• Tom Stellard's avatar
    ocl: Don't use 'inline' attribute on functions · 934394c5
    Tom Stellard authored
    In C99 'inline' is not a hint to the compiler to inline the function,
    it is an attribute that affects the linkage of the function.  'inline'
    functions are required to have a definition in a different compiliation
    unit, so compilers are free to delete 'inline' functions if they want to.
    
    This issue can be seen in Clang when compiling at -O0.  Clang
    will sometimes delete 'inline' functions which creates an invalid
    program.
    
    Issue 3746: http://code.opencv.org/issues/3746
    934394c5
match_template.cl 25.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010,2014, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
//    Peng Xiao, pengxiao@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifdef DOUBLE_SUPPORT
#ifdef cl_amd_fp64
#pragma OPENCL EXTENSION cl_amd_fp64:enable
#elif defined (cl_khr_fp64)
#pragma OPENCL EXTENSION cl_khr_fp64:enable
#endif
#define TYPE_IMAGE_SQSUM double
#else
#define TYPE_IMAGE_SQSUM float
#endif

#ifndef CN4
#define CN4 1
#else
#define CN4 4
#endif

//////////////////////////////////////////////////
// utilities
#define SQSUMS_PTR(ox, oy) mad24(gidy + oy, img_sqsums_step, (gidx + img_sqsums_offset + ox) * CN4)
#define SUMS_PTR(ox, oy) mad24(gidy + oy, img_sums_step, gidx + img_sums_offset + ox)
// normAcc* are accurate normalization routines which make GPU matchTemplate
// consistent with CPU one
float normAcc(float num, float denum)
{
    if(fabs(num) < denum)
    {
        return num / denum;
    }
    if(fabs(num) < denum * 1.125f)
    {
        return num > 0 ? 1 : -1;
    }
    return 0;
}

float normAcc_SQDIFF(float num, float denum)
{
    if(fabs(num) < denum)
    {
        return num / denum;
    }
    if(fabs(num) < denum * 1.125f)
    {
        return num > 0 ? 1 : -1;
    }
    return 1;
}
//////////////////////////////////////////////////////////////////////
// normalize

__kernel
void normalizeKernel_C1_D0
(
    __global const float * img_sqsums,
    __global float * res,
    ulong tpl_sqsum,
    int res_rows,
    int res_cols,
    int tpl_rows,
    int tpl_cols,
    int img_sqsums_offset,
    int img_sqsums_step,
    int res_offset,
    int res_step
)
{
    int gidx = get_global_id(0);
    int gidy = get_global_id(1);

    res_step   /= sizeof(*res);
    res_offset /= sizeof(*res);
    img_sqsums_step /= sizeof(*img_sqsums);
    img_sqsums_offset /= sizeof(*img_sqsums);
    int res_idx = mad24(gidy, res_step, res_offset + gidx);
    if(gidx < res_cols && gidy < res_rows)
    {
        float image_sqsum_ = (float)(
                                 (img_sqsums[SQSUMS_PTR(tpl_cols, tpl_rows)] - img_sqsums[SQSUMS_PTR(tpl_cols, 0)]) -
                                 (img_sqsums[SQSUMS_PTR(0, tpl_rows)] - img_sqsums[SQSUMS_PTR(0, 0)]));
        res[res_idx] = normAcc(res[res_idx], sqrt(image_sqsum_ * tpl_sqsum));
    }
}

__kernel
void matchTemplate_Prepared_SQDIFF_C1_D0
(
    __global const TYPE_IMAGE_SQSUM * img_sqsums,
    __global float * res,
    ulong tpl_sqsum,
    int res_rows,
    int res_cols,
    int tpl_rows,
    int tpl_cols,
    int img_sqsums_offset,
    int img_sqsums_step,
    int res_offset,
    int res_step
)
{
    int gidx = get_global_id(0);
    int gidy = get_global_id(1);

    res_step   /= sizeof(*res);
    res_offset /= sizeof(*res);
    img_sqsums_step /= sizeof(*img_sqsums);
    img_sqsums_offset /= sizeof(*img_sqsums);
    int res_idx = mad24(gidy, res_step, res_offset + gidx);
    if(gidx < res_cols && gidy < res_rows)
    {
        float image_sqsum_ = (float)(
                                 (img_sqsums[SQSUMS_PTR(tpl_cols, tpl_rows)] - img_sqsums[SQSUMS_PTR(tpl_cols, 0)]) -
                                 (img_sqsums[SQSUMS_PTR(0, tpl_rows)] - img_sqsums[SQSUMS_PTR(0, 0)]));
        res[res_idx] = image_sqsum_ - 2.f * res[res_idx] + tpl_sqsum;
    }
}

