1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2019, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "precomp.hpp"
#include "op_inf_engine.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#ifdef HAVE_INF_ENGINE
#include <ie_extension.h>
#include <ie_plugin_dispatcher.hpp>
#endif // HAVE_INF_ENGINE
#include <opencv2/core/utils/configuration.private.hpp>
#include <opencv2/core/utils/logger.hpp>
namespace cv { namespace dnn {
#ifdef HAVE_INF_ENGINE
// For networks with input layer which has an empty name, IE generates a name id[some_number].
// OpenCV lets users use an empty input name and to prevent unexpected naming,
// we can use some predefined name.
static std::string kDefaultInpLayerName = "empty_inp_layer_name";
InfEngineBackendNode::InfEngineBackendNode(const InferenceEngine::Builder::Layer& _layer)
: BackendNode(DNN_BACKEND_INFERENCE_ENGINE), layer(_layer) {}
static std::vector<Ptr<InfEngineBackendWrapper> >
infEngineWrappers(const std::vector<Ptr<BackendWrapper> >& ptrs)
{
std::vector<Ptr<InfEngineBackendWrapper> > wrappers(ptrs.size());
for (int i = 0; i < ptrs.size(); ++i)
{
CV_Assert(!ptrs[i].empty());
wrappers[i] = ptrs[i].dynamicCast<InfEngineBackendWrapper>();
CV_Assert(!wrappers[i].empty());
}
return wrappers;
}
InfEngineBackendNet::InfEngineBackendNet() : netBuilder("")
{
hasNetOwner = false;
targetDevice = InferenceEngine::TargetDevice::eCPU;
}
InfEngineBackendNet::InfEngineBackendNet(InferenceEngine::CNNNetwork& net) : netBuilder(""), cnn(net)
{
hasNetOwner = true;
targetDevice = InferenceEngine::TargetDevice::eCPU;
}
void InfEngineBackendNet::connect(const std::vector<Ptr<BackendWrapper> >& inputs,
const std::vector<Ptr<BackendWrapper> >& outputs,
const std::string& layerName)
{
std::vector<Ptr<InfEngineBackendWrapper> > inpWrappers = infEngineWrappers(inputs);
std::map<std::string, int>::iterator it = layers.find(layerName);
CV_Assert(it != layers.end());
const int layerId = it->second;
for (size_t i = 0; i < inpWrappers.size(); ++i)
{
const auto& inp = inpWrappers[i];
const std::string& inpName = inp->dataPtr->name;
int inpId;
it = layers.find(inpName);
if (it == layers.end())
{
InferenceEngine::Builder::InputLayer inpLayer(!inpName.empty() ? inpName : kDefaultInpLayerName);
std::vector<size_t> shape(inp->blob->dims());
std::reverse(shape.begin(), shape.end());
inpLayer.setPort(InferenceEngine::Port(shape));
inpId = netBuilder.addLayer(inpLayer);
layers.insert({inpName, inpId});
}
else
inpId = it->second;
netBuilder.connect((size_t)inpId, {(size_t)layerId, i});
unconnectedLayersIds.erase(inpId);
}
CV_Assert(!outputs.empty());
InferenceEngine::DataPtr dataPtr = infEngineDataNode(outputs[0]);
dataPtr->name = layerName;
}
void InfEngineBackendNet::init(int targetId)
{
if (!hasNetOwner)
{
CV_Assert(!unconnectedLayersIds.empty());
for (int id : unconnectedLayersIds)
{
InferenceEngine::Builder::OutputLayer outLayer("myconv1");
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1)
// Inference Engine determines network precision by ports.
InferenceEngine::Precision p = (targetId == DNN_TARGET_MYRIAD ||
targetId == DNN_TARGET_OPENCL_FP16) ?
