1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CORE_HPP__
#define __OPENCV_CORE_HPP__
#ifndef __cplusplus
# error core.hpp header must be compiled as C++
#endif
#include "opencv2/core/cvdef.h"
#include "opencv2/core/version.hpp"
#include "opencv2/core/base.hpp"
#include "opencv2/core/cvstd.hpp"
#include "opencv2/core/traits.hpp"
#include "opencv2/core/matx.hpp"
#include "opencv2/core/types.hpp"
#include "opencv2/core/mat.hpp"
#include "opencv2/core/persistence.hpp"
/**
@defgroup core Core functionality
@{
@defgroup core_basic Basic structures
@defgroup core_c C structures and operations
@{
@defgroup core_c_glue Connections with C++
@}
@defgroup core_array Operations on arrays
@defgroup core_xml XML/YAML Persistence
@defgroup core_cluster Clustering
@defgroup core_utils Utility and system functions and macros
@{
@defgroup core_utils_neon NEON utilities
@}
@defgroup core_opengl OpenGL interoperability
@defgroup core_ipp Intel IPP Asynchronous C/C++ Converters
@defgroup core_optim Optimization Algorithms
@defgroup core_directx DirectX interoperability
@defgroup core_eigen Eigen support
@defgroup core_opencl OpenCL support
@}
*/
namespace cv {
//! @addtogroup core_utils
//! @{
/*! @brief Class passed to an error.
This class encapsulates all or almost all necessary
information about the error happened in the program. The exception is
usually constructed and thrown implicitly via CV_Error and CV_Error_ macros.
@see error
*/
class CV_EXPORTS Exception : public std::exception
{
public:
/*!
Default constructor
*/
Exception();
/*!
Full constructor. Normally the constuctor is not called explicitly.
Instead, the macros CV_Error(), CV_Error_() and CV_Assert() are used.
*/
Exception(int _code, const String& _err, const String& _func, const String& _file, int _line);
virtual ~Exception() throw();
/*!
\return the error description and the context as a text string.
*/
virtual const char *what() const throw();
void formatMessage();
String msg; ///< the formatted error message
int code; ///< error code @see CVStatus
String err; ///< error description
String func; ///< function name. Available only when the compiler supports getting it
String file; ///< source file name where the error has occured
int line; ///< line number in the source file where the error has occured
};
/*! @brief Signals an error and raises the exception.
By default the function prints information about the error to stderr,
then it either stops if cv::setBreakOnError() had been called before or raises the exception.
It is possible to alternate error processing by using cv::redirectError().
@param exc the exception raisen.
@deprecated drop this version
*/
CV_EXPORTS void error( const Exception& exc );
enum SortFlags { SORT_EVERY_ROW = 0, //!< each matrix row is sorted independently
SORT_EVERY_COLUMN = 1, //!< each matrix column is sorted
//!< independently; this flag and the previous one are
//!< mutually exclusive.
SORT_ASCENDING = 0, //!< each matrix row is sorted in the ascending
//!< order.
SORT_DESCENDING = 16 //!< each matrix row is sorted in the
//!< descending order; this flag and the previous one are also
//!< mutually exclusive.
};
//! @} core_utils
//! @addtogroup core
//! @{
//! Covariation flags
enum CovarFlags {
/** The output covariance matrix is calculated as:
\f[\texttt{scale} \cdot [ \texttt{vects} [0]- \texttt{mean} , \texttt{vects} [1]- \texttt{mean} ,...]^T \cdot [ \texttt{vects} [0]- \texttt{mean} , \texttt{vects} [1]- \texttt{mean} ,...],\f]
The covariance matrix will be nsamples x nsamples. Such an unusual covariance matrix is used
for fast PCA of a set of very large vectors (see, for example, the EigenFaces technique for
face recognition). Eigenvalues of this "scrambled" matrix match the eigenvalues of the true
covariance matrix. The "true" eigenvectors can be easily calculated from the eigenvectors of
the "scrambled" covariance matrix. */
COVAR_SCRAMBLED = 0,
/**The output covariance matrix is calculated as:
\f[\texttt{scale} \cdot [ \texttt{vects} [0]- \texttt{mean} , \texttt{vects} [1]- \texttt{mean} ,...] \cdot [ \texttt{vects} [0]- \texttt{mean} , \texttt{vects} [1]- \texttt{mean} ,...]^T,\f]