__kernel
void matchTemplate_Prepared_SQDIFF_NORMED_C1_D0
(
    __global const float * img_sqsums,
    __global float * res,
    ulong tpl_sqsum,
    int res_rows,
    int res_cols,
    int tpl_rows,
    int tpl_cols,
    int img_sqsums_offset,
    int img_sqsums_step,
    int res_offset,
    int res_step
)
{
    int gidx = get_global_id(0);
    int gidy = get_global_id(1);

    res_step   /= sizeof(*res);
    res_offset /= sizeof(*res);
    img_sqsums_step /= sizeof(*img_sqsums);
    img_sqsums_offset /= sizeof(*img_sqsums);
    int res_idx = mad24(gidy, res_step, res_offset + gidx);
    if(gidx < res_cols && gidy < res_rows)
    {
        float image_sqsum_ = (float)(
                                 (img_sqsums[SQSUMS_PTR(tpl_cols, tpl_rows)] - img_sqsums[SQSUMS_PTR(tpl_cols, 0)]) -
                                 (img_sqsums[SQSUMS_PTR(0, tpl_rows)] - img_sqsums[SQSUMS_PTR(0, 0)]));
        res[res_idx] = normAcc_SQDIFF(image_sqsum_ - 2.f * res[res_idx] + tpl_sqsum,
                                      sqrt(image_sqsum_ * tpl_sqsum));
    }
}

//////////////////////////////////////////////////
// SQDIFF
__kernel
void matchTemplate_Naive_SQDIFF_C1_D0
(
    __global const uchar * img,
    __global const uchar * tpl,
    __global float * res,
    int img_rows,
    int img_cols,
    int tpl_rows,
    int tpl_cols,
    int res_rows,
    int res_cols,
    int img_offset,
    int tpl_offset,
    int res_offset,
    int img_step,
    int tpl_step,
    int res_step
)
{
    int gidx = get_global_id(0);
    int gidy = get_global_id(1);
    int i,j;
    int delta;
    int sum = 0;
    res_step   /= sizeof(*res);
    res_offset /= sizeof(*res);
    int res_idx = mad24(gidy, res_step, res_offset + gidx);

    if(gidx < res_cols && gidy < res_rows)
    {
        for(i = 0; i < tpl_rows; i ++)
        {
            // get specific rows of img data
            __global const uchar * img_ptr = img + mad24(gidy + i, img_step, gidx + img_offset);
            __global const uchar * tpl_ptr = tpl + mad24(i, tpl_step, tpl_offset);
            for(j = 0; j < tpl_cols; j ++)
            {
                delta = img_ptr[j] - tpl_ptr[j];
                sum   = mad24(delta, delta, sum);
            }
        }
        res[res_idx] = sum;
    }
}

__kernel
void matchTemplate_Naive_SQDIFF_C1_D5
(
    __global const float * img,
    __global const float * tpl,
    __global float * res,
    int img_rows,
    int img_cols,
    int tpl_rows,
    int tpl_cols,
    int res_rows,
    int res_cols,
    int img_offset,
    int tpl_offset,
    int res_offset,
    int img_step,
    int tpl_step,
    int res_step
)
{
    int gidx = get_global_id(0);
    int gidy = get_global_id(1);
    int i,j;
    float delta;
    float sum = 0;
    img_step   /= sizeof(*img);
    img_offset /= sizeof(*img);
    tpl_step   /= sizeof(*tpl);
    tpl_offset /= sizeof(*tpl);
    res_step   /= sizeof(*res);
    res_offset /= sizeof(*res);

    int res_idx = mad24(gidy, res_step, res_offset + gidx);

    if(gidx < res_cols && gidy < res_rows)
    {
        for(i = 0; i < tpl_rows; i ++)
        {
            // get specific rows of img data
            __global const float * img_ptr = img + mad24(gidy + i, img_step, gidx + img_offset);
            __global const float * tpl_ptr = tpl + mad24(i, tpl_step, tpl_offset);
            for(j = 0; j < tpl_cols; j ++)
            {
                delta = img_ptr[j] - tpl_ptr[j];
                sum   = mad(delta, delta, sum);
            }
        }
        res[res_idx] = sum;
    }
}