InferenceEngine::Precision::FP16 :
InferenceEngine::Precision::FP32;
outLayer.setPort(InferenceEngine::Port({}, p));
#endif
netBuilder.addLayer({InferenceEngine::PortInfo(id)}, outLayer);
}
cnn = InferenceEngine::CNNNetwork(InferenceEngine::Builder::convertToICNNNetwork(netBuilder.build()));
}
switch (targetId)
{
case DNN_TARGET_CPU:
targetDevice = InferenceEngine::TargetDevice::eCPU;
break;
case DNN_TARGET_OPENCL: case DNN_TARGET_OPENCL_FP16:
targetDevice = InferenceEngine::TargetDevice::eGPU;
break;
case DNN_TARGET_MYRIAD:
targetDevice = InferenceEngine::TargetDevice::eMYRIAD;
break;
case DNN_TARGET_FPGA:
targetDevice = InferenceEngine::TargetDevice::eFPGA;
break;
default:
CV_Error(Error::StsError, format("Unknown target identifier: %d", targetId));
}
for (const auto& name : requestedOutputs)
{
cnn.addOutput(name);
}
for (const auto& it : cnn.getInputsInfo())
{
const std::string& name = it.first;
auto blobIt = allBlobs.find(name);
CV_Assert(blobIt != allBlobs.end());
it.second->setPrecision(blobIt->second->precision());
}
for (const auto& it : cnn.getOutputsInfo())
{
const std::string& name = it.first;
auto blobIt = allBlobs.find(name);
CV_Assert(blobIt != allBlobs.end());
it.second->setPrecision(blobIt->second->precision()); // Should be always FP32
}
initPlugin(cnn);
}
void InfEngineBackendNet::addLayer(InferenceEngine::Builder::Layer& layer)
{
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1)
// Add weights to network and connect them after input blobs.
std::map<std::string, InferenceEngine::Parameter>& params = layer.getParameters();
std::vector<int> blobsIds;
std::vector<int> portIds;
for (const std::string& name : {"weights", "biases"})
{
bool asInput = false;
int portId = 0;
for (int i = 0; i < layer.getInputPorts().size(); ++i)
{
const auto& port = layer.getInputPorts()[i];
auto it = port.getParameters().find("type");
if (it != port.getParameters().end() && it->second == name)
{
portId = i;
asInput = true;
break;
}
}
if (!asInput)
continue;
auto it = params.find(name);
if (it != params.end())
{
InferenceEngine::Blob::Ptr blob = it->second.as<InferenceEngine::Blob::Ptr>();
params.erase(it);
int blobId = netBuilder.addLayer(InferenceEngine::Builder::ConstLayer(name).setData(blob));
blobsIds.push_back(blobId);
portIds.push_back(portId);
}
}
#endif
int id = netBuilder.addLayer(layer);
const std::string& layerName = layer.getName();
CV_Assert(layers.insert({layerName, id}).second);
unconnectedLayersIds.insert(id);
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1)
// By default, all the weights are connected to last ports ids.
