• Roman Donchenko's avatar
    Merge commit '43aec5ad' into merge-2.4 · 2c4bbb31
    Roman Donchenko authored
    Conflicts:
    	cmake/OpenCVConfig.cmake
    	cmake/OpenCVLegacyOptions.cmake
    	modules/contrib/src/retina.cpp
    	modules/gpu/doc/camera_calibration_and_3d_reconstruction.rst
    	modules/gpu/doc/video.rst
    	modules/gpu/src/speckle_filtering.cpp
    	modules/python/src2/cv2.cv.hpp
    	modules/python/test/test2.py
    	samples/python/watershed.py
    2c4bbb31
motion_estimators.cpp 29.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
#include "opencv2/calib3d/calib3d_c.h"
#include "opencv2/core/cvdef.h"

using namespace cv;
using namespace cv::detail;

namespace {

struct IncDistance
{
    IncDistance(std::vector<int> &vdists) : dists(&vdists[0]) {}
    void operator ()(const GraphEdge &edge) { dists[edge.to] = dists[edge.from] + 1; }
    int* dists;
};


struct CalcRotation
{
    CalcRotation(int _num_images, const std::vector<MatchesInfo> &_pairwise_matches, std::vector<CameraParams> &_cameras)
        : num_images(_num_images), pairwise_matches(&_pairwise_matches[0]), cameras(&_cameras[0]) {}

    void operator ()(const GraphEdge &edge)
    {
        int pair_idx = edge.from * num_images + edge.to;

        Mat_<double> K_from = Mat::eye(3, 3, CV_64F);
        K_from(0,0) = cameras[edge.from].focal;
        K_from(1,1) = cameras[edge.from].focal * cameras[edge.from].aspect;
        K_from(0,2) = cameras[edge.from].ppx;
        K_from(1,2) = cameras[edge.from].ppy;

        Mat_<double> K_to = Mat::eye(3, 3, CV_64F);
        K_to(0,0) = cameras[edge.to].focal;
        K_to(1,1) = cameras[edge.to].focal * cameras[edge.to].aspect;
        K_to(0,2) = cameras[edge.to].ppx;
        K_to(1,2) = cameras[edge.to].ppy;

        Mat R = K_from.inv() * pairwise_matches[pair_idx].H.inv() * K_to;
        cameras[edge.to].R = cameras[edge.from].R * R;
    }

    int num_images;
    const MatchesInfo* pairwise_matches;
    CameraParams* cameras;
};


//////////////////////////////////////////////////////////////////////////////

void calcDeriv(const Mat &err1, const Mat &err2, double h, Mat res)
{
    for (int i = 0; i < err1.rows; ++i)
        res.at<double>(i, 0) = (err2.at<double>(i, 0) - err1.at<double>(i, 0)) / h;
}

} // namespace


namespace cv {
namespace detail {

bool HomographyBasedEstimator::estimate(
        const std::vector<ImageFeatures> &features,
        const std::vector<MatchesInfo> &pairwise_matches,
        std::vector<CameraParams> &cameras)
{
    LOGLN("Estimating rotations...");
#if ENABLE_LOG
    int64 t = getTickCount();
#endif

    const int num_images = static_cast<int>(features.size());

#if 0
    // Robustly estimate focal length from rotating cameras
    std::vector<Mat> Hs;
    for (int iter = 0; iter < 100; ++iter)
    {
        int len = 2 + rand()%(pairwise_matches.size() - 1);
        std::vector<int> subset;
        selectRandomSubset(len, pairwise_matches.size(), subset);
        Hs.clear();
        for (size_t i = 0; i < subset.size(); ++i)
            if (!pairwise_matches[subset[i]].H.empty())
                Hs.push_back(pairwise_matches[subset[i]].H);
        Mat_<double> K;
        if (Hs.size() >= 2)
        {
            if (calibrateRotatingCamera(Hs, K))
                cin.get();
        }
    }
#endif

    if (!is_focals_estimated_)
    {
        // Estimate focal length and set it for all cameras
        std::vector<double> focals;
        estimateFocal(features, pairwise_matches, focals);
        cameras.assign(num_images, CameraParams());
        for (int i = 0; i < num_images; ++i)
            cameras[i].focal = focals[i];
    }
    else
    {
        for (int i = 0; i < num_images; ++i)
        {
            cameras[i].ppx -= 0.5 * features[i].img_size.width;
            cameras[i].ppy -= 0.5 * features[i].img_size.height;
        }
    }

