dlar1v.c 12.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
/* dlar1v.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "clapack.h"


/* Subroutine */ int dlar1v_(integer *n, integer *b1, integer *bn, doublereal 
	*lambda, doublereal *d__, doublereal *l, doublereal *ld, doublereal *
	lld, doublereal *pivmin, doublereal *gaptol, doublereal *z__, logical 
	*wantnc, integer *negcnt, doublereal *ztz, doublereal *mingma, 
	integer *r__, integer *isuppz, doublereal *nrminv, doublereal *resid, 
	doublereal *rqcorr, doublereal *work)
{
    /* System generated locals */
    integer i__1;
    doublereal d__1, d__2, d__3;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer i__;
    doublereal s;
    integer r1, r2;
    doublereal eps, tmp;
    integer neg1, neg2, indp, inds;
    doublereal dplus;
    extern doublereal dlamch_(char *);
    extern logical disnan_(doublereal *);
    integer indlpl, indumn;
    doublereal dminus;
    logical sawnan1, sawnan2;


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DLAR1V computes the (scaled) r-th column of the inverse of */
/*  the sumbmatrix in rows B1 through BN of the tridiagonal matrix */
/*  L D L^T - sigma I. When sigma is close to an eigenvalue, the */
/*  computed vector is an accurate eigenvector. Usually, r corresponds */
/*  to the index where the eigenvector is largest in magnitude. */
/*  The following steps accomplish this computation : */
/*  (a) Stationary qd transform,  L D L^T - sigma I = L(+) D(+) L(+)^T, */
/*  (b) Progressive qd transform, L D L^T - sigma I = U(-) D(-) U(-)^T, */
/*  (c) Computation of the diagonal elements of the inverse of */
/*      L D L^T - sigma I by combining the above transforms, and choosing */
/*      r as the index where the diagonal of the inverse is (one of the) */
/*      largest in magnitude. */
/*  (d) Computation of the (scaled) r-th column of the inverse using the */
/*      twisted factorization obtained by combining the top part of the */
/*      the stationary and the bottom part of the progressive transform. */

/*  Arguments */
/*  ========= */

/*  N        (input) INTEGER */
/*           The order of the matrix L D L^T. */

/*  B1       (input) INTEGER */
/*           First index of the submatrix of L D L^T. */

/*  BN       (input) INTEGER */
/*           Last index of the submatrix of L D L^T. */

/*  LAMBDA    (input) DOUBLE PRECISION */
/*           The shift. In order to compute an accurate eigenvector, */
/*           LAMBDA should be a good approximation to an eigenvalue */
/*           of L D L^T. */

/*  L        (input) DOUBLE PRECISION array, dimension (N-1) */
/*           The (n-1) subdiagonal elements of the unit bidiagonal matrix */
/*           L, in elements 1 to N-1. */

/*  D        (input) DOUBLE PRECISION array, dimension (N) */
/*           The n diagonal elements of the diagonal matrix D. */

/*  LD       (input) DOUBLE PRECISION array, dimension (N-1) */
/*           The n-1 elements L(i)*D(i). */

/*  LLD      (input) DOUBLE PRECISION array, dimension (N-1) */
/*           The n-1 elements L(i)*L(i)*D(i). */

/*  PIVMIN   (input) DOUBLE PRECISION */
/*           The minimum pivot in the Sturm sequence. */

/*  GAPTOL   (input) DOUBLE PRECISION */
/*           Tolerance that indicates when eigenvector entries are negligible */
/*           w.r.t. their contribution to the residual. */

/*  Z        (input/output) DOUBLE PRECISION array, dimension (N) */
/*           On input, all entries of Z must be set to 0. */
/*           On output, Z contains the (scaled) r-th column of the */
/*           inverse. The scaling is such that Z(R) equals 1. */

/*  WANTNC   (input) LOGICAL */
/*           Specifies whether NEGCNT has to be computed. */

/*  NEGCNT   (output) INTEGER */
/*           If WANTNC is .TRUE. then NEGCNT = the number of pivots < pivmin */
/*           in the  matrix factorization L D L^T, and NEGCNT = -1 otherwise. */

/*  ZTZ      (output) DOUBLE PRECISION */
/*           The square of the 2-norm of Z. */

/*  MINGMA   (output) DOUBLE PRECISION */
/*           The reciprocal of the largest (in magnitude) diagonal */
/*           element of the inverse of L D L^T - sigma I. */

/*  R        (input/output) INTEGER */
/*           The twist index for the twisted factorization used to */
/*           compute Z. */
/*           On input, 0 <= R <= N. If R is input as 0, R is set to */
/*           the index where (L D L^T - sigma I)^{-1} is largest */
/*           in magnitude. If 1 <= R <= N, R is unchanged. */
/*           On output, R contains the twist index used to compute Z. */
/*           Ideally, R designates the position of the maximum entry in the */
/*           eigenvector. */

/*  ISUPPZ   (output) INTEGER array, dimension (2) */
/*           The support of the vector in Z, i.e., the vector Z is */
/*           nonzero only in elements ISUPPZ(1) through ISUPPZ( 2 ). */