__kernel
void matchTemplate_Naive_SQDIFF_C4_D0
(
    __global const uchar4 * img,
    __global const uchar4 * tpl,
    __global float * res,
    int img_rows,
    int img_cols,
    int tpl_rows,
    int tpl_cols,
    int res_rows,
    int res_cols,
    int img_offset,
    int tpl_offset,
    int res_offset,
    int img_step,
    int tpl_step,
    int res_step
)
{
    int gidx = get_global_id(0);
    int gidy = get_global_id(1);
    int i,j;
    int4 delta;
    int4 sum = (int4)(0, 0, 0, 0);
    img_step   /= sizeof(*img);
    img_offset /= sizeof(*img);
    tpl_step   /= sizeof(*tpl);
    tpl_offset /= sizeof(*tpl);
    res_step   /= sizeof(*res);
    res_offset /= sizeof(*res);

    int res_idx = mad24(gidy, res_step, res_offset + gidx);

    if(gidx < res_cols && gidy < res_rows)
    {
        for(i = 0; i < tpl_rows; i ++)
        {
            // get specific rows of img data
            __global const uchar4 * img_ptr = img + mad24(gidy + i, img_step, gidx + img_offset);
            __global const uchar4 * tpl_ptr = tpl + mad24(i, tpl_step, tpl_offset);
            for(j = 0; j < tpl_cols; j ++)
            {
                //delta = convert_int4(img_ptr[j] - tpl_ptr[j]); // this alternative is incorrect
                delta.x = img_ptr[j].x - tpl_ptr[j].x;
                delta.y = img_ptr[j].y - tpl_ptr[j].y;
                delta.z = img_ptr[j].z - tpl_ptr[j].z;
                delta.w = img_ptr[j].w - tpl_ptr[j].w;
                sum   = mad24(delta, delta, sum);
            }
        }
        res[res_idx] = sum.x + sum.y + sum.z + sum.w;
    }
}

__kernel
void matchTemplate_Naive_SQDIFF_C4_D5
(
    __global const float4 * img,
    __global const float4 * tpl,
    __global float * res,
    int img_rows,
    int img_cols,
    int tpl_rows,
    int tpl_cols,
    int res_rows,
    int res_cols,
    int img_offset,
    int tpl_offset,
    int res_offset,
    int img_step,
    int tpl_step,
    int res_step
)
{
    int gidx = get_global_id(0);
    int gidy = get_global_id(1);
    int i,j;
    float4 delta;
    float4 sum = (float4)(0, 0, 0, 0);
    img_step   /= sizeof(*img);
    img_offset /= sizeof(*img);
    tpl_step   /= sizeof(*tpl);
    tpl_offset /= sizeof(*tpl);
    res_step   /= sizeof(*res);
    res_offset /= sizeof(*res);

    int res_idx = mad24(gidy, res_step, res_offset + gidx);

    if(gidx < res_cols && gidy < res_rows)
    {
        for(i = 0; i < tpl_rows; i ++)
        {
            // get specific rows of img data
            __global const float4 * img_ptr = img + mad24(gidy + i, img_step, gidx + img_offset);
            __global const float4 * tpl_ptr = tpl + mad24(i, tpl_step, tpl_offset);
            for(j = 0; j < tpl_cols; j ++)
            {
                //delta = convert_int4(img_ptr[j] - tpl_ptr[j]); // this alternative is incorrect
                delta.x = img_ptr[j].x - tpl_ptr[j].x;
                delta.y = img_ptr[j].y - tpl_ptr[j].y;
                delta.z = img_ptr[j].z - tpl_ptr[j].z;
                delta.w = img_ptr[j].w - tpl_ptr[j].w;
                sum   = mad(delta, delta, sum);
            }
        }
        res[res_idx] = sum.x + sum.y + sum.z + sum.w;
    }
}

