1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
// (3-clause BSD License)
//
// Copyright (C) 2015-2016, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * Neither the names of the copyright holders nor the names of the contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall copyright holders or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
using namespace cv;
using namespace std;
using namespace testing;
#include <vector>
#include <numeric>
CV_ENUM(Method, RANSAC, LMEDS)
typedef TestWithParam<Method> EstimateAffine2D;
static float rngIn(float from, float to) { return from + (to-from) * (float)theRNG(); }
TEST_P(EstimateAffine2D, test3Points)
{
// try more transformations
for (size_t i = 0; i < 500; ++i)
{
Mat aff(2, 3, CV_64F);
cv::randu(aff, 1., 3.);
Mat fpts(1, 3, CV_32FC2);
Mat tpts(1, 3, CV_32FC2);
// setting points that are not in the same line
fpts.at<Point2f>(0) = Point2f( rngIn(1,2), rngIn(5,6) );
fpts.at<Point2f>(1) = Point2f( rngIn(3,4), rngIn(3,4) );
fpts.at<Point2f>(2) = Point2f( rngIn(1,2), rngIn(3,4) );
transform(fpts, tpts, aff);
vector<uchar> inliers;
Mat aff_est = estimateAffine2D(fpts, tpts, inliers, GetParam() /* method */);
EXPECT_NEAR(0., cvtest::norm(aff_est, aff, NORM_INF), 1e-3);
// all must be inliers
EXPECT_EQ(countNonZero(inliers), 3);
}
}
TEST_P(EstimateAffine2D, testNPoints)
{
// try more transformations
for (size_t i = 0; i < 500; ++i)
{
Mat aff(2, 3, CV_64F);
cv::randu(aff, -2., 2.);
const int method = GetParam();
const int n = 100;
int m;
// LMEDS can't handle more than 50% outliers (by design)
if (method == LMEDS)
m = 3*n/5;
else
m = 2*n/5;
const float shift_outl = 15.f;
const float noise_level = 20.f;
Mat fpts(1, n, CV_32FC2);
Mat tpts(1, n, CV_32FC2);
randu(fpts, 0., 100.);
transform(fpts, tpts, aff);
/* adding noise to some points */
Mat outliers = tpts.colRange(m, n);
outliers.reshape(1) += shift_outl;
Mat noise (outliers.size(), outliers.type());
randu(noise, 0., noise_level);
outliers += noise;
vector<uchar> inliers;
Mat aff_est = estimateAffine2D(fpts, tpts, inliers, method);
EXPECT_FALSE(aff_est.empty()) << "estimation failed, unable to estimate transform";
EXPECT_NEAR(0., cvtest::norm(aff_est, aff, NORM_INF), 1e-4);
bool inliers_good = count(inliers.begin(), inliers.end(), 1) == m &&
m == accumulate(inliers.begin(), inliers.begin() + m, 0);
EXPECT_TRUE(inliers_good);
}
}
// test conversion from other datatypes than float
TEST_P(EstimateAffine2D, testConversion)
{
Mat aff(2, 3, CV_32S);
cv::randu(aff, 1., 3.);
std::vector<Point> fpts(3);
std::vector<Point> tpts(3);
// setting points that are not in the same line
fpts[0] = Point2f( rngIn(1,2), rngIn(5,6) );
fpts[1] = Point2f( rngIn(3,4), rngIn(3,4) );
fpts[2] = Point2f( rngIn(1,2), rngIn(3,4) );
transform(fpts, tpts, aff);
vector<uchar> inliers;
Mat aff_est = estimateAffine2D(fpts, tpts, inliers, GetParam() /* method */);
ASSERT_FALSE(aff_est.empty());
aff.convertTo(aff, CV_64F); // need to convert before compare
EXPECT_NEAR(0., cvtest::norm(aff_est, aff, NORM_INF), 1e-3);
// all must be inliers
EXPECT_EQ(countNonZero(inliers), 3);
}
INSTANTIATE_TEST_CASE_P(Calib3d, EstimateAffine2D, Method::all());