    // Restore global motion
    Graph span_tree;
    std::vector<int> span_tree_centers;
    findMaxSpanningTree(num_images, pairwise_matches, span_tree, span_tree_centers);
    span_tree.walkBreadthFirst(span_tree_centers[0], CalcRotation(num_images, pairwise_matches, cameras));

    // As calculations were performed under assumption that p.p. is in image center
    for (int i = 0; i < num_images; ++i)
    {
        cameras[i].ppx += 0.5 * features[i].img_size.width;
        cameras[i].ppy += 0.5 * features[i].img_size.height;
    }

    LOGLN("Estimating rotations, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
    return true;
}


//////////////////////////////////////////////////////////////////////////////

bool BundleAdjusterBase::estimate(const std::vector<ImageFeatures> &features,
                                  const std::vector<MatchesInfo> &pairwise_matches,
                                  std::vector<CameraParams> &cameras)
{
    LOG_CHAT("Bundle adjustment");
#if ENABLE_LOG
    int64 t = getTickCount();
#endif

    num_images_ = static_cast<int>(features.size());
    features_ = &features[0];
    pairwise_matches_ = &pairwise_matches[0];

    setUpInitialCameraParams(cameras);

    // Leave only consistent image pairs
    edges_.clear();
    for (int i = 0; i < num_images_ - 1; ++i)
    {
        for (int j = i + 1; j < num_images_; ++j)
        {
            const MatchesInfo& matches_info = pairwise_matches_[i * num_images_ + j];
            if (matches_info.confidence > conf_thresh_)
                edges_.push_back(std::make_pair(i, j));
        }
    }

    // Compute number of correspondences
    total_num_matches_ = 0;
    for (size_t i = 0; i < edges_.size(); ++i)
        total_num_matches_ += static_cast<int>(pairwise_matches[edges_[i].first * num_images_ +
                                                                edges_[i].second].num_inliers);

    CvLevMarq solver(num_images_ * num_params_per_cam_,
                     total_num_matches_ * num_errs_per_measurement_,
                     term_criteria_);

    Mat err, jac;
    CvMat matParams = cam_params_;
    cvCopy(&matParams, solver.param);

    int iter = 0;
    for(;;)
    {
        const CvMat* _param = 0;
        CvMat* _jac = 0;
        CvMat* _err = 0;

        bool proceed = solver.update(_param, _jac, _err);

        cvCopy(_param, &matParams);

        if (!proceed || !_err)
            break;

        if (_jac)
        {
            calcJacobian(jac);
            CvMat tmp = jac;
            cvCopy(&tmp, _jac);
        }

        if (_err)
        {
            calcError(err);
            LOG_CHAT(".");
            iter++;
            CvMat tmp = err;
            cvCopy(&tmp, _err);
        }
    }

    LOGLN_CHAT("");
    LOGLN_CHAT("Bundle adjustment, final RMS error: " << std::sqrt(err.dot(err) / total_num_matches_));
    LOGLN_CHAT("Bundle adjustment, iterations done: " << iter);

    // Check if all camera parameters are valid
    bool ok = true;
    for (int i = 0; i < cam_params_.rows; ++i)
    {
        if (cvIsNaN(cam_params_.at<double>(i,0)))
        {
            ok = false;
            break;
        }
    }
    if (!ok)
        return false;

    obtainRefinedCameraParams(cameras);

    // Normalize motion to center image
    Graph span_tree;
    std::vector<int> span_tree_centers;
    findMaxSpanningTree(num_images_, pairwise_matches, span_tree, span_tree_centers);
    Mat R_inv = cameras[span_tree_centers[0]].R.inv();
    for (int i = 0; i < num_images_; ++i)
        cameras[i].R = R_inv * cameras[i].R;

