op_inf_engine.cpp 27.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2019, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.

#include "precomp.hpp"
#include "op_inf_engine.hpp"
#include <opencv2/dnn/shape_utils.hpp>

#ifdef HAVE_INF_ENGINE
#include <ie_extension.h>
#include <ie_plugin_dispatcher.hpp>
#endif  // HAVE_INF_ENGINE

#include <opencv2/core/utils/configuration.private.hpp>
#include <opencv2/core/utils/logger.hpp>

namespace cv { namespace dnn {

#ifdef HAVE_INF_ENGINE

// For networks with input layer which has an empty name, IE generates a name id[some_number].
// OpenCV lets users use an empty input name and to prevent unexpected naming,
// we can use some predefined name.
static std::string kDefaultInpLayerName = "empty_inp_layer_name";

InfEngineBackendNode::InfEngineBackendNode(const InferenceEngine::Builder::Layer& _layer)
    : BackendNode(DNN_BACKEND_INFERENCE_ENGINE), layer(_layer) {}

static std::vector<Ptr<InfEngineBackendWrapper> >
infEngineWrappers(const std::vector<Ptr<BackendWrapper> >& ptrs)
{
    std::vector<Ptr<InfEngineBackendWrapper> > wrappers(ptrs.size());
    for (int i = 0; i < ptrs.size(); ++i)
    {
        CV_Assert(!ptrs[i].empty());
        wrappers[i] = ptrs[i].dynamicCast<InfEngineBackendWrapper>();
        CV_Assert(!wrappers[i].empty());
    }
    return wrappers;
}

InfEngineBackendNet::InfEngineBackendNet() : netBuilder("")
{
    hasNetOwner = false;
    targetDevice = InferenceEngine::TargetDevice::eCPU;
}

InfEngineBackendNet::InfEngineBackendNet(InferenceEngine::CNNNetwork& net) : netBuilder(""), cnn(net)
{
    hasNetOwner = true;
    targetDevice = InferenceEngine::TargetDevice::eCPU;
}

void InfEngineBackendNet::connect(const std::vector<Ptr<BackendWrapper> >& inputs,
                                  const std::vector<Ptr<BackendWrapper> >& outputs,
                                  const std::string& layerName)
{
    std::vector<Ptr<InfEngineBackendWrapper> > inpWrappers = infEngineWrappers(inputs);
    std::map<std::string, int>::iterator it = layers.find(layerName);
    CV_Assert(it != layers.end());

    const int layerId = it->second;
    for (size_t i = 0; i < inpWrappers.size(); ++i)
    {
        const auto& inp = inpWrappers[i];
        const std::string& inpName = inp->dataPtr->name;
        int inpId;
        it = layers.find(inpName);
        if (it == layers.end())
        {
            InferenceEngine::Builder::InputLayer inpLayer(!inpName.empty() ? inpName : kDefaultInpLayerName);

            std::vector<size_t> shape(inp->blob->dims());
            std::reverse(shape.begin(), shape.end());

            inpLayer.setPort(InferenceEngine::Port(shape));
            inpId = netBuilder.addLayer(inpLayer);

            layers.insert({inpName, inpId});
        }
        else
            inpId = it->second;

        netBuilder.connect((size_t)inpId, {(size_t)layerId, i});
        unconnectedLayersIds.erase(inpId);
    }
    CV_Assert(!outputs.empty());
    InferenceEngine::DataPtr dataPtr = infEngineDataNode(outputs[0]);
    dataPtr->name = layerName;
}

void InfEngineBackendNet::init(int targetId)
{
    if (!hasNetOwner)
    {
        CV_Assert(!unconnectedLayersIds.empty());
        for (int id : unconnectedLayersIds)
        {
            InferenceEngine::Builder::OutputLayer outLayer("myconv1");
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1)
            // Inference Engine determines network precision by ports.
            InferenceEngine::Precision p = (targetId == DNN_TARGET_MYRIAD ||
                                            targetId == DNN_TARGET_OPENCL_FP16) ?
                                           InferenceEngine::Precision::FP16 :
                                           InferenceEngine::Precision::FP32;
            outLayer.setPort(InferenceEngine::Port({}, p));
#endif
            netBuilder.addLayer({InferenceEngine::PortInfo(id)}, outLayer);
        }
        cnn = InferenceEngine::CNNNetwork(InferenceEngine::Builder::convertToICNNNetwork(netBuilder.build()));
    }