for (int i = 0; i < blobsIds.size(); ++i)
{
netBuilder.connect((size_t)blobsIds[i], {(size_t)id, (size_t)portIds[i]});
}
#endif
}
void InfEngineBackendNet::addOutput(const std::string& name)
{
requestedOutputs.push_back(name);
}
static InferenceEngine::Layout estimateLayout(const Mat& m)
{
if (m.dims == 4)
return InferenceEngine::Layout::NCHW;
else if (m.dims == 2)
return InferenceEngine::Layout::NC;
else
return InferenceEngine::Layout::ANY;
}
static InferenceEngine::DataPtr wrapToInfEngineDataNode(const Mat& m, const std::string& name = "")
{
std::vector<size_t> reversedShape(&m.size[0], &m.size[0] + m.dims);
std::reverse(reversedShape.begin(), reversedShape.end());
if (m.type() == CV_32F)
return InferenceEngine::DataPtr(
new InferenceEngine::Data(name, reversedShape, InferenceEngine::Precision::FP32, estimateLayout(m))
);
else if (m.type() == CV_8U)
return InferenceEngine::DataPtr(
new InferenceEngine::Data(name, reversedShape, InferenceEngine::Precision::U8, estimateLayout(m))
);
else
CV_Error(Error::StsNotImplemented, format("Unsupported data type %d", m.type()));
}
InferenceEngine::Blob::Ptr wrapToInfEngineBlob(const Mat& m, const std::vector<size_t>& shape,
InferenceEngine::Layout layout)
{
if (m.type() == CV_32F)
return InferenceEngine::make_shared_blob<float>(InferenceEngine::Precision::FP32,
layout, shape, (float*)m.data);
else if (m.type() == CV_8U)
return InferenceEngine::make_shared_blob<uint8_t>(InferenceEngine::Precision::U8,
layout, shape, (uint8_t*)m.data);
else
CV_Error(Error::StsNotImplemented, format("Unsupported data type %d", m.type()));
}
InferenceEngine::Blob::Ptr wrapToInfEngineBlob(const Mat& m, InferenceEngine::Layout layout)
{
std::vector<size_t> reversedShape(&m.size[0], &m.size[0] + m.dims);
std::reverse(reversedShape.begin(), reversedShape.end());
return wrapToInfEngineBlob(m, reversedShape, layout);
}
InferenceEngine::Blob::Ptr cloneBlob(const InferenceEngine::Blob::Ptr& blob)
{
InferenceEngine::Precision precision = blob->precision();
InferenceEngine::Blob::Ptr copy;
if (precision == InferenceEngine::Precision::FP32)
{
copy = InferenceEngine::make_shared_blob<float>(precision, blob->layout(), blob->dims());
}
else if (precision == InferenceEngine::Precision::U8)
{
copy = InferenceEngine::make_shared_blob<uint8_t>(precision, blob->layout(), blob->dims());
}
else
CV_Error(Error::StsNotImplemented, "Unsupported blob precision");
copy->allocate();
return copy;
}
InferenceEngine::DataPtr infEngineDataNode(const Ptr<BackendWrapper>& ptr)
{
CV_Assert(!ptr.empty());
Ptr<InfEngineBackendWrapper> p = ptr.dynamicCast<InfEngineBackendWrapper>();
CV_Assert(!p.empty());
return p->dataPtr;
}
InfEngineBackendWrapper::InfEngineBackendWrapper(int targetId, const cv::Mat& m)
: BackendWrapper(DNN_BACKEND_INFERENCE_ENGINE, targetId)
{
dataPtr = wrapToInfEngineDataNode(m);
blob = wrapToInfEngineBlob(m, estimateLayout(m));
}
InfEngineBackendWrapper::InfEngineBackendWrapper(Ptr<BackendWrapper> wrapper)
: BackendWrapper(DNN_BACKEND_INFERENCE_ENGINE, wrapper->targetId)
{
Ptr<InfEngineBackendWrapper> ieWrapper = wrapper.dynamicCast<InfEngineBackendWrapper>();