covar will be a square matrix of the same size as the total number of elements in each input
vector. One and only one of COVAR_SCRAMBLED and COVAR_NORMAL must be specified.*/
COVAR_NORMAL = 1,
/** If the flag is specified, the function does not calculate mean from
the input vectors but, instead, uses the passed mean vector. This is useful if mean has been
pre-calculated or known in advance, or if the covariance matrix is calculated by parts. In
this case, mean is not a mean vector of the input sub-set of vectors but rather the mean
vector of the whole set.*/
COVAR_USE_AVG = 2,
/** If the flag is specified, the covariance matrix is scaled. In the
"normal" mode, scale is 1./nsamples . In the "scrambled" mode, scale is the reciprocal of the
total number of elements in each input vector. By default (if the flag is not specified), the
covariance matrix is not scaled ( scale=1 ).*/
COVAR_SCALE = 4,
/** If the flag is
specified, all the input vectors are stored as rows of the samples matrix. mean should be a
single-row vector in this case.*/
COVAR_ROWS = 8,
/** If the flag is
specified, all the input vectors are stored as columns of the samples matrix. mean should be a
single-column vector in this case.*/
COVAR_COLS = 16
};
//! k-Means flags
enum KmeansFlags {
/** Select random initial centers in each attempt.*/
KMEANS_RANDOM_CENTERS = 0,
/** Use kmeans++ center initialization by Arthur and Vassilvitskii [Arthur2007].*/
KMEANS_PP_CENTERS = 2,
/** During the first (and possibly the only) attempt, use the
user-supplied labels instead of computing them from the initial centers. For the second and
further attempts, use the random or semi-random centers. Use one of KMEANS_\*_CENTERS flag
to specify the exact method.*/
KMEANS_USE_INITIAL_LABELS = 1
};
//! type of line
enum LineTypes {
FILLED = -1,
LINE_4 = 4, //!< 4-connected line
LINE_8 = 8, //!< 8-connected line
LINE_AA = 16 //!< antialiased line
};
//! Only a subset of Hershey fonts
//! <http://sources.isc.org/utils/misc/hershey-font.txt> are supported
enum HersheyFonts {
FONT_HERSHEY_SIMPLEX = 0, //!< normal size sans-serif font
FONT_HERSHEY_PLAIN = 1, //!< small size sans-serif font
FONT_HERSHEY_DUPLEX = 2, //!< normal size sans-serif font (more complex than FONT_HERSHEY_SIMPLEX)
FONT_HERSHEY_COMPLEX = 3, //!< normal size serif font
FONT_HERSHEY_TRIPLEX = 4, //!< normal size serif font (more complex than FONT_HERSHEY_COMPLEX)
FONT_HERSHEY_COMPLEX_SMALL = 5, //!< smaller version of FONT_HERSHEY_COMPLEX
FONT_HERSHEY_SCRIPT_SIMPLEX = 6, //!< hand-writing style font
FONT_HERSHEY_SCRIPT_COMPLEX = 7, //!< more complex variant of FONT_HERSHEY_SCRIPT_SIMPLEX
FONT_ITALIC = 16 //!< flag for italic font
};
enum ReduceTypes { REDUCE_SUM = 0, //!< the output is the sum of all rows/columns of the matrix.
REDUCE_AVG = 1, //!< the output is the mean vector of all rows/columns of the matrix.
REDUCE_MAX = 2, //!< the output is the maximum (column/row-wise) of all rows/columns of the matrix.
REDUCE_MIN = 3 //!< the output is the minimum (column/row-wise) of all rows/columns of the matrix.
};
/** @brief Swaps two matrices
*/
CV_EXPORTS void swap(Mat& a, Mat& b);
/** @overload */
CV_EXPORTS void swap( UMat& a, UMat& b );
//! @} core
//! @addtogroup core_array
//! @{
/** @brief Computes the source location of an extrapolated pixel.
The function computes and returns the coordinate of a donor pixel corresponding to the specified
extrapolated pixel when using the specified extrapolation border mode. For example, if you use
cv::BORDER_WRAP mode in the horizontal direction, cv::BORDER_REFLECT_101 in the vertical direction and
want to compute value of the "virtual" pixel Point(-5, 100) in a floating-point image img , it
looks like:
@code{.cpp}
float val = img.at<float>(borderInterpolate(100, img.rows, cv::BORDER_REFLECT_101),
borderInterpolate(-5, img.cols, cv::BORDER_WRAP));
@endcode
Normally, the function is not called directly. It is used inside filtering functions and also in
copyMakeBorder.
@param p 0-based coordinate of the extrapolated pixel along one of the axes, likely \<0 or \>= len
@param len Length of the array along the corresponding axis.
