_ratio(boxes, 0.5)
boxes = [b for b in boxes if (b[3] - b[1]) > scale_range[0] / ext_ratio]
boxes = [b for b in boxes if (b[3] - b[1]) < scale_range[1] * ext_ratio]
return boxes
""" Resize sample for training."""
def resize_sample(image, d_w, d_h):
h, w, _ = image.shape
if (d_h < h) or (d_w < w):
ratio = min(d_h / float(h), d_w / float(w))
kernel_size = int( 5 / (2 * ratio))
sigma = 0.5 / ratio
image_to_resize = cv2.filter2D(image, cv2.CV_8UC3, cv2.getGaussianKernel(kernel_size, sigma))
interpolation_type = cv2.INTER_AREA
else:
image_to_resize = image
interpolation_type = cv2.INTER_CUBIC
return cv2.resize(image_to_resize,(d_w, d_h), None, 0, 0, interpolation_type)
newobj = re.compile("^lbl=\'(\w+)\'\s+str=(\d+)\s+end=(\d+)\s+hide=0$")
class caltech:
@staticmethod
def extract_objects(f):
objects = []
tmp = []
for l in f:
if newobj.match(l) is not None:
objects.append(tmp)
tmp = []
tmp.append(l)
return objects[1:]
@staticmethod
def parse_header(f):
_ = f.readline() # skip first line (version string)
head = f.readline()
(nFrame, nSample) = re.search(r'nFrame=(\d+) n=(\d+)', head).groups()
return (int(nFrame), int(nSample))
@staticmethod
def parse_pos(l):
pos = re.match(r'^posv?\s*=(\[[\d\s\.\;]+\])$', l).group(1)
pos = re.sub(r"(\[)(\d)", "\\1[\\2", pos)
pos = re.sub(r"\s", ", ", re.sub(r"\;\s+(?=\])", "]", re.sub(r"\;\s+(?!\])", "],[", pos)))
return eval(pos)
@staticmethod
def parse_occl(l):
occl = re.match(r'^occl\s*=(\[[\d\s\.\;]+\])$', l).group(1)
occl = re.sub(r"\s(?!\])", ",", occl)
return eval(occl)
def parse_caltech(f):
(nFrame, nSample) = caltech.parse_header(f)
objects = caltech.extract_objects(f)
annotations = [[] for i in range(nFrame)]
for obj in objects:
(type, start, end) = re.search(r'^lbl=\'(\w+)\'\s+str=(\d+)\s+end=(\d+)\s+hide=0$', obj[0]).groups()
print type, start, end
start = int(start) -1
end = int(end)
pos = caltech.parse_pos(obj[1])
posv = caltech.parse_pos(obj[2])
occl = caltech.parse_occl(obj[3])
for idx, (p, pv, oc) in enumerate(zip(*[pos, posv, occl])):
annotations[start + idx].append((type, p, oc, pv))
return annotations