CV_Assert(!ieWrapper.empty());
InferenceEngine::DataPtr srcData = ieWrapper->dataPtr;
dataPtr = InferenceEngine::DataPtr(
new InferenceEngine::Data(srcData->name, srcData->dims, srcData->precision,
srcData->layout)
);
blob = ieWrapper->blob;
}
Ptr<BackendWrapper> InfEngineBackendWrapper::create(Ptr<BackendWrapper> wrapper)
{
return Ptr<BackendWrapper>(new InfEngineBackendWrapper(wrapper));
}
InfEngineBackendWrapper::~InfEngineBackendWrapper()
{
}
void InfEngineBackendWrapper::copyToHost()
{
}
void InfEngineBackendWrapper::setHostDirty()
{
}
static std::map<InferenceEngine::TargetDevice, InferenceEngine::InferenceEnginePluginPtr>& getSharedPlugins()
{
static std::map<InferenceEngine::TargetDevice, InferenceEngine::InferenceEnginePluginPtr> sharedPlugins;
return sharedPlugins;
}
#if !defined(OPENCV_DNN_IE_VPU_TYPE_DEFAULT)
static bool detectMyriadX_()
{
InferenceEngine::Builder::Network builder("");
InferenceEngine::idx_t inpId = builder.addLayer(
InferenceEngine::Builder::InputLayer().setPort(InferenceEngine::Port({1})));
#if INF_ENGINE_RELEASE <= 2018050000
InferenceEngine::idx_t clampId;
{
InferenceEngine::Builder::Layer l = InferenceEngine::Builder::ClampLayer();
auto& blobs = l.getConstantData();
auto blob = InferenceEngine::make_shared_blob<int16_t>(
InferenceEngine::Precision::FP16,
InferenceEngine::Layout::C, {1});
blob->allocate();
blobs[""] = blob;
clampId = builder.addLayer({inpId}, l);
}
builder.addLayer({InferenceEngine::PortInfo(clampId)}, InferenceEngine::Builder::OutputLayer());
#else
InferenceEngine::idx_t clampId = builder.addLayer({inpId}, InferenceEngine::Builder::ClampLayer());
builder.addLayer({InferenceEngine::PortInfo(clampId)},
InferenceEngine::Builder::OutputLayer().setPort(InferenceEngine::Port({},
InferenceEngine::Precision::FP16)));
#endif
InferenceEngine::CNNNetwork cnn = InferenceEngine::CNNNetwork(
InferenceEngine::Builder::convertToICNNNetwork(builder.build()));
InferenceEngine::TargetDevice device = InferenceEngine::TargetDevice::eMYRIAD;
InferenceEngine::InferenceEnginePluginPtr enginePtr;
{
AutoLock lock(getInitializationMutex());
auto& sharedPlugins = getSharedPlugins();
auto pluginIt = sharedPlugins.find(device);
if (pluginIt != sharedPlugins.end()) {
enginePtr = pluginIt->second;
} else {
auto dispatcher = InferenceEngine::PluginDispatcher({""});
enginePtr = dispatcher.getSuitablePlugin(device);
sharedPlugins[device] = enginePtr;
}
}
auto plugin = InferenceEngine::InferencePlugin(enginePtr);
try
{
auto netExec = plugin.LoadNetwork(cnn, {{"VPU_PLATFORM", "VPU_2480"}});
auto infRequest = netExec.CreateInferRequest();
} catch(...) {
return false;
}
return true;
}
#endif // !defined(OPENCV_DNN_IE_VPU_TYPE_DEFAULT)
void InfEngineBackendNet::initPlugin(InferenceEngine::ICNNNetwork& net)
{
CV_Assert(!isInitialized());
try
{
AutoLock lock(getInitializationMutex());
auto& sharedPlugins = getSharedPlugins();
auto pluginIt = sharedPlugins.find(targetDevice);
if (pluginIt != sharedPlugins.end())
{
enginePtr = pluginIt->second;
}
else
{
auto dispatcher = InferenceEngine::PluginDispatcher({""});