@param borderType Border type, one of the cv::BorderTypes, except for cv::BORDER_TRANSPARENT and
cv::BORDER_ISOLATED . When borderType==cv::BORDER_CONSTANT , the function always returns -1, regardless
of p and len.
@sa copyMakeBorder
*/
CV_EXPORTS_W int borderInterpolate(int p, int len, int borderType);
/** @brief Forms a border around an image.
The function copies the source image into the middle of the destination image. The areas to the
left, to the right, above and below the copied source image will be filled with extrapolated
pixels. This is not what filtering functions based on it do (they extrapolate pixels on-fly), but
what other more complex functions, including your own, may do to simplify image boundary handling.
The function supports the mode when src is already in the middle of dst . In this case, the
function does not copy src itself but simply constructs the border, for example:
@code{.cpp}
// let border be the same in all directions
int border=2;
// constructs a larger image to fit both the image and the border
Mat gray_buf(rgb.rows + border*2, rgb.cols + border*2, rgb.depth());
// select the middle part of it w/o copying data
Mat gray(gray_canvas, Rect(border, border, rgb.cols, rgb.rows));
// convert image from RGB to grayscale
cvtColor(rgb, gray, COLOR_RGB2GRAY);
// form a border in-place
copyMakeBorder(gray, gray_buf, border, border,
border, border, BORDER_REPLICATE);
// now do some custom filtering ...
...
@endcode
@note When the source image is a part (ROI) of a bigger image, the function will try to use the
pixels outside of the ROI to form a border. To disable this feature and always do extrapolation, as
if src was not a ROI, use borderType | BORDER_ISOLATED.
@param src Source image.
@param dst Destination image of the same type as src and the size Size(src.cols+left+right,
src.rows+top+bottom) .
@param top
@param bottom
@param left
@param right Parameter specifying how many pixels in each direction from the source image rectangle
to extrapolate. For example, top=1, bottom=1, left=1, right=1 mean that 1 pixel-wide border needs
to be built.
@param borderType Border type. See borderInterpolate for details.
@param value Border value if borderType==BORDER_CONSTANT .
@sa borderInterpolate
*/
CV_EXPORTS_W void copyMakeBorder(InputArray src, OutputArray dst,
int top, int bottom, int left, int right,
int borderType, const Scalar& value = Scalar() );
/** @brief Calculates the per-element sum of two arrays or an array and a scalar.
The function add calculates:
- Sum of two arrays when both input arrays have the same size and the same number of channels:
\f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) + \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\f]
- Sum of an array and a scalar when src2 is constructed from Scalar or has the same number of
elements as `src1.channels()`:
\f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) + \texttt{src2} ) \quad \texttt{if mask}(I) \ne0\f]
- Sum of a scalar and an array when src1 is constructed from Scalar or has the same number of
elements as `src2.channels()`:
\f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1} + \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0\f]
where `I` is a multi-dimensional index of array elements. In case of multi-channel arrays, each
channel is processed independently.
The first function in the list above can be replaced with matrix expressions:
@code{.cpp}
dst = src1 + src2;
dst += src1; // equivalent to add(dst, src1, dst);
@endcode
The input arrays and the output array can all have the same or different depths. For example, you
can add a 16-bit unsigned array to a 8-bit signed array and store the sum as a 32-bit
floating-point array. Depth of the output array is determined by the dtype parameter. In the second
and third cases above, as well as in the first case, when src1.depth() == src2.depth(), dtype can
be set to the default -1. In this case, the output array will have the same depth as the input
array, be it src1, src2 or both.
@note Saturation is not applied when the output array has the depth CV_32S. You may even get
result of an incorrect sign in the case of overflow.
@param src1 first input array or a scalar.
@param src2 second input array or a scalar.
@param dst output array that has the same size and number of channels as the input array(s); the
depth is defined by dtype or src1/src2.
@param mask optional operation mask - 8-bit single channel array, that specifies elements of the
output array to be changed.
@param dtype optional depth of the output array (see the discussion below).
@sa subtract, addWeighted, scaleAdd, Mat::convertTo
*/
CV_EXPORTS_W void add(InputArray src1, InputArray src2, OutputArray dst,
InputArray mask = noArray(), int dtype = -1);
/** @brief Calculates the per-element difference between two arrays or array and a scalar.