/*  NRMINV   (output) DOUBLE PRECISION */
/*           NRMINV = 1/SQRT( ZTZ ) */

/*  RESID    (output) DOUBLE PRECISION */
/*           The residual of the FP vector. */
/*           RESID = ABS( MINGMA )/SQRT( ZTZ ) */

/*  RQCORR   (output) DOUBLE PRECISION */
/*           The Rayleigh Quotient correction to LAMBDA. */
/*           RQCORR = MINGMA*TMP */

/*  WORK     (workspace) DOUBLE PRECISION array, dimension (4*N) */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Beresford Parlett, University of California, Berkeley, USA */
/*     Jim Demmel, University of California, Berkeley, USA */
/*     Inderjit Dhillon, University of Texas, Austin, USA */
/*     Osni Marques, LBNL/NERSC, USA */
/*     Christof Voemel, University of California, Berkeley, USA */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    --work;
    --isuppz;
    --z__;
    --lld;
    --ld;
    --l;
    --d__;

    /* Function Body */
    eps = dlamch_("Precision");
    if (*r__ == 0) {
	r1 = *b1;
	r2 = *bn;
    } else {
	r1 = *r__;
	r2 = *r__;
    }
/*     Storage for LPLUS */
    indlpl = 0;
/*     Storage for UMINUS */
    indumn = *n;
    inds = (*n << 1) + 1;
    indp = *n * 3 + 1;
    if (*b1 == 1) {
	work[inds] = 0.;
    } else {
	work[inds + *b1 - 1] = lld[*b1 - 1];
    }

/*     Compute the stationary transform (using the differential form) */
/*     until the index R2. */

    sawnan1 = FALSE_;
    neg1 = 0;
    s = work[inds + *b1 - 1] - *lambda;
    i__1 = r1 - 1;
    for (i__ = *b1; i__ <= i__1; ++i__) {
	dplus = d__[i__] + s;
	work[indlpl + i__] = ld[i__] / dplus;
	if (dplus < 0.) {
	    ++neg1;
	}
	work[inds + i__] = s * work[indlpl + i__] * l[i__];
	s = work[inds + i__] - *lambda;
/* L50: */
    }
    sawnan1 = disnan_(&s);
    if (sawnan1) {
	goto L60;
    }
    i__1 = r2 - 1;
    for (i__ = r1; i__ <= i__1; ++i__) {
	dplus = d__[i__] + s;
	work[indlpl + i__] = ld[i__] / dplus;
	work[inds + i__] = s * work[indlpl + i__] * l[i__];
	s = work[inds + i__] - *lambda;
/* L51: */
    }
    sawnan1 = disnan_(&s);

L60:
    if (sawnan1) {
/*        Runs a slower version of the above loop if a NaN is detected */
	neg1 = 0;
	s = work[inds + *b1 - 1] - *lambda;
	i__1 = r1 - 1;
	for (i__ = *b1; i__ <= i__1; ++i__) {
	    dplus = d__[i__] + s;
	    if (abs(dplus) < *pivmin) {
		dplus = -(*pivmin);
	    }
	    work[indlpl + i__] = ld[i__] / dplus;
	    if (dplus < 0.) {
		++neg1;
	    }
	    work[inds + i__] = s * work[indlpl + i__] * l[i__];
	    if (work[indlpl + i__] == 0.) {
		work[inds + i__] = lld[i__];
	    }
	    s = work[inds + i__] - *lambda;
/* L70: */
	}
	i__1 = r2 - 1;
	for (i__ = r1; i__ <= i__1; ++i__) {
	    dplus = d__[i__] + s;
	    if (abs(dplus) < *pivmin) {
		dplus = -(*pivmin);
	    }
	    work[indlpl + i__] = ld[i__] / dplus;
	    work[inds + i__] = s * work[indlpl + i__] * l[i__];
	    if (work[indlpl + i__] == 0.) {
		work[inds + i__] = lld[i__];
	    }
	    s = work[inds + i__] - *lambda;
/* L71: */
	}
    }

/*     Compute the progressive transform (using the differential form) */
/*     until the index R1 */

    sawnan2 = FALSE_;
    neg2 = 0;
    work[indp + *bn - 1] = d__[*bn] - *lambda;
    i__1 = r1;
    for (i__ = *bn - 1; i__ >= i__1; --i__) {
	dminus = lld[i__] + work[indp + i__];
	tmp = d__[i__] / dminus;
	if (dminus < 0.) {
	    ++neg2;
	}
	work[indumn + i__] = l[i__] * tmp;
	work[indp + i__ - 1] = work[indp + i__] * tmp - *lambda;
/* L80: */
    }
    tmp = work[indp + r1 - 1];
    sawnan2 = disnan_(&tmp);
    if (sawnan2) {
/*        Runs a slower version of the above loop if a NaN is detected */
	neg2 = 0;
	i__1 = r1;
	for (i__ = *bn - 1; i__ >= i__1; --i__) {
	    dminus = lld[i__] + work[indp + i__];
	    if (abs(dminus) < *pivmin) {
		dminus = -(*pivmin);
	    }
	    tmp = d__[i__] / dminus;
	    if (dminus < 0.) {
		++neg2;
	    }
	    work[indumn + i__] = l[i__] * tmp;
	    work[indp + i__ - 1] = work[indp + i__] * tmp - *lambda;
	    if (tmp == 0.) {
		work[indp + i__ - 1] = d__[i__] - *lambda;
	    }
/* L100: */
	}
    }