//////////////////////////////////////////////////
// CCORR
__kernel
void matchTemplate_Naive_CCORR_C1_D0
(
    __global const uchar * img,
    __global const uchar * tpl,
    __global float * res,
    int img_rows,
    int img_cols,
    int tpl_rows,
    int tpl_cols,
    int res_rows,
    int res_cols,
    int img_offset,
    int tpl_offset,
    int res_offset,
    int img_step,
    int tpl_step,
    int res_step
)
{
    int gidx = get_global_id(0);
    int gidy = get_global_id(1);
    int i,j;
    int sum = 0;
    res_step   /= sizeof(*res);
    res_offset /= sizeof(*res);

    int res_idx = mad24(gidy, res_step, res_offset + gidx);

    if(gidx < res_cols && gidy < res_rows)
    {
        for(i = 0; i < tpl_rows; i ++)
        {
            // get specific rows of img data
            __global const uchar * img_ptr = img + mad24(gidy + i, img_step, gidx + img_offset);
            __global const uchar * tpl_ptr = tpl + mad24(i, tpl_step, tpl_offset);
            for(j = 0; j < tpl_cols; j ++)
            {
                sum = mad24(convert_int(img_ptr[j]), convert_int(tpl_ptr[j]), sum);
            }
        }
        res[res_idx] = (float)sum;
    }
}

__kernel
void matchTemplate_Naive_CCORR_C1_D5
(
    __global const float * img,
    __global const float * tpl,
    __global float * res,
    int img_rows,
    int img_cols,
    int tpl_rows,
    int tpl_cols,
    int res_rows,
    int res_cols,
    int img_offset,
    int tpl_offset,
    int res_offset,
    int img_step,
    int tpl_step,
    int res_step
)
{
    int gidx = get_global_id(0);
    int gidy = get_global_id(1);
    int i,j;
    float sum = 0;
    img_step   /= sizeof(*img);
    img_offset /= sizeof(*img);
    tpl_step   /= sizeof(*tpl);
    tpl_offset /= sizeof(*tpl);
    res_step   /= sizeof(*res);
    res_offset /= sizeof(*res);

    int res_idx = mad24(gidy, res_step, res_offset + gidx);

    if(gidx < res_cols && gidy < res_rows)
    {
        for(i = 0; i < tpl_rows; i ++)
        {
            // get specific rows of img data
            __global const float * img_ptr = img + mad24(gidy + i, img_step, gidx + img_offset);
            __global const float * tpl_ptr = tpl + mad24(i, tpl_step, tpl_offset);
            for(j = 0; j < tpl_cols; j ++)
            {
                sum = mad(img_ptr[j], tpl_ptr[j], sum);
            }
        }
        res[res_idx] = sum;
    }
}

__kernel
void matchTemplate_Naive_CCORR_C4_D0
(
    __global const uchar4 * img,
    __global const uchar4 * tpl,
    __global float * res,
    int img_rows,
    int img_cols,
    int tpl_rows,
    int tpl_cols,
    int res_rows,
    int res_cols,
    int img_offset,
    int tpl_offset,
    int res_offset,
    int img_step,
    int tpl_step,
    int res_step
)
{
    int gidx = get_global_id(0);
    int gidy = get_global_id(1);
    int i,j;
    int4 sum = (int4)(0, 0, 0, 0);
    img_step   /= sizeof(*img);
    img_offset /= sizeof(*img);
    tpl_step   /= sizeof(*tpl);
    tpl_offset /= sizeof(*tpl);
    res_step   /= sizeof(*res);
    res_offset /= sizeof(*res);

    int res_idx = mad24(gidy, res_step, res_offset + gidx);

    if(gidx < res_cols && gidy < res_rows)
    {
        for(i = 0; i < tpl_rows; i ++)
        {
            // get specific rows of img data
            __global const uchar4 * img_ptr = img + mad24(gidy + i, img_step, gidx + img_offset);
            __global const uchar4 * tpl_ptr = tpl + mad24(i, tpl_step, tpl_offset);
            for(j = 0; j < tpl_cols; j ++)
            {
                sum   = mad24(convert_int4(img_ptr[j]), convert_int4(tpl_ptr[j]), sum);
            }
        }
        res[res_idx] = (float)(sum.x + sum.y + sum.z + sum.w);
    }
}