The function subtract calculates:
- Difference between two arrays, when both input arrays have the same size and the same number of
channels:
\f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) - \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\f]
- Difference between an array and a scalar, when src2 is constructed from Scalar or has the same
number of elements as `src1.channels()`:
\f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) - \texttt{src2} ) \quad \texttt{if mask}(I) \ne0\f]
- Difference between a scalar and an array, when src1 is constructed from Scalar or has the same
number of elements as `src2.channels()`:
\f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1} - \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0\f]
- The reverse difference between a scalar and an array in the case of `SubRS`:
\f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src2} - \texttt{src1}(I) ) \quad \texttt{if mask}(I) \ne0\f]
where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each
channel is processed independently.
The first function in the list above can be replaced with matrix expressions:
@code{.cpp}
dst = src1 - src2;
dst -= src1; // equivalent to subtract(dst, src1, dst);
@endcode
The input arrays and the output array can all have the same or different depths. For example, you
can subtract to 8-bit unsigned arrays and store the difference in a 16-bit signed array. Depth of
the output array is determined by dtype parameter. In the second and third cases above, as well as
in the first case, when src1.depth() == src2.depth(), dtype can be set to the default -1. In this
case the output array will have the same depth as the input array, be it src1, src2 or both.
@note Saturation is not applied when the output array has the depth CV_32S. You may even get
result of an incorrect sign in the case of overflow.
@param src1 first input array or a scalar.
@param src2 second input array or a scalar.
@param dst output array of the same size and the same number of channels as the input array.
@param mask optional operation mask; this is an 8-bit single channel array that specifies elements
of the output array to be changed.
@param dtype optional depth of the output array
@sa add, addWeighted, scaleAdd, Mat::convertTo
*/
CV_EXPORTS_W void subtract(InputArray src1, InputArray src2, OutputArray dst,
InputArray mask = noArray(), int dtype = -1);
/** @brief Calculates the per-element scaled product of two arrays.
The function multiply calculates the per-element product of two arrays:
\f[\texttt{dst} (I)= \texttt{saturate} ( \texttt{scale} \cdot \texttt{src1} (I) \cdot \texttt{src2} (I))\f]
There is also a @ref MatrixExpressions -friendly variant of the first function. See Mat::mul .
For a not-per-element matrix product, see gemm .
@note Saturation is not applied when the output array has the depth
CV_32S. You may even get result of an incorrect sign in the case of
overflow.
@param src1 first input array.
@param src2 second input array of the same size and the same type as src1.
@param dst output array of the same size and type as src1.
@param scale optional scale factor.
@param dtype optional depth of the output array
@sa add, subtract, divide, scaleAdd, addWeighted, accumulate, accumulateProduct, accumulateSquare,
Mat::convertTo
*/
CV_EXPORTS_W void multiply(InputArray src1, InputArray src2,
OutputArray dst, double scale = 1, int dtype = -1);
/** @brief Performs per-element division of two arrays or a scalar by an array.
The functions divide divide one array by another:
\f[\texttt{dst(I) = saturate(src1(I)*scale/src2(I))}\f]
or a scalar by an array when there is no src1 :
\f[\texttt{dst(I) = saturate(scale/src2(I))}\f]
When src2(I) is zero, dst(I) will also be zero. Different channels of
multi-channel arrays are processed independently.
@note Saturation is not applied when the output array has the depth CV_32S. You may even get
result of an incorrect sign in the case of overflow.
@param src1 first input array.
@param src2 second input array of the same size and type as src1.
@param scale scalar factor.
@param dst output array of the same size and type as src2.
@param dtype optional depth of the output array; if -1, dst will have depth src2.depth(), but in
case of an array-by-array division, you can only pass -1 when src1.depth()==src2.depth().
@sa multiply, add, subtract
*/
CV_EXPORTS_W void divide(InputArray src1, InputArray src2, OutputArray dst,
double scale = 1, int dtype = -1);
/** @overload */
CV_EXPORTS_W void divide(double scale, InputArray src2,
OutputArray dst, int dtype = -1);
/** @brief Calculates the sum of a scaled array and another array.
The function scaleAdd is one of the classical primitive linear algebra operations, known as DAXPY
or SAXPY in [BLAS](http://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms). It calculates
the sum of a scaled array and another array:
\f[\texttt{dst} (I)= \texttt{scale} \cdot \texttt{src1} (I) + \texttt{src2} (I)\f]
The function can also be emulated with a matrix expression, for example:
@code{.cpp}
Mat A(3, 3, CV_64F);
...
A.row(0) = A.row(1)*2 + A.row(2);
@endcode
@param src1 first input array.
@param alpha scale factor for the first array.
@param src2 second input array of the same size and type as src1.
@param dst output array of the same size and type as src1.