    switch (targetId)
    {
    case DNN_TARGET_CPU:
        targetDevice = InferenceEngine::TargetDevice::eCPU;
        break;
    case DNN_TARGET_OPENCL: case DNN_TARGET_OPENCL_FP16:
        targetDevice = InferenceEngine::TargetDevice::eGPU;
        break;
    case DNN_TARGET_MYRIAD:
        targetDevice = InferenceEngine::TargetDevice::eMYRIAD;
        break;
    case DNN_TARGET_FPGA:
        targetDevice = InferenceEngine::TargetDevice::eFPGA;
        break;
    default:
        CV_Error(Error::StsError, format("Unknown target identifier: %d", targetId));
    }

    for (const auto& name : requestedOutputs)
    {
        cnn.addOutput(name);
    }

    for (const auto& it : cnn.getInputsInfo())
    {
        const std::string& name = it.first;
        auto blobIt = allBlobs.find(name);
        CV_Assert(blobIt != allBlobs.end());
        it.second->setPrecision(blobIt->second->precision());
    }
    for (const auto& it : cnn.getOutputsInfo())
    {
        const std::string& name = it.first;
        auto blobIt = allBlobs.find(name);
        CV_Assert(blobIt != allBlobs.end());
        it.second->setPrecision(blobIt->second->precision());  // Should be always FP32
    }

    initPlugin(cnn);
}

void InfEngineBackendNet::addLayer(InferenceEngine::Builder::Layer& layer)
{
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1)
    // Add weights to network and connect them after input blobs.
    std::map<std::string, InferenceEngine::Parameter>& params = layer.getParameters();
    std::vector<int> blobsIds;
    std::vector<int> portIds;
    for (const std::string& name : {"weights", "biases"})
    {
        bool asInput = false;
        int portId = 0;
        for (int i = 0; i < layer.getInputPorts().size(); ++i)
        {
            const auto& port = layer.getInputPorts()[i];
            auto it = port.getParameters().find("type");
            if (it != port.getParameters().end() && it->second == name)
            {
                portId = i;
                asInput = true;
                break;
            }
        }

        if (!asInput)
            continue;

        auto it = params.find(name);
        if (it != params.end())
        {
            InferenceEngine::Blob::Ptr blob = it->second.as<InferenceEngine::Blob::Ptr>();
            params.erase(it);
            int blobId = netBuilder.addLayer(InferenceEngine::Builder::ConstLayer(name).setData(blob));
            blobsIds.push_back(blobId);
            portIds.push_back(portId);
        }
    }
#endif

    int id = netBuilder.addLayer(layer);
    const std::string& layerName = layer.getName();
    CV_Assert(layers.insert({layerName, id}).second);
    unconnectedLayersIds.insert(id);

#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1)
    // By default, all the weights are connected to last ports ids.
    for (int i = 0; i < blobsIds.size(); ++i)
    {
        netBuilder.connect((size_t)blobsIds[i], {(size_t)id, (size_t)portIds[i]});
    }
#endif
}

void InfEngineBackendNet::addOutput(const std::string& name)
{
    requestedOutputs.push_back(name);
}

static InferenceEngine::Layout estimateLayout(const Mat& m)
{
    if (m.dims == 4)
        return InferenceEngine::Layout::NCHW;
    else if (m.dims == 2)
        return InferenceEngine::Layout::NC;
    else
        return InferenceEngine::Layout::ANY;
}

static InferenceEngine::DataPtr wrapToInfEngineDataNode(const Mat& m, const std::string& name = "")
{
    std::vector<size_t> reversedShape(&m.size[0], &m.size[0] + m.dims);
    std::reverse(reversedShape.begin(), reversedShape.end());
    if (m.type() == CV_32F)
        return InferenceEngine::DataPtr(
            new InferenceEngine::Data(name, reversedShape, InferenceEngine::Precision::FP32, estimateLayout(m))
        );
    else if (m.type() == CV_8U)
        return InferenceEngine::DataPtr(
            new InferenceEngine::Data(name, reversedShape, InferenceEngine::Precision::U8, estimateLayout(m))
        );
    else
        CV_Error(Error::StsNotImplemented, format("Unsupported data type %d", m.type()));
}