    LOGLN_CHAT("Bundle adjustment, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
    return true;
}


//////////////////////////////////////////////////////////////////////////////

void BundleAdjusterReproj::setUpInitialCameraParams(const std::vector<CameraParams> &cameras)
{
    cam_params_.create(num_images_ * 7, 1, CV_64F);
    SVD svd;
    for (int i = 0; i < num_images_; ++i)
    {
        cam_params_.at<double>(i * 7, 0) = cameras[i].focal;
        cam_params_.at<double>(i * 7 + 1, 0) = cameras[i].ppx;
        cam_params_.at<double>(i * 7 + 2, 0) = cameras[i].ppy;
        cam_params_.at<double>(i * 7 + 3, 0) = cameras[i].aspect;

        svd(cameras[i].R, SVD::FULL_UV);
        Mat R = svd.u * svd.vt;
        if (determinant(R) < 0)
            R *= -1;

        Mat rvec;
        Rodrigues(R, rvec);
        CV_Assert(rvec.type() == CV_32F);
        cam_params_.at<double>(i * 7 + 4, 0) = rvec.at<float>(0, 0);
        cam_params_.at<double>(i * 7 + 5, 0) = rvec.at<float>(1, 0);
        cam_params_.at<double>(i * 7 + 6, 0) = rvec.at<float>(2, 0);
    }
}


void BundleAdjusterReproj::obtainRefinedCameraParams(std::vector<CameraParams> &cameras) const
{
    for (int i = 0; i < num_images_; ++i)
    {
        cameras[i].focal = cam_params_.at<double>(i * 7, 0);
        cameras[i].ppx = cam_params_.at<double>(i * 7 + 1, 0);
        cameras[i].ppy = cam_params_.at<double>(i * 7 + 2, 0);
        cameras[i].aspect = cam_params_.at<double>(i * 7 + 3, 0);

        Mat rvec(3, 1, CV_64F);
        rvec.at<double>(0, 0) = cam_params_.at<double>(i * 7 + 4, 0);
        rvec.at<double>(1, 0) = cam_params_.at<double>(i * 7 + 5, 0);
        rvec.at<double>(2, 0) = cam_params_.at<double>(i * 7 + 6, 0);
        Rodrigues(rvec, cameras[i].R);

        Mat tmp;
        cameras[i].R.convertTo(tmp, CV_32F);
        cameras[i].R = tmp;
    }
}


void BundleAdjusterReproj::calcError(Mat &err)
{
    err.create(total_num_matches_ * 2, 1, CV_64F);

    int match_idx = 0;
    for (size_t edge_idx = 0; edge_idx < edges_.size(); ++edge_idx)
    {
        int i = edges_[edge_idx].first;
        int j = edges_[edge_idx].second;
        double f1 = cam_params_.at<double>(i * 7, 0);
        double f2 = cam_params_.at<double>(j * 7, 0);
        double ppx1 = cam_params_.at<double>(i * 7 + 1, 0);
        double ppx2 = cam_params_.at<double>(j * 7 + 1, 0);
        double ppy1 = cam_params_.at<double>(i * 7 + 2, 0);
        double ppy2 = cam_params_.at<double>(j * 7 + 2, 0);
        double a1 = cam_params_.at<double>(i * 7 + 3, 0);
        double a2 = cam_params_.at<double>(j * 7 + 3, 0);

        double R1[9];
        Mat R1_(3, 3, CV_64F, R1);
        Mat rvec(3, 1, CV_64F);
        rvec.at<double>(0, 0) = cam_params_.at<double>(i * 7 + 4, 0);
        rvec.at<double>(1, 0) = cam_params_.at<double>(i * 7 + 5, 0);
        rvec.at<double>(2, 0) = cam_params_.at<double>(i * 7 + 6, 0);
        Rodrigues(rvec, R1_);

        double R2[9];
        Mat R2_(3, 3, CV_64F, R2);
        rvec.at<double>(0, 0) = cam_params_.at<double>(j * 7 + 4, 0);
        rvec.at<double>(1, 0) = cam_params_.at<double>(j * 7 + 5, 0);
        rvec.at<double>(2, 0) = cam_params_.at<double>(j * 7 + 6, 0);
        Rodrigues(rvec, R2_);

        const ImageFeatures& features1 = features_[i];
        const ImageFeatures& features2 = features_[j];
        const MatchesInfo& matches_info = pairwise_matches_[i * num_images_ + j];