if (targetDevice == InferenceEngine::TargetDevice::eFPGA)
enginePtr = dispatcher.getPluginByDevice("HETERO:FPGA,CPU");
else
enginePtr = dispatcher.getSuitablePlugin(targetDevice);
sharedPlugins[targetDevice] = enginePtr;
std::vector<std::string> candidates;
std::string param_pluginPath = utils::getConfigurationParameterString("OPENCV_DNN_IE_EXTRA_PLUGIN_PATH", "");
if (!param_pluginPath.empty())
{
candidates.push_back(param_pluginPath);
}
if (targetDevice == InferenceEngine::TargetDevice::eCPU ||
targetDevice == InferenceEngine::TargetDevice::eFPGA)
{
std::string suffixes[] = {"_avx2", "_sse4", ""};
bool haveFeature[] = {
checkHardwareSupport(CPU_AVX2),
checkHardwareSupport(CPU_SSE4_2),
true
};
for (int i = 0; i < 3; ++i)
{
if (!haveFeature[i])
continue;
#ifdef _WIN32
candidates.push_back("cpu_extension" + suffixes[i] + ".dll");
#elif defined(__APPLE__)
candidates.push_back("libcpu_extension" + suffixes[i] + ".so"); // built as loadable module
candidates.push_back("libcpu_extension" + suffixes[i] + ".dylib"); // built as shared library
#else
candidates.push_back("libcpu_extension" + suffixes[i] + ".so");
#endif // _WIN32
}
}
bool found = false;
for (size_t i = 0; i != candidates.size(); ++i)
{
const std::string& libName = candidates[i];
try
{
InferenceEngine::IExtensionPtr extension =
InferenceEngine::make_so_pointer<InferenceEngine::IExtension>(libName);
enginePtr->AddExtension(extension, 0);
CV_LOG_INFO(NULL, "DNN-IE: Loaded extension plugin: " << libName);
found = true;
break;
}
catch(...) {}
}
if (!found && !candidates.empty())
{
CV_LOG_WARNING(NULL, "DNN-IE: Can't load extension plugin (extra layers for some networks). Specify path via OPENCV_DNN_IE_EXTRA_PLUGIN_PATH parameter");
}
// Some of networks can work without a library of extra layers.
#ifndef _WIN32
// Limit the number of CPU threads.
enginePtr->SetConfig({{
InferenceEngine::PluginConfigParams::KEY_CPU_THREADS_NUM, format("%d", getNumThreads()),
}}, 0);
#endif
}
plugin = InferenceEngine::InferencePlugin(enginePtr);
netExec = plugin.LoadNetwork(net, {});
}
catch (const std::exception& ex)
{
CV_Error(Error::StsAssert, format("Failed to initialize Inference Engine backend: %s", ex.what()));
}
}
bool InfEngineBackendNet::isInitialized()
{
return (bool)enginePtr;
}
void InfEngineBackendNet::addBlobs(const std::vector<cv::Ptr<BackendWrapper> >& ptrs)
{
auto wrappers = infEngineWrappers(ptrs);
for (const auto& wrapper : wrappers)
{
std::string name = wrapper->dataPtr->name;
name = name.empty() ? kDefaultInpLayerName : name;
allBlobs.insert({name, wrapper->blob});
}
}
void InfEngineBackendNet::InfEngineReqWrapper::makePromises(const std::vector<Ptr<BackendWrapper> >& outsWrappers)
{
auto outs = infEngineWrappers(outsWrappers);
outProms.clear();
outProms.resize(outs.size());
outsNames.resize(outs.size());
for (int i = 0; i < outs.size(); ++i)
{
outs[i]->futureMat = outProms[i].getArrayResult();
outsNames[i] = outs[i]->dataPtr->name;
}
}
void InfEngineBackendNet::forward(const std::vector<Ptr<BackendWrapper> >& outBlobsWrappers,
bool isAsync)
{
// Look for finished requests.