InferenceEngine::Blob::Ptr wrapToInfEngineBlob(const Mat& m, const std::vector<size_t>& shape,
                                               InferenceEngine::Layout layout)
{
    if (m.type() == CV_32F)
        return InferenceEngine::make_shared_blob<float>(InferenceEngine::Precision::FP32,
                                                        layout, shape, (float*)m.data);
    else if (m.type() == CV_8U)
        return InferenceEngine::make_shared_blob<uint8_t>(InferenceEngine::Precision::U8,
                                                          layout, shape, (uint8_t*)m.data);
    else
        CV_Error(Error::StsNotImplemented, format("Unsupported data type %d", m.type()));
}

InferenceEngine::Blob::Ptr wrapToInfEngineBlob(const Mat& m, InferenceEngine::Layout layout)
{
    std::vector<size_t> reversedShape(&m.size[0], &m.size[0] + m.dims);
    std::reverse(reversedShape.begin(), reversedShape.end());
    return wrapToInfEngineBlob(m, reversedShape, layout);
}

InferenceEngine::Blob::Ptr cloneBlob(const InferenceEngine::Blob::Ptr& blob)
{
    InferenceEngine::Precision precision = blob->precision();
    InferenceEngine::Blob::Ptr copy;
    if (precision == InferenceEngine::Precision::FP32)
    {
        copy = InferenceEngine::make_shared_blob<float>(precision, blob->layout(), blob->dims());
    }
    else if (precision == InferenceEngine::Precision::U8)
    {
        copy = InferenceEngine::make_shared_blob<uint8_t>(precision, blob->layout(), blob->dims());
    }
    else
        CV_Error(Error::StsNotImplemented, "Unsupported blob precision");
    copy->allocate();
    return copy;
}

InferenceEngine::DataPtr infEngineDataNode(const Ptr<BackendWrapper>& ptr)
{
    CV_Assert(!ptr.empty());
    Ptr<InfEngineBackendWrapper> p = ptr.dynamicCast<InfEngineBackendWrapper>();
    CV_Assert(!p.empty());
    return p->dataPtr;
}

InfEngineBackendWrapper::InfEngineBackendWrapper(int targetId, const cv::Mat& m)
    : BackendWrapper(DNN_BACKEND_INFERENCE_ENGINE, targetId)
{
    dataPtr = wrapToInfEngineDataNode(m);
    blob = wrapToInfEngineBlob(m, estimateLayout(m));
}

InfEngineBackendWrapper::InfEngineBackendWrapper(Ptr<BackendWrapper> wrapper)
    : BackendWrapper(DNN_BACKEND_INFERENCE_ENGINE, wrapper->targetId)
{
    Ptr<InfEngineBackendWrapper> ieWrapper = wrapper.dynamicCast<InfEngineBackendWrapper>();
    CV_Assert(!ieWrapper.empty());
    InferenceEngine::DataPtr srcData = ieWrapper->dataPtr;
    dataPtr = InferenceEngine::DataPtr(
        new InferenceEngine::Data(srcData->name, srcData->dims, srcData->precision,
                                  srcData->layout)
    );
    blob = ieWrapper->blob;
}

Ptr<BackendWrapper> InfEngineBackendWrapper::create(Ptr<BackendWrapper> wrapper)
{
    return Ptr<BackendWrapper>(new InfEngineBackendWrapper(wrapper));
}

InfEngineBackendWrapper::~InfEngineBackendWrapper()
{

}

void InfEngineBackendWrapper::copyToHost()
{

}

void InfEngineBackendWrapper::setHostDirty()
{

}


static std::map<InferenceEngine::TargetDevice, InferenceEngine::InferenceEnginePluginPtr>& getSharedPlugins()
{
    static std::map<InferenceEngine::TargetDevice, InferenceEngine::InferenceEnginePluginPtr> sharedPlugins;
    return sharedPlugins;
}