/*     Find the index (from R1 to R2) of the largest (in magnitude) */
/*     diagonal element of the inverse */

    *mingma = work[inds + r1 - 1] + work[indp + r1 - 1];
    if (*mingma < 0.) {
	++neg1;
    }
    if (*wantnc) {
	*negcnt = neg1 + neg2;
    } else {
	*negcnt = -1;
    }
    if (abs(*mingma) == 0.) {
	*mingma = eps * work[inds + r1 - 1];
    }
    *r__ = r1;
    i__1 = r2 - 1;
    for (i__ = r1; i__ <= i__1; ++i__) {
	tmp = work[inds + i__] + work[indp + i__];
	if (tmp == 0.) {
	    tmp = eps * work[inds + i__];
	}
	if (abs(tmp) <= abs(*mingma)) {
	    *mingma = tmp;
	    *r__ = i__ + 1;
	}
/* L110: */
    }

/*     Compute the FP vector: solve N^T v = e_r */

    isuppz[1] = *b1;
    isuppz[2] = *bn;
    z__[*r__] = 1.;
    *ztz = 1.;

/*     Compute the FP vector upwards from R */

    if (! sawnan1 && ! sawnan2) {
	i__1 = *b1;
	for (i__ = *r__ - 1; i__ >= i__1; --i__) {
	    z__[i__] = -(work[indlpl + i__] * z__[i__ + 1]);
	    if (((d__1 = z__[i__], abs(d__1)) + (d__2 = z__[i__ + 1], abs(
		    d__2))) * (d__3 = ld[i__], abs(d__3)) < *gaptol) {
		z__[i__] = 0.;
		isuppz[1] = i__ + 1;
		goto L220;
	    }
	    *ztz += z__[i__] * z__[i__];
/* L210: */
	}
L220:
	;
    } else {
/*        Run slower loop if NaN occurred. */
	i__1 = *b1;
	for (i__ = *r__ - 1; i__ >= i__1; --i__) {
	    if (z__[i__ + 1] == 0.) {
		z__[i__] = -(ld[i__ + 1] / ld[i__]) * z__[i__ + 2];
	    } else {
		z__[i__] = -(work[indlpl + i__] * z__[i__ + 1]);
	    }
	    if (((d__1 = z__[i__], abs(d__1)) + (d__2 = z__[i__ + 1], abs(
		    d__2))) * (d__3 = ld[i__], abs(d__3)) < *gaptol) {
		z__[i__] = 0.;
		isuppz[1] = i__ + 1;
		goto L240;
	    }
	    *ztz += z__[i__] * z__[i__];
/* L230: */
	}
L240:
	;
    }
/*     Compute the FP vector downwards from R in blocks of size BLKSIZ */
    if (! sawnan1 && ! sawnan2) {
	i__1 = *bn - 1;
	for (i__ = *r__; i__ <= i__1; ++i__) {
	    z__[i__ + 1] = -(work[indumn + i__] * z__[i__]);
	    if (((d__1 = z__[i__], abs(d__1)) + (d__2 = z__[i__ + 1], abs(
		    d__2))) * (d__3 = ld[i__], abs(d__3)) < *gaptol) {
		z__[i__ + 1] = 0.;
		isuppz[2] = i__;
		goto L260;
	    }
	    *ztz += z__[i__ + 1] * z__[i__ + 1];
/* L250: */
	}
L260:
	;
    } else {
/*        Run slower loop if NaN occurred. */
	i__1 = *bn - 1;
	for (i__ = *r__; i__ <= i__1; ++i__) {
	    if (z__[i__] == 0.) {
		z__[i__ + 1] = -(ld[i__ - 1] / ld[i__]) * z__[i__ - 1];
	    } else {
		z__[i__ + 1] = -(work[indumn + i__] * z__[i__]);
	    }
	    if (((d__1 = z__[i__], abs(d__1)) + (d__2 = z__[i__ + 1], abs(
		    d__2))) * (d__3 = ld[i__], abs(d__3)) < *gaptol) {
		z__[i__ + 1] = 0.;
		isuppz[2] = i__;
		goto L280;
	    }
	    *ztz += z__[i__ + 1] * z__[i__ + 1];
/* L270: */
	}
L280:
	;
    }

/*     Compute quantities for convergence test */

    tmp = 1. / *ztz;
    *nrminv = sqrt(tmp);
    *resid = abs(*mingma) * *nrminv;
    *rqcorr = *mingma * tmp;


    return 0;

/*     End of DLAR1V */

} /* dlar1v_ */