Ptr<InfEngineReqWrapper> reqWrapper;
for (auto& wrapper : infRequests)
{
if (wrapper->isReady)
{
reqWrapper = wrapper;
break;
}
}
if (reqWrapper.empty())
{
reqWrapper = Ptr<InfEngineReqWrapper>(new InfEngineReqWrapper());
try
{
reqWrapper->req = netExec.CreateInferRequest();
}
catch (const std::exception& ex)
{
CV_Error(Error::StsAssert, format("Failed to initialize Inference Engine backend: %s", ex.what()));
}
infRequests.push_back(reqWrapper);
InferenceEngine::BlobMap inpBlobs, outBlobs;
for (const auto& it : cnn.getInputsInfo())
{
const std::string& name = it.first;
auto blobIt = allBlobs.find(name);
CV_Assert(blobIt != allBlobs.end());
inpBlobs[name] = isAsync ? cloneBlob(blobIt->second) : blobIt->second;
}
for (const auto& it : cnn.getOutputsInfo())
{
const std::string& name = it.first;
auto blobIt = allBlobs.find(name);
CV_Assert(blobIt != allBlobs.end());
outBlobs[name] = isAsync ? cloneBlob(blobIt->second) : blobIt->second;
}
reqWrapper->req.SetInput(inpBlobs);
reqWrapper->req.SetOutput(outBlobs);
InferenceEngine::IInferRequest::Ptr infRequestPtr = reqWrapper->req;
infRequestPtr->SetUserData(reqWrapper.get(), 0);
infRequestPtr->SetCompletionCallback(
[](InferenceEngine::IInferRequest::Ptr request, InferenceEngine::StatusCode status)
{
InfEngineReqWrapper* wrapper;
request->GetUserData((void**)&wrapper, 0);
CV_Assert(wrapper && "Internal error");
size_t processedOutputs = 0;
try
{
for (; processedOutputs < wrapper->outProms.size(); ++processedOutputs)
{
const std::string& name = wrapper->outsNames[processedOutputs];
Mat m = infEngineBlobToMat(wrapper->req.GetBlob(name));
try
{
CV_Assert(status == InferenceEngine::StatusCode::OK);
wrapper->outProms[processedOutputs].setValue(m.clone());
}
catch (...)
{
try {
wrapper->outProms[processedOutputs].setException(std::current_exception());
} catch(...) {
CV_LOG_ERROR(NULL, "DNN: Exception occured during async inference exception propagation");
}
}
}
}
catch (...)
{
std::exception_ptr e = std::current_exception();
for (; processedOutputs < wrapper->outProms.size(); ++processedOutputs)
{
try {
wrapper->outProms[processedOutputs].setException(e);
} catch(...) {
CV_LOG_ERROR(NULL, "DNN: Exception occured during async inference exception propagation");
}
}
}
wrapper->isReady = true;
}
);
}
if (isAsync)
{
// Copy actual data to infer request's input blobs.
for (const auto& it : cnn.getInputsInfo())
{
const std::string& name = it.first;
auto blobIt = allBlobs.find(name);
Mat srcMat = infEngineBlobToMat(blobIt->second);
Mat dstMat = infEngineBlobToMat(reqWrapper->req.GetBlob(name));
srcMat.copyTo(dstMat);
}
// Set promises to output blobs wrappers.
reqWrapper->makePromises(outBlobsWrappers);
reqWrapper->isReady = false;
reqWrapper->req.StartAsync();
}
else
{
reqWrapper->req.Infer();
}
}
Mat infEngineBlobToMat(const InferenceEngine::Blob::Ptr& blob)
{
// NOTE: Inference Engine sizes are reversed.
std::vector<size_t> dims = blob->dims();
std::vector<int> size(dims.rbegin(), dims.rend());
int type = -1;
switch (blob->precision())
{
case InferenceEngine::Precision::FP32: type = CV_32F; break;
case InferenceEngine::Precision::U8: type = CV_8U; break;
default:
CV_Error(Error::StsNotImplemented, "Unsupported blob precision");
}
return Mat(size, type, (void*)blob->buffer());
}
bool InfEngineBackendLayer::getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const
{
InferenceEngine::ICNNNetwork::InputShapes inShapes = t_net.getInputShapes();
InferenceEngine::ICNNNetwork::InputShapes::iterator itr;
bool equal_flag = true;
size_t i = 0;
for (itr = inShapes.begin(); itr != inShapes.end(); ++itr)
{