#if !defined(OPENCV_DNN_IE_VPU_TYPE_DEFAULT)
static bool detectMyriadX_()
{
    InferenceEngine::Builder::Network builder("");
    InferenceEngine::idx_t inpId = builder.addLayer(
                                   InferenceEngine::Builder::InputLayer().setPort(InferenceEngine::Port({1})));

#if INF_ENGINE_RELEASE <= 2018050000
    InferenceEngine::idx_t clampId;
    {
        InferenceEngine::Builder::Layer l = InferenceEngine::Builder::ClampLayer();
        auto& blobs = l.getConstantData();
        auto blob = InferenceEngine::make_shared_blob<int16_t>(
                        InferenceEngine::Precision::FP16,
                        InferenceEngine::Layout::C, {1});
        blob->allocate();
        blobs[""] = blob;
        clampId = builder.addLayer({inpId}, l);
    }
    builder.addLayer({InferenceEngine::PortInfo(clampId)}, InferenceEngine::Builder::OutputLayer());
#else

    InferenceEngine::idx_t clampId = builder.addLayer({inpId}, InferenceEngine::Builder::ClampLayer());
    builder.addLayer({InferenceEngine::PortInfo(clampId)},
                      InferenceEngine::Builder::OutputLayer().setPort(InferenceEngine::Port({},
                      InferenceEngine::Precision::FP16)));
#endif

    InferenceEngine::CNNNetwork cnn = InferenceEngine::CNNNetwork(
                                      InferenceEngine::Builder::convertToICNNNetwork(builder.build()));

    InferenceEngine::TargetDevice device = InferenceEngine::TargetDevice::eMYRIAD;
    InferenceEngine::InferenceEnginePluginPtr enginePtr;
    {
        AutoLock lock(getInitializationMutex());
        auto& sharedPlugins = getSharedPlugins();
        auto pluginIt = sharedPlugins.find(device);
        if (pluginIt != sharedPlugins.end()) {
            enginePtr = pluginIt->second;
        } else {
            auto dispatcher = InferenceEngine::PluginDispatcher({""});
            enginePtr = dispatcher.getSuitablePlugin(device);
            sharedPlugins[device] = enginePtr;
        }
    }
    auto plugin = InferenceEngine::InferencePlugin(enginePtr);
    try
    {
        auto netExec = plugin.LoadNetwork(cnn, {{"VPU_PLATFORM", "VPU_2480"}});
        auto infRequest = netExec.CreateInferRequest();
    } catch(...) {
        return false;
    }
    return true;
}
#endif  // !defined(OPENCV_DNN_IE_VPU_TYPE_DEFAULT)

void InfEngineBackendNet::initPlugin(InferenceEngine::ICNNNetwork& net)
{
    CV_Assert(!isInitialized());

    try
    {
        AutoLock lock(getInitializationMutex());
        auto& sharedPlugins = getSharedPlugins();
        auto pluginIt = sharedPlugins.find(targetDevice);
        if (pluginIt != sharedPlugins.end())
        {
            enginePtr = pluginIt->second;
        }
        else
        {
            auto dispatcher = InferenceEngine::PluginDispatcher({""});
            if (targetDevice == InferenceEngine::TargetDevice::eFPGA)
                enginePtr = dispatcher.getPluginByDevice("HETERO:FPGA,CPU");
            else
                enginePtr = dispatcher.getSuitablePlugin(targetDevice);
            sharedPlugins[targetDevice] = enginePtr;

            std::vector<std::string> candidates;

            std::string param_pluginPath = utils::getConfigurationParameterString("OPENCV_DNN_IE_EXTRA_PLUGIN_PATH", "");
            if (!param_pluginPath.empty())
            {
                candidates.push_back(param_pluginPath);
            }