@sa add, addWeighted, subtract, Mat::dot, Mat::convertTo
*/
CV_EXPORTS_W void scaleAdd(InputArray src1, double alpha, InputArray src2, OutputArray dst);
/** @brief Calculates the weighted sum of two arrays.
The function addWeighted calculates the weighted sum of two arrays as follows:
\f[\texttt{dst} (I)= \texttt{saturate} ( \texttt{src1} (I)* \texttt{alpha} + \texttt{src2} (I)* \texttt{beta} + \texttt{gamma} )\f]
where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each
channel is processed independently.
The function can be replaced with a matrix expression:
@code{.cpp}
dst = src1*alpha + src2*beta + gamma;
@endcode
@note Saturation is not applied when the output array has the depth CV_32S. You may even get
result of an incorrect sign in the case of overflow.
@param src1 first input array.
@param alpha weight of the first array elements.
@param src2 second input array of the same size and channel number as src1.
@param beta weight of the second array elements.
@param gamma scalar added to each sum.
@param dst output array that has the same size and number of channels as the input arrays.
@param dtype optional depth of the output array; when both input arrays have the same depth, dtype
can be set to -1, which will be equivalent to src1.depth().
@sa add, subtract, scaleAdd, Mat::convertTo
*/
CV_EXPORTS_W void addWeighted(InputArray src1, double alpha, InputArray src2,
double beta, double gamma, OutputArray dst, int dtype = -1);
/** @brief Scales, calculates absolute values, and converts the result to 8-bit.
On each element of the input array, the function convertScaleAbs
performs three operations sequentially: scaling, taking an absolute
value, conversion to an unsigned 8-bit type:
\f[\texttt{dst} (I)= \texttt{saturate\_cast<uchar>} (| \texttt{src} (I)* \texttt{alpha} + \texttt{beta} |)\f]
In case of multi-channel arrays, the function processes each channel
independently. When the output is not 8-bit, the operation can be
emulated by calling the Mat::convertTo method (or by using matrix
expressions) and then by calculating an absolute value of the result.
For example:
@code{.cpp}
Mat_<float> A(30,30);
randu(A, Scalar(-100), Scalar(100));
Mat_<float> B = A*5 + 3;
B = abs(B);
// Mat_<float> B = abs(A*5+3) will also do the job,
// but it will allocate a temporary matrix
@endcode
@param src input array.
@param dst output array.
@param alpha optional scale factor.
@param beta optional delta added to the scaled values.
@sa Mat::convertTo, cv::abs(const Mat&)
*/
CV_EXPORTS_W void convertScaleAbs(InputArray src, OutputArray dst,
double alpha = 1, double beta = 0);
/** @brief Performs a look-up table transform of an array.
The function LUT fills the output array with values from the look-up table. Indices of the entries
are taken from the input array. That is, the function processes each element of src as follows:
\f[\texttt{dst} (I) \leftarrow \texttt{lut(src(I) + d)}\f]
where
\f[d = \fork{0}{if \texttt{src} has depth \texttt{CV\_8U}}{128}{if \texttt{src} has depth \texttt{CV\_8S}}\f]
@param src input array of 8-bit elements.
@param lut look-up table of 256 elements; in case of multi-channel input array, the table should
either have a single channel (in this case the same table is used for all channels) or the same
number of channels as in the input array.
@param dst output array of the same size and number of channels as src, and the same depth as lut.
@sa convertScaleAbs, Mat::convertTo
*/
CV_EXPORTS_W void LUT(InputArray src, InputArray lut, OutputArray dst);
/** @brief Calculates the sum of array elements.
The functions sum calculate and return the sum of array elements,
independently for each channel.
@param src input array that must have from 1 to 4 channels.
@sa countNonZero, mean, meanStdDev, norm, minMaxLoc, reduce
*/
CV_EXPORTS_AS(sumElems) Scalar sum(InputArray src);
/** @brief Counts non-zero array elements.
The function returns the number of non-zero elements in src :
\f[\sum _{I: \; \texttt{src} (I) \ne0 } 1\f]
@param src single-channel array.
@sa mean, meanStdDev, norm, minMaxLoc, calcCovarMatrix
*/
CV_EXPORTS_W int countNonZero( InputArray src );
/** @brief returns the list of locations of non-zero pixels
@todo document
*/
CV_EXPORTS_W void findNonZero( InputArray src, OutputArray idx );
/** @brief Calculates an average (mean) of array elements.
The function mean calculates the mean value M of array elements,
independently for each channel, and return it:
\f[\begin{array}{l} N = \sum _{I: \; \texttt{mask} (I) \ne 0} 1 