InferenceEngine::SizeVector currentInShape(inputs[i].begin(), inputs[i].end());
if (itr->second != currentInShape)
{
itr->second = currentInShape;
equal_flag = false;
}
i++;
}
if (!equal_flag)
{
InferenceEngine::CNNNetwork curr_t_net(t_net);
curr_t_net.reshape(inShapes);
}
std::vector<size_t> dims = t_net.getOutputsInfo()[name]->getDims();
outputs.push_back(MatShape(dims.begin(), dims.end()));
return false;
}
bool InfEngineBackendLayer::supportBackend(int backendId)
{
return backendId == DNN_BACKEND_DEFAULT ||
(backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine());
}
void InfEngineBackendLayer::forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs,
OutputArrayOfArrays internals)
{
CV_Error(Error::StsInternal, "Choose Inference Engine as a preferable backend.");
}
InferenceEngine::Blob::Ptr convertFp16(const InferenceEngine::Blob::Ptr& blob)
{
auto halfs = InferenceEngine::make_shared_blob<int16_t>(InferenceEngine::Precision::FP16, blob->layout(), blob->dims());
halfs->allocate();
Mat floatsData(1, blob->size(), CV_32F, blob->buffer());
Mat halfsData(1, blob->size(), CV_16SC1, halfs->buffer());
convertFp16(floatsData, halfsData);
return halfs;
}
void addConstantData(const std::string& name, InferenceEngine::Blob::Ptr data,
InferenceEngine::Builder::Layer& l)
{
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1)
l.getParameters()[name] = data;
#else
l.addConstantData(name, data);
#endif
}
#endif // HAVE_INF_ENGINE
bool haveInfEngine()
{
#ifdef HAVE_INF_ENGINE
return true;
#else
return false;
#endif // HAVE_INF_ENGINE
}
void forwardInfEngine(const std::vector<Ptr<BackendWrapper> >& outBlobsWrappers,
Ptr<BackendNode>& node, bool isAsync)
{
CV_Assert(haveInfEngine());
#ifdef HAVE_INF_ENGINE
CV_Assert(!node.empty());
Ptr<InfEngineBackendNode> ieNode = node.dynamicCast<InfEngineBackendNode>();
CV_Assert(!ieNode.empty());
ieNode->net->forward(outBlobsWrappers, isAsync);
#endif // HAVE_INF_ENGINE
}
CV__DNN_INLINE_NS_BEGIN
void resetMyriadDevice()
{
#ifdef HAVE_INF_ENGINE
AutoLock lock(getInitializationMutex());
getSharedPlugins().erase(InferenceEngine::TargetDevice::eMYRIAD);
#endif // HAVE_INF_ENGINE
}
#ifdef HAVE_INF_ENGINE
bool isMyriadX()
{
static bool myriadX = getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X;
return myriadX;
}
static std::string getInferenceEngineVPUType_()
{
static std::string param_vpu_type = utils::getConfigurationParameterString("OPENCV_DNN_IE_VPU_TYPE", "");
if (param_vpu_type == "")
{
#if defined(OPENCV_DNN_IE_VPU_TYPE_DEFAULT)
param_vpu_type = OPENCV_DNN_IE_VPU_TYPE_DEFAULT;
#else
CV_LOG_INFO(NULL, "OpenCV-DNN: running Inference Engine VPU autodetection: Myriad2/X. In case of other accelerator types specify 'OPENCV_DNN_IE_VPU_TYPE' parameter");
try {
bool isMyriadX_ = detectMyriadX_();
if (isMyriadX_)
{
param_vpu_type = CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X;
}
else
{
param_vpu_type = CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2;
}
}
catch (...)
{
CV_LOG_WARNING(NULL, "OpenCV-DNN: Failed Inference Engine VPU autodetection. Specify 'OPENCV_DNN_IE_VPU_TYPE' parameter.");
param_vpu_type.clear();
}
#endif
}
CV_LOG_INFO(NULL, "OpenCV-DNN: Inference Engine VPU type='" << param_vpu_type << "'");
return param_vpu_type;
}
cv::String getInferenceEngineVPUType()
{
static cv::String vpu_type = getInferenceEngineVPUType_();
return vpu_type;
}
#else // HAVE_INF_ENGINE
cv::String getInferenceEngineVPUType()
{
CV_Error(Error::StsNotImplemented, "This OpenCV build doesn't include InferenceEngine support");
}
#endif // HAVE_INF_ENGINE
CV__DNN_INLINE_NS_END
}} // namespace dnn, namespace cv