            if (targetDevice == InferenceEngine::TargetDevice::eCPU ||
                targetDevice == InferenceEngine::TargetDevice::eFPGA)
            {
                std::string suffixes[] = {"_avx2", "_sse4", ""};
                bool haveFeature[] = {
                    checkHardwareSupport(CPU_AVX2),
                    checkHardwareSupport(CPU_SSE4_2),
                    true
                };
                for (int i = 0; i < 3; ++i)
                {
                    if (!haveFeature[i])
                        continue;
#ifdef _WIN32
                    candidates.push_back("cpu_extension" + suffixes[i] + ".dll");
#elif defined(__APPLE__)
                    candidates.push_back("libcpu_extension" + suffixes[i] + ".so");  // built as loadable module
                    candidates.push_back("libcpu_extension" + suffixes[i] + ".dylib");  // built as shared library
#else
                    candidates.push_back("libcpu_extension" + suffixes[i] + ".so");
#endif  // _WIN32
                }
            }
            bool found = false;
            for (size_t i = 0; i != candidates.size(); ++i)
            {
                const std::string& libName = candidates[i];
                try
                {
                    InferenceEngine::IExtensionPtr extension =
                        InferenceEngine::make_so_pointer<InferenceEngine::IExtension>(libName);
                    enginePtr->AddExtension(extension, 0);
                    CV_LOG_INFO(NULL, "DNN-IE: Loaded extension plugin: " << libName);
                    found = true;
                    break;
                }
                catch(...) {}
            }
            if (!found && !candidates.empty())
            {
                CV_LOG_WARNING(NULL, "DNN-IE: Can't load extension plugin (extra layers for some networks). Specify path via OPENCV_DNN_IE_EXTRA_PLUGIN_PATH parameter");
            }
            // Some of networks can work without a library of extra layers.
#ifndef _WIN32
            // Limit the number of CPU threads.
            enginePtr->SetConfig({{
                InferenceEngine::PluginConfigParams::KEY_CPU_THREADS_NUM, format("%d", getNumThreads()),
            }}, 0);
#endif
        }
        plugin = InferenceEngine::InferencePlugin(enginePtr);

        netExec = plugin.LoadNetwork(net, {});
    }
    catch (const std::exception& ex)
    {
        CV_Error(Error::StsAssert, format("Failed to initialize Inference Engine backend: %s", ex.what()));
    }
}

bool InfEngineBackendNet::isInitialized()
{
    return (bool)enginePtr;
}

void InfEngineBackendNet::addBlobs(const std::vector<cv::Ptr<BackendWrapper> >& ptrs)
{
    auto wrappers = infEngineWrappers(ptrs);
    for (const auto& wrapper : wrappers)
    {
        std::string name = wrapper->dataPtr->name;
        name = name.empty() ? kDefaultInpLayerName : name;
        allBlobs.insert({name, wrapper->blob});
    }
}

void InfEngineBackendNet::InfEngineReqWrapper::makePromises(const std::vector<Ptr<BackendWrapper> >& outsWrappers)
{
    auto outs = infEngineWrappers(outsWrappers);
    outProms.clear();
    outProms.resize(outs.size());
    outsNames.resize(outs.size());
    for (int i = 0; i < outs.size(); ++i)
    {
        outs[i]->futureMat = outProms[i].getArrayResult();
        outsNames[i] = outs[i]->dataPtr->name;
    }
}

void InfEngineBackendNet::forward(const std::vector<Ptr<BackendWrapper> >& outBlobsWrappers,
                                  bool isAsync)
{
    // Look for finished requests.
    Ptr<InfEngineReqWrapper> reqWrapper;
    for (auto& wrapper : infRequests)
    {
        if (wrapper->isReady)
        {
            reqWrapper = wrapper;
            break;
        }
    }
    if (reqWrapper.empty())
    {
        reqWrapper = Ptr<InfEngineReqWrapper>(new InfEngineReqWrapper());
        try
        {
            reqWrapper->req = netExec.CreateInferRequest();
        }
        catch (const std::exception& ex)
        {
            CV_Error(Error::StsAssert, format("Failed to initialize Inference Engine backend: %s", ex.what()));
        }
        infRequests.push_back(reqWrapper);

        InferenceEngine::BlobMap inpBlobs, outBlobs;
        for (const auto& it : cnn.getInputsInfo())
        {
            const std::string& name = it.first;
            auto blobIt = allBlobs.find(name);
            CV_Assert(blobIt != allBlobs.end());
            inpBlobs[name] = isAsync ? cloneBlob(blobIt->second) : blobIt->second;
        }
        for (const auto& it : cnn.getOutputsInfo())
        {
            const std::string& name = it.first;
            auto blobIt = allBlobs.find(name);
            CV_Assert(blobIt != allBlobs.end());
            outBlobs[name] = isAsync ? cloneBlob(blobIt->second) : blobIt->second;
        }
        reqWrapper->req.SetInput(inpBlobs);
        reqWrapper->req.SetOutput(outBlobs);