        Mat_<double> K1 = Mat::eye(3, 3, CV_64F);
        K1(0,0) = f1; K1(0,2) = ppx1;
        K1(1,1) = f1*a1; K1(1,2) = ppy1;

        Mat_<double> K2 = Mat::eye(3, 3, CV_64F);
        K2(0,0) = f2; K2(0,2) = ppx2;
        K2(1,1) = f2*a2; K2(1,2) = ppy2;

        Mat_<double> H = K2 * R2_.inv() * R1_ * K1.inv();

        for (size_t k = 0; k < matches_info.matches.size(); ++k)
        {
            if (!matches_info.inliers_mask[k])
                continue;

            const DMatch& m = matches_info.matches[k];
            Point2f p1 = features1.keypoints[m.queryIdx].pt;
            Point2f p2 = features2.keypoints[m.trainIdx].pt;
            double x = H(0,0)*p1.x + H(0,1)*p1.y + H(0,2);
            double y = H(1,0)*p1.x + H(1,1)*p1.y + H(1,2);
            double z = H(2,0)*p1.x + H(2,1)*p1.y + H(2,2);

            err.at<double>(2 * match_idx, 0) = p2.x - x/z;
            err.at<double>(2 * match_idx + 1, 0) = p2.y - y/z;
            match_idx++;
        }
    }
}


void BundleAdjusterReproj::calcJacobian(Mat &jac)
{
    jac.create(total_num_matches_ * 2, num_images_ * 7, CV_64F);
    jac.setTo(0);

    double val;
    const double step = 1e-4;

    for (int i = 0; i < num_images_; ++i)
    {
        if (refinement_mask_.at<uchar>(0, 0))
        {
            val = cam_params_.at<double>(i * 7, 0);
            cam_params_.at<double>(i * 7, 0) = val - step;
            calcError(err1_);
            cam_params_.at<double>(i * 7, 0) = val + step;
            calcError(err2_);
            calcDeriv(err1_, err2_, 2 * step, jac.col(i * 7));
            cam_params_.at<double>(i * 7, 0) = val;
        }
        if (refinement_mask_.at<uchar>(0, 2))
        {
            val = cam_params_.at<double>(i * 7 + 1, 0);
            cam_params_.at<double>(i * 7 + 1, 0) = val - step;
            calcError(err1_);
            cam_params_.at<double>(i * 7 + 1, 0) = val + step;
            calcError(err2_);
            calcDeriv(err1_, err2_, 2 * step, jac.col(i * 7 + 1));
            cam_params_.at<double>(i * 7 + 1, 0) = val;
        }
        if (refinement_mask_.at<uchar>(1, 2))
        {
            val = cam_params_.at<double>(i * 7 + 2, 0);
            cam_params_.at<double>(i * 7 + 2, 0) = val - step;
            calcError(err1_);
            cam_params_.at<double>(i * 7 + 2, 0) = val + step;
            calcError(err2_);
            calcDeriv(err1_, err2_, 2 * step, jac.col(i * 7 + 2));
            cam_params_.at<double>(i * 7 + 2, 0) = val;
        }
        if (refinement_mask_.at<uchar>(1, 1))
        {
            val = cam_params_.at<double>(i * 7 + 3, 0);
            cam_params_.at<double>(i * 7 + 3, 0) = val - step;
            calcError(err1_);
            cam_params_.at<double>(i * 7 + 3, 0) = val + step;
            calcError(err2_);
            calcDeriv(err1_, err2_, 2 * step, jac.col(i * 7 + 3));
            cam_params_.at<double>(i * 7 + 3, 0) = val;
        }
        for (int j = 4; j < 7; ++j)
        {
            val = cam_params_.at<double>(i * 7 + j, 0);
            cam_params_.at<double>(i * 7 + j, 0) = val - step;
            calcError(err1_);
            cam_params_.at<double>(i * 7 + j, 0) = val + step;
            calcError(err2_);
            calcDeriv(err1_, err2_, 2 * step, jac.col(i * 7 + j));
            cam_params_.at<double>(i * 7 + j, 0) = val;
        }
    }
}