__kernel
void matchTemplate_Naive_CCORR_C4_D5
(
    __global const float4 * img,
    __global const float4 * tpl,
    __global float * res,
    int img_rows,
    int img_cols,
    int tpl_rows,
    int tpl_cols,
    int res_rows,
    int res_cols,
    int img_offset,
    int tpl_offset,
    int res_offset,
    int img_step,
    int tpl_step,
    int res_step
)
{
    int gidx = get_global_id(0);
    int gidy = get_global_id(1);
    int i,j;
    float4 sum = (float4)(0, 0, 0, 0);
    img_step   /= sizeof(*img);
    img_offset /= sizeof(*img);
    tpl_step   /= sizeof(*tpl);
    tpl_offset /= sizeof(*tpl);
    res_step   /= sizeof(*res);
    res_offset /= sizeof(*res);

    int res_idx = mad24(gidy, res_step, res_offset + gidx);

    if(gidx < res_cols && gidy < res_rows)
    {
        for(i = 0; i < tpl_rows; i ++)
        {
            // get specific rows of img data
            __global const float4 * img_ptr = img + mad24(gidy + i, img_step, gidx + img_offset);
            __global const float4 * tpl_ptr = tpl + mad24(i, tpl_step, tpl_offset);
            for(j = 0; j < tpl_cols; j ++)
            {
                sum = mad(convert_float4(img_ptr[j]), convert_float4(tpl_ptr[j]), sum);
            }
        }
        res[res_idx] = sum.x + sum.y + sum.z + sum.w;
    }
}

//////////////////////////////////////////////////
// CCOFF
__kernel
void matchTemplate_Prepared_CCOFF_C1_D0
(
    __global float * res,
    int img_rows,
    int img_cols,
    int tpl_rows,
    int tpl_cols,
    int res_rows,
    int res_cols,
    int res_offset,
    int res_step,
    __global const uint * img_sums,
    int img_sums_offset,
    int img_sums_step,
    float tpl_sum
)
{
    int gidx = get_global_id(0);
    int gidy = get_global_id(1);

    img_sums_offset   /= sizeof(*img_sums);
    img_sums_step     /= sizeof(*img_sums);
    res_step   /= sizeof(*res);
    res_offset /= sizeof(*res);

    int res_idx = mad24(gidy, res_step, res_offset + gidx);

    if(gidx < res_cols && gidy < res_rows)
    {
        float sum = (float)((img_sums[SUMS_PTR(tpl_cols, tpl_rows)] - img_sums[SUMS_PTR(tpl_cols, 0)])
                            -(img_sums[SUMS_PTR(0, tpl_rows)] - img_sums[SUMS_PTR(0, 0)]));
        res[res_idx] -= sum * tpl_sum;
    }
}
__kernel
void matchTemplate_Prepared_CCOFF_C4_D0
(
    __global float * res,
    int img_rows,
    int img_cols,
    int tpl_rows,
    int tpl_cols,
    int res_rows,
    int res_cols,
    int res_offset,
    int res_step,
    __global const uint * img_sums_c0,
    __global const uint * img_sums_c1,
    __global const uint * img_sums_c2,
    __global const uint * img_sums_c3,
    int img_sums_offset,
    int img_sums_step,
    float tpl_sum_c0,
    float tpl_sum_c1,
    float tpl_sum_c2,
    float tpl_sum_c3
)
{
    int gidx = get_global_id(0);
    int gidy = get_global_id(1);

    img_sums_offset   /= sizeof(*img_sums_c0);
    img_sums_step     /= sizeof(*img_sums_c0);
    res_step   /= sizeof(*res);
    res_offset /= sizeof(*res);

    int res_idx = mad24(gidy, res_step, res_offset + gidx);

    if(gidx < res_cols && gidy < res_rows)
    {
        float ccorr = res[res_idx];
        ccorr -= tpl_sum_c0*(float)(
                     (img_sums_c0[SUMS_PTR(tpl_cols, tpl_rows)] - img_sums_c0[SUMS_PTR(tpl_cols, 0)])
                     - (img_sums_c0[SUMS_PTR(0, tpl_rows)] - img_sums_c0[SUMS_PTR(0, 0)]));
        ccorr -= tpl_sum_c1*(float)(
                     (img_sums_c1[SUMS_PTR(tpl_cols, tpl_rows)] - img_sums_c1[SUMS_PTR(tpl_cols, 0)])
                     - (img_sums_c1[SUMS_PTR(0, tpl_rows)] - img_sums_c1[SUMS_PTR(0, 0)]));
        ccorr -= tpl_sum_c2*(float)(
                     (img_sums_c2[SUMS_PTR(tpl_cols, tpl_rows)] - img_sums_c2[SUMS_PTR(tpl_cols, 0)])
                     - (img_sums_c2[SUMS_PTR(0, tpl_rows)] - img_sums_c2[SUMS_PTR(0, 0)]));
        ccorr -= tpl_sum_c3*(float)(
                     (img_sums_c3[SUMS_PTR(tpl_cols, tpl_rows)] - img_sums_c3[SUMS_PTR(tpl_cols, 0)])
                     - (img_sums_c3[SUMS_PTR(0, tpl_rows)] - img_sums_c3[SUMS_PTR(0, 0)]));
        res[res_idx] = ccorr;
    }
}