        InferenceEngine::IInferRequest::Ptr infRequestPtr = reqWrapper->req;
        infRequestPtr->SetUserData(reqWrapper.get(), 0);

        infRequestPtr->SetCompletionCallback(
            [](InferenceEngine::IInferRequest::Ptr request, InferenceEngine::StatusCode status)
            {
                InfEngineReqWrapper* wrapper;
                request->GetUserData((void**)&wrapper, 0);
                CV_Assert(wrapper && "Internal error");

                size_t processedOutputs = 0;
                try
                {
                    for (; processedOutputs < wrapper->outProms.size(); ++processedOutputs)
                    {
                        const std::string& name = wrapper->outsNames[processedOutputs];
                        Mat m = infEngineBlobToMat(wrapper->req.GetBlob(name));

                        try
                        {
                            CV_Assert(status == InferenceEngine::StatusCode::OK);
                            wrapper->outProms[processedOutputs].setValue(m.clone());
                        }
                        catch (...)
                        {
                            try {
                                wrapper->outProms[processedOutputs].setException(std::current_exception());
                            } catch(...) {
                                CV_LOG_ERROR(NULL, "DNN: Exception occured during async inference exception propagation");
                            }
                        }
                    }
                }
                catch (...)
                {
                    std::exception_ptr e = std::current_exception();
                    for (; processedOutputs < wrapper->outProms.size(); ++processedOutputs)
                    {
                        try {
                            wrapper->outProms[processedOutputs].setException(e);
                        } catch(...) {
                            CV_LOG_ERROR(NULL, "DNN: Exception occured during async inference exception propagation");
                        }
                    }
                }
                wrapper->isReady = true;
            }
        );
    }
    if (isAsync)
    {
        // Copy actual data to infer request's input blobs.
        for (const auto& it : cnn.getInputsInfo())
        {
            const std::string& name = it.first;
            auto blobIt = allBlobs.find(name);
            Mat srcMat = infEngineBlobToMat(blobIt->second);
            Mat dstMat = infEngineBlobToMat(reqWrapper->req.GetBlob(name));
            srcMat.copyTo(dstMat);
        }

        // Set promises to output blobs wrappers.
        reqWrapper->makePromises(outBlobsWrappers);

        reqWrapper->isReady = false;
        reqWrapper->req.StartAsync();
    }
    else
    {
        reqWrapper->req.Infer();
    }
}

Mat infEngineBlobToMat(const InferenceEngine::Blob::Ptr& blob)
{
    // NOTE: Inference Engine sizes are reversed.
    std::vector<size_t> dims = blob->dims();
    std::vector<int> size(dims.rbegin(), dims.rend());

    int type = -1;
    switch (blob->precision())
    {
        case InferenceEngine::Precision::FP32: type = CV_32F; break;
        case InferenceEngine::Precision::U8: type = CV_8U; break;
        default:
            CV_Error(Error::StsNotImplemented, "Unsupported blob precision");
    }
    return Mat(size, type, (void*)blob->buffer());
}

bool InfEngineBackendLayer::getMemoryShapes(const std::vector<MatShape> &inputs,
                                            const int requiredOutputs,
                                            std::vector<MatShape> &outputs,
                                            std::vector<MatShape> &internals) const
{
    InferenceEngine::ICNNNetwork::InputShapes inShapes = t_net.getInputShapes();
    InferenceEngine::ICNNNetwork::InputShapes::iterator itr;
    bool equal_flag = true;
    size_t i = 0;
    for (itr = inShapes.begin(); itr != inShapes.end(); ++itr)
    {
        InferenceEngine::SizeVector currentInShape(inputs[i].begin(), inputs[i].end());
        if (itr->second != currentInShape)
        {
            itr->second = currentInShape;
            equal_flag = false;
        }
        i++;
    }

    if (!equal_flag)
    {
        InferenceEngine::CNNNetwork curr_t_net(t_net);
        curr_t_net.reshape(inShapes);
    }
    std::vector<size_t> dims = t_net.getOutputsInfo()[name]->getDims();
    outputs.push_back(MatShape(dims.begin(), dims.end()));
    return false;
}

bool InfEngineBackendLayer::supportBackend(int backendId)
{
    return backendId == DNN_BACKEND_DEFAULT ||
           (backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine());
}

void InfEngineBackendLayer::forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs,
                                    OutputArrayOfArrays internals)
{
    CV_Error(Error::StsInternal, "Choose Inference Engine as a preferable backend.");
}