//////////////////////////////////////////////////////////////////////////////

void BundleAdjusterRay::setUpInitialCameraParams(const std::vector<CameraParams> &cameras)
{
    cam_params_.create(num_images_ * 4, 1, CV_64F);
    SVD svd;
    for (int i = 0; i < num_images_; ++i)
    {
        cam_params_.at<double>(i * 4, 0) = cameras[i].focal;

        svd(cameras[i].R, SVD::FULL_UV);
        Mat R = svd.u * svd.vt;
        if (determinant(R) < 0)
            R *= -1;

        Mat rvec;
        Rodrigues(R, rvec);
        CV_Assert(rvec.type() == CV_32F);
        cam_params_.at<double>(i * 4 + 1, 0) = rvec.at<float>(0, 0);
        cam_params_.at<double>(i * 4 + 2, 0) = rvec.at<float>(1, 0);
        cam_params_.at<double>(i * 4 + 3, 0) = rvec.at<float>(2, 0);
    }
}


void BundleAdjusterRay::obtainRefinedCameraParams(std::vector<CameraParams> &cameras) const
{
    for (int i = 0; i < num_images_; ++i)
    {
        cameras[i].focal = cam_params_.at<double>(i * 4, 0);

        Mat rvec(3, 1, CV_64F);
        rvec.at<double>(0, 0) = cam_params_.at<double>(i * 4 + 1, 0);
        rvec.at<double>(1, 0) = cam_params_.at<double>(i * 4 + 2, 0);
        rvec.at<double>(2, 0) = cam_params_.at<double>(i * 4 + 3, 0);
        Rodrigues(rvec, cameras[i].R);

        Mat tmp;
        cameras[i].R.convertTo(tmp, CV_32F);
        cameras[i].R = tmp;
    }
}


void BundleAdjusterRay::calcError(Mat &err)
{
    err.create(total_num_matches_ * 3, 1, CV_64F);

    int match_idx = 0;
    for (size_t edge_idx = 0; edge_idx < edges_.size(); ++edge_idx)
    {
        int i = edges_[edge_idx].first;
        int j = edges_[edge_idx].second;
        double f1 = cam_params_.at<double>(i * 4, 0);
        double f2 = cam_params_.at<double>(j * 4, 0);

        double R1[9];
        Mat R1_(3, 3, CV_64F, R1);
        Mat rvec(3, 1, CV_64F);
        rvec.at<double>(0, 0) = cam_params_.at<double>(i * 4 + 1, 0);
        rvec.at<double>(1, 0) = cam_params_.at<double>(i * 4 + 2, 0);
        rvec.at<double>(2, 0) = cam_params_.at<double>(i * 4 + 3, 0);
        Rodrigues(rvec, R1_);

        double R2[9];
        Mat R2_(3, 3, CV_64F, R2);
        rvec.at<double>(0, 0) = cam_params_.at<double>(j * 4 + 1, 0);
        rvec.at<double>(1, 0) = cam_params_.at<double>(j * 4 + 2, 0);
        rvec.at<double>(2, 0) = cam_params_.at<double>(j * 4 + 3, 0);
        Rodrigues(rvec, R2_);

        const ImageFeatures& features1 = features_[i];
        const ImageFeatures& features2 = features_[j];
        const MatchesInfo& matches_info = pairwise_matches_[i * num_images_ + j];

        Mat_<double> K1 = Mat::eye(3, 3, CV_64F);
        K1(0,0) = f1; K1(0,2) = features1.img_size.width * 0.5;
        K1(1,1) = f1; K1(1,2) = features1.img_size.height * 0.5;

        Mat_<double> K2 = Mat::eye(3, 3, CV_64F);
        K2(0,0) = f2; K2(0,2) = features2.img_size.width * 0.5;
        K2(1,1) = f2; K2(1,2) = features2.img_size.height * 0.5;