__kernel
void matchTemplate_Prepared_CCOFF_NORMED_C1_D0
(
    __global float * res,
    int img_rows,
    int img_cols,
    int tpl_rows,
    int tpl_cols,
    int res_rows,
    int res_cols,
    int res_offset,
    int res_step,
    float weight,
    __global const uint * img_sums,
    int img_sums_offset,
    int img_sums_step,
    __global const float * img_sqsums,
    int img_sqsums_offset,
    int img_sqsums_step,
    float tpl_sum,
    float tpl_sqsum
)
{
    int gidx = get_global_id(0);
    int gidy = get_global_id(1);

    img_sqsums_step   /= sizeof(*img_sqsums);
    img_sqsums_offset /= sizeof(*img_sqsums);
    img_sums_offset   /= sizeof(*img_sums);
    img_sums_step     /= sizeof(*img_sums);
    res_step   /= sizeof(*res);
    res_offset /= sizeof(*res);


    int res_idx = mad24(gidy, res_step, res_offset + gidx);

    if(gidx < res_cols && gidy < res_rows)
    {
        float image_sum_ =  (float)(
                                (img_sums[SUMS_PTR(tpl_cols, tpl_rows)] - img_sums[SUMS_PTR(tpl_cols, 0)])
                                - (img_sums[SUMS_PTR(0, tpl_rows)] - img_sums[SUMS_PTR(0, 0)]));

        float image_sqsum_ = (float)(
                                 (img_sqsums[SQSUMS_PTR(tpl_cols, tpl_rows)] - img_sqsums[SQSUMS_PTR(tpl_cols, 0)]) -
                                 (img_sqsums[SQSUMS_PTR(0, tpl_rows)] - img_sqsums[SQSUMS_PTR(0, 0)]));
        res[res_idx] = normAcc(res[res_idx] - image_sum_ * tpl_sum,
                               sqrt(tpl_sqsum * (image_sqsum_ - weight * image_sum_ * image_sum_)));
    }
}
__kernel
void matchTemplate_Prepared_CCOFF_NORMED_C4_D0
(
    __global float * res,
    int img_rows,
    int img_cols,
    int tpl_rows,
    int tpl_cols,
    int res_rows,
    int res_cols,
    int res_offset,
    int res_step,
    float weight,
    __global const uint * img_sums_c0,
    __global const uint * img_sums_c1,
    __global const uint * img_sums_c2,
    __global const uint * img_sums_c3,
    int img_sums_offset,
    int img_sums_step,
    __global const float * img_sqsums_c0,
    __global const float * img_sqsums_c1,
    __global const float * img_sqsums_c2,
    __global const float * img_sqsums_c3,
    int img_sqsums_offset,
    int img_sqsums_step,
    float tpl_sum_c0,
    float tpl_sum_c1,
    float tpl_sum_c2,
    float tpl_sum_c3,
    float tpl_sqsum
)
{
    int gidx = get_global_id(0);
    int gidy = get_global_id(1);

    img_sqsums_step   /= sizeof(*img_sqsums_c0);
    img_sqsums_offset /= sizeof(*img_sqsums_c0);
    img_sums_offset   /= sizeof(*img_sums_c0);
    img_sums_step     /= sizeof(*img_sums_c0);
    res_step   /= sizeof(*res);
    res_offset /= sizeof(*res);

    int res_idx = mad24(gidy, res_step, res_offset + gidx);