InferenceEngine::Blob::Ptr convertFp16(const InferenceEngine::Blob::Ptr& blob)
{
    auto halfs = InferenceEngine::make_shared_blob<int16_t>(InferenceEngine::Precision::FP16, blob->layout(), blob->dims());
    halfs->allocate();
    Mat floatsData(1, blob->size(), CV_32F, blob->buffer());
    Mat halfsData(1, blob->size(), CV_16SC1, halfs->buffer());
    convertFp16(floatsData, halfsData);
    return halfs;
}

void addConstantData(const std::string& name, InferenceEngine::Blob::Ptr data,
                     InferenceEngine::Builder::Layer& l)
{
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1)
    l.getParameters()[name] = data;
#else
    l.addConstantData(name, data);
#endif
}

#endif  // HAVE_INF_ENGINE

bool haveInfEngine()
{
#ifdef HAVE_INF_ENGINE
    return true;
#else
    return false;
#endif  // HAVE_INF_ENGINE
}

void forwardInfEngine(const std::vector<Ptr<BackendWrapper> >& outBlobsWrappers,
                      Ptr<BackendNode>& node, bool isAsync)
{
    CV_Assert(haveInfEngine());
#ifdef HAVE_INF_ENGINE
    CV_Assert(!node.empty());
    Ptr<InfEngineBackendNode> ieNode = node.dynamicCast<InfEngineBackendNode>();
    CV_Assert(!ieNode.empty());
    ieNode->net->forward(outBlobsWrappers, isAsync);
#endif  // HAVE_INF_ENGINE
}

CV__DNN_INLINE_NS_BEGIN

void resetMyriadDevice()
{
#ifdef HAVE_INF_ENGINE
    AutoLock lock(getInitializationMutex());
    getSharedPlugins().erase(InferenceEngine::TargetDevice::eMYRIAD);
#endif  // HAVE_INF_ENGINE
}

#ifdef HAVE_INF_ENGINE
bool isMyriadX()
{
     static bool myriadX = getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X;
     return myriadX;
}

static std::string getInferenceEngineVPUType_()
{
    static std::string param_vpu_type = utils::getConfigurationParameterString("OPENCV_DNN_IE_VPU_TYPE", "");
    if (param_vpu_type == "")
    {
#if defined(OPENCV_DNN_IE_VPU_TYPE_DEFAULT)
        param_vpu_type = OPENCV_DNN_IE_VPU_TYPE_DEFAULT;
#else
        CV_LOG_INFO(NULL, "OpenCV-DNN: running Inference Engine VPU autodetection: Myriad2/X. In case of other accelerator types specify 'OPENCV_DNN_IE_VPU_TYPE' parameter");
        try {
            bool isMyriadX_ = detectMyriadX_();
            if (isMyriadX_)
            {
                param_vpu_type = CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X;
            }
            else
            {
                param_vpu_type = CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2;
            }
        }
        catch (...)
        {
            CV_LOG_WARNING(NULL, "OpenCV-DNN: Failed Inference Engine VPU autodetection. Specify 'OPENCV_DNN_IE_VPU_TYPE' parameter.");
            param_vpu_type.clear();
        }
#endif
    }
    CV_LOG_INFO(NULL, "OpenCV-DNN: Inference Engine VPU type='" << param_vpu_type << "'");
    return param_vpu_type;
}

cv::String getInferenceEngineVPUType()
{
    static cv::String vpu_type = getInferenceEngineVPUType_();
    return vpu_type;
}
#else  // HAVE_INF_ENGINE
cv::String getInferenceEngineVPUType()
{
    CV_Error(Error::StsNotImplemented, "This OpenCV build doesn't include InferenceEngine support");
}
#endif  // HAVE_INF_ENGINE


CV__DNN_INLINE_NS_END
}}  // namespace dnn, namespace cv