        Mat_<double> H1 = R1_ * K1.inv();
        Mat_<double> H2 = R2_ * K2.inv();

        for (size_t k = 0; k < matches_info.matches.size(); ++k)
        {
            if (!matches_info.inliers_mask[k])
                continue;

            const DMatch& m = matches_info.matches[k];

            Point2f p1 = features1.keypoints[m.queryIdx].pt;
            double x1 = H1(0,0)*p1.x + H1(0,1)*p1.y + H1(0,2);
            double y1 = H1(1,0)*p1.x + H1(1,1)*p1.y + H1(1,2);
            double z1 = H1(2,0)*p1.x + H1(2,1)*p1.y + H1(2,2);
            double len = std::sqrt(x1*x1 + y1*y1 + z1*z1);
            x1 /= len; y1 /= len; z1 /= len;

            Point2f p2 = features2.keypoints[m.trainIdx].pt;
            double x2 = H2(0,0)*p2.x + H2(0,1)*p2.y + H2(0,2);
            double y2 = H2(1,0)*p2.x + H2(1,1)*p2.y + H2(1,2);
            double z2 = H2(2,0)*p2.x + H2(2,1)*p2.y + H2(2,2);
            len = std::sqrt(x2*x2 + y2*y2 + z2*z2);
            x2 /= len; y2 /= len; z2 /= len;

            double mult = std::sqrt(f1 * f2);
            err.at<double>(3 * match_idx, 0) = mult * (x1 - x2);
            err.at<double>(3 * match_idx + 1, 0) = mult * (y1 - y2);
            err.at<double>(3 * match_idx + 2, 0) = mult * (z1 - z2);

            match_idx++;
        }
    }
}


void BundleAdjusterRay::calcJacobian(Mat &jac)
{
    jac.create(total_num_matches_ * 3, num_images_ * 4, CV_64F);

    double val;
    const double step = 1e-3;

    for (int i = 0; i < num_images_; ++i)
    {
        for (int j = 0; j < 4; ++j)
        {
            val = cam_params_.at<double>(i * 4 + j, 0);
            cam_params_.at<double>(i * 4 + j, 0) = val - step;
            calcError(err1_);
            cam_params_.at<double>(i * 4 + j, 0) = val + step;
            calcError(err2_);
            calcDeriv(err1_, err2_, 2 * step, jac.col(i * 4 + j));
            cam_params_.at<double>(i * 4 + j, 0) = val;
        }
    }
}


//////////////////////////////////////////////////////////////////////////////

void waveCorrect(std::vector<Mat> &rmats, WaveCorrectKind kind)
{
    LOGLN("Wave correcting...");
#if ENABLE_LOG
    int64 t = getTickCount();
#endif

    Mat moment = Mat::zeros(3, 3, CV_32F);
    for (size_t i = 0; i < rmats.size(); ++i)
    {
        Mat col = rmats[i].col(0);
        moment += col * col.t();
    }
    Mat eigen_vals, eigen_vecs;
    eigen(moment, eigen_vals, eigen_vecs);

    Mat rg1;
    if (kind == WAVE_CORRECT_HORIZ)
        rg1 = eigen_vecs.row(2).t();
    else if (kind == WAVE_CORRECT_VERT)
        rg1 = eigen_vecs.row(0).t();
    else
        CV_Error(CV_StsBadArg, "unsupported kind of wave correction");

    Mat img_k = Mat::zeros(3, 1, CV_32F);
    for (size_t i = 0; i < rmats.size(); ++i)
        img_k += rmats[i].col(2);
    Mat rg0 = rg1.cross(img_k);
    rg0 /= norm(rg0);

    Mat rg2 = rg0.cross(rg1);

    double conf = 0;
    if (kind == WAVE_CORRECT_HORIZ)
    {
        for (size_t i = 0; i < rmats.size(); ++i)
            conf += rg0.dot(rmats[i].col(0));
        if (conf < 0)
        {
            rg0 *= -1;
            rg1 *= -1;
        }
    }
    else if (kind == WAVE_CORRECT_VERT)
    {
        for (size_t i = 0; i < rmats.size(); ++i)
            conf -= rg1.dot(rmats[i].col(0));
        if (conf < 0)
        {
            rg0 *= -1;
            rg1 *= -1;
        }
    }

    Mat R = Mat::zeros(3, 3, CV_32F);
    Mat tmp = R.row(0);
    Mat(rg0.t()).copyTo(tmp);
    tmp = R.row(1);
    Mat(rg1.t()).copyTo(tmp);
    tmp = R.row(2);
    Mat(rg2.t()).copyTo(tmp);

    for (size_t i = 0; i < rmats.size(); ++i)
        rmats[i] = R * rmats[i];

    LOGLN("Wave correcting, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
}


//////////////////////////////////////////////////////////////////////////////

String matchesGraphAsString(std::vector<String> &pathes, std::vector<MatchesInfo> &pairwise_matches,
                                float conf_threshold)
{
    std::stringstream str;
    str << "graph matches_graph{\n";

    const int num_images = static_cast<int>(pathes.size());
    std::set<std::pair<int,int> > span_tree_edges;
    DisjointSets comps(num_images);

    for (int i = 0; i < num_images; ++i)
    {
        for (int j = 0; j < num_images; ++j)
        {
            if (pairwise_matches[i*num_images + j].confidence < conf_threshold)
                continue;
            int comp1 = comps.findSetByElem(i);
            int comp2 = comps.findSetByElem(j);
            if (comp1 != comp2)
            {
                comps.mergeSets(comp1, comp2);
                span_tree_edges.insert(std::make_pair(i, j));
            }
        }
    }

    for (std::set<std::pair<int,int> >::const_iterator itr = span_tree_edges.begin();
         itr != span_tree_edges.end(); ++itr)
    {
        std::pair<int,int> edge = *itr;
        if (span_tree_edges.find(edge) != span_tree_edges.end())
        {
            String name_src = pathes[edge.first];
            size_t prefix_len = name_src.find_last_of("/\\");
            if (prefix_len != String::npos) prefix_len++; else prefix_len = 0;
            name_src = name_src.substr(prefix_len, name_src.size() - prefix_len);

            String name_dst = pathes[edge.second];
            prefix_len = name_dst.find_last_of("/\\");
            if (prefix_len != String::npos) prefix_len++; else prefix_len = 0;
            name_dst = name_dst.substr(prefix_len, name_dst.size() - prefix_len);

            int pos = edge.first*num_images + edge.second;
            str << "\"" << name_src.c_str() << "\" -- \"" << name_dst.c_str() << "\""
                << "[label=\"Nm=" << pairwise_matches[pos].matches.size()
                << ", Ni=" << pairwise_matches[pos].num_inliers
                << ", C=" << pairwise_matches[pos].confidence << "\"];\n";
        }
    }

    for (size_t i = 0; i < comps.size.size(); ++i)
    {
        if (comps.size[comps.findSetByElem((int)i)] == 1)
        {
            String name = pathes[i];
            size_t prefix_len = name.find_last_of("/\\");
            if (prefix_len != String::npos) prefix_len++; else prefix_len = 0;
            name = name.substr(prefix_len, name.size() - prefix_len);
            str << "\"" << name.c_str() << "\";\n";
        }
    }

    str << "}";
    return str.str().c_str();
}

std::vector<int> leaveBiggestComponent(std::vector<ImageFeatures> &features,  std::vector<MatchesInfo> &pairwise_matches,
                                      float conf_threshold)
{
    const int num_images = static_cast<int>(features.size());