    if(gidx < res_cols && gidy < res_rows)
    {
        float image_sum_c0 =  (float)(
                                  (img_sums_c0[SUMS_PTR(tpl_cols, tpl_rows)] - img_sums_c0[SUMS_PTR(tpl_cols, 0)])
                                  - (img_sums_c0[SUMS_PTR(0, tpl_rows)] - img_sums_c0[SUMS_PTR(0, 0)]));
        float image_sum_c1 =  (float)(
                                  (img_sums_c1[SUMS_PTR(tpl_cols, tpl_rows)] - img_sums_c1[SUMS_PTR(tpl_cols, 0)])
                                  - (img_sums_c1[SUMS_PTR(0, tpl_rows)] - img_sums_c1[SUMS_PTR(0, 0)]));
        float image_sum_c2 =  (float)(
                                  (img_sums_c2[SUMS_PTR(tpl_cols, tpl_rows)] - img_sums_c2[SUMS_PTR(tpl_cols, 0)])
                                  - (img_sums_c2[SUMS_PTR(0, tpl_rows)] - img_sums_c2[SUMS_PTR(0, 0)]));
        float image_sum_c3 =  (float)(
                                  (img_sums_c3[SUMS_PTR(tpl_cols, tpl_rows)] - img_sums_c3[SUMS_PTR(tpl_cols, 0)])
                                  - (img_sums_c3[SUMS_PTR(0, tpl_rows)] - img_sums_c3[SUMS_PTR(0, 0)]));

        float image_sqsum_c0 = (float)(
                                   (img_sqsums_c0[SQSUMS_PTR(tpl_cols, tpl_rows)] - img_sqsums_c0[SQSUMS_PTR(tpl_cols, 0)]) -
                                   (img_sqsums_c0[SQSUMS_PTR(0, tpl_rows)] - img_sqsums_c0[SQSUMS_PTR(0, 0)]));
        float image_sqsum_c1 = (float)(
                                   (img_sqsums_c1[SQSUMS_PTR(tpl_cols, tpl_rows)] - img_sqsums_c1[SQSUMS_PTR(tpl_cols, 0)]) -
                                   (img_sqsums_c1[SQSUMS_PTR(0, tpl_rows)] - img_sqsums_c1[SQSUMS_PTR(0, 0)]));
        float image_sqsum_c2 = (float)(
                                   (img_sqsums_c2[SQSUMS_PTR(tpl_cols, tpl_rows)] - img_sqsums_c2[SQSUMS_PTR(tpl_cols, 0)]) -
                                   (img_sqsums_c2[SQSUMS_PTR(0, tpl_rows)] - img_sqsums_c2[SQSUMS_PTR(0, 0)]));
        float image_sqsum_c3 = (float)(
                                   (img_sqsums_c3[SQSUMS_PTR(tpl_cols, tpl_rows)] - img_sqsums_c3[SQSUMS_PTR(tpl_cols, 0)]) -
                                   (img_sqsums_c3[SQSUMS_PTR(0, tpl_rows)] - img_sqsums_c3[SQSUMS_PTR(0, 0)]));

        float num = res[res_idx] -
                    image_sum_c0 * tpl_sum_c0 -
                    image_sum_c1 * tpl_sum_c1 -
                    image_sum_c2 * tpl_sum_c2 -
                    image_sum_c3 * tpl_sum_c3;
        float denum = sqrt( tpl_sqsum * (
                                image_sqsum_c0 - weight * image_sum_c0 * image_sum_c0 +
                                image_sqsum_c1 - weight * image_sum_c1 * image_sum_c1 +
                                image_sqsum_c2 - weight * image_sum_c2 * image_sum_c2 +
                                image_sqsum_c3 - weight * image_sum_c0 * image_sum_c3)
                          );
        res[res_idx] = normAcc(num, denum);
    }
}

//////////////////////////////////////////////////////////////////////
// extractFirstChannel
__kernel
void extractFirstChannel
(
    const __global float4* img,
    __global float* res,
    int rows,
    int cols,
    int img_offset,
    int res_offset,
    int img_step,
    int res_step
)
{
    img_step   /= sizeof(float4);
    res_step   /= sizeof(float);
    img_offset /= sizeof(float4);
    res_offset /= sizeof(float);
    img += img_offset;
    res += res_offset;
    int gidx = get_global_id(0);
    int gidy = get_global_id(1);
    if(gidx < cols && gidy < rows)
    {
        res[gidx + gidy * res_step] = img[gidx + gidy * img_step].x;
    }
}