    DisjointSets comps(num_images);
    for (int i = 0; i < num_images; ++i)
    {
        for (int j = 0; j < num_images; ++j)
        {
            if (pairwise_matches[i*num_images + j].confidence < conf_threshold)
                continue;
            int comp1 = comps.findSetByElem(i);
            int comp2 = comps.findSetByElem(j);
            if (comp1 != comp2)
                comps.mergeSets(comp1, comp2);
        }
    }

    int max_comp = static_cast<int>(std::max_element(comps.size.begin(), comps.size.end()) - comps.size.begin());

    std::vector<int> indices;
    std::vector<int> indices_removed;
    for (int i = 0; i < num_images; ++i)
        if (comps.findSetByElem(i) == max_comp)
            indices.push_back(i);
        else
            indices_removed.push_back(i);

    std::vector<ImageFeatures> features_subset;
    std::vector<MatchesInfo> pairwise_matches_subset;
    for (size_t i = 0; i < indices.size(); ++i)
    {
        features_subset.push_back(features[indices[i]]);
        for (size_t j = 0; j < indices.size(); ++j)
        {
            pairwise_matches_subset.push_back(pairwise_matches[indices[i]*num_images + indices[j]]);
            pairwise_matches_subset.back().src_img_idx = static_cast<int>(i);
            pairwise_matches_subset.back().dst_img_idx = static_cast<int>(j);
        }
    }

    if (static_cast<int>(features_subset.size()) == num_images)
        return indices;

    LOG("Removed some images, because can't match them or there are too similar images: (");
    LOG(indices_removed[0] + 1);
    for (size_t i = 1; i < indices_removed.size(); ++i)
        LOG(", " << indices_removed[i]+1);
    LOGLN(").");
    LOGLN("Try to decrease the match confidence threshold and/or check if you're stitching duplicates.");

    features = features_subset;
    pairwise_matches = pairwise_matches_subset;

    return indices;
}


void findMaxSpanningTree(int num_images, const std::vector<MatchesInfo> &pairwise_matches,
                             Graph &span_tree, std::vector<int> &centers)
{
    Graph graph(num_images);
    std::vector<GraphEdge> edges;

    // Construct images graph and remember its edges
    for (int i = 0; i < num_images; ++i)
    {
        for (int j = 0; j < num_images; ++j)
        {
            if (pairwise_matches[i * num_images + j].H.empty())
                continue;
            float conf = static_cast<float>(pairwise_matches[i * num_images + j].num_inliers);
            graph.addEdge(i, j, conf);
            edges.push_back(GraphEdge(i, j, conf));
        }
    }

    DisjointSets comps(num_images);
    span_tree.create(num_images);
    std::vector<int> span_tree_powers(num_images, 0);

    // Find maximum spanning tree
    sort(edges.begin(), edges.end(), std::greater<GraphEdge>());
    for (size_t i = 0; i < edges.size(); ++i)
    {
        int comp1 = comps.findSetByElem(edges[i].from);
        int comp2 = comps.findSetByElem(edges[i].to);
        if (comp1 != comp2)
        {
            comps.mergeSets(comp1, comp2);
            span_tree.addEdge(edges[i].from, edges[i].to, edges[i].weight);
            span_tree.addEdge(edges[i].to, edges[i].from, edges[i].weight);
            span_tree_powers[edges[i].from]++;
            span_tree_powers[edges[i].to]++;
        }
    }

    // Find spanning tree leafs
    std::vector<int> span_tree_leafs;
    for (int i = 0; i < num_images; ++i)
        if (span_tree_powers[i] == 1)
            span_tree_leafs.push_back(i);

    // Find maximum distance from each spanning tree vertex
    std::vector<int> max_dists(num_images, 0);
    std::vector<int> cur_dists;
    for (size_t i = 0; i < span_tree_leafs.size(); ++i)
    {
        cur_dists.assign(num_images, 0);
        span_tree.walkBreadthFirst(span_tree_leafs[i], IncDistance(cur_dists));
        for (int j = 0; j < num_images; ++j)
            max_dists[j] = std::max(max_dists[j], cur_dists[j]);
    }

    // Find min-max distance
    int min_max_dist = max_dists[0];
    for (int i = 1; i < num_images; ++i)
        if (min_max_dist > max_dists[i])
            min_max_dist = max_dists[i];

    // Find spanning tree centers
    centers.clear();
    for (int i = 0; i < num_images; ++i)
        if (max_dists[i] == min_max_dist)
            centers.push_back(i);
    CV_Assert(centers.size() > 0 && centers.size() <= 2);
}

} // namespace detail
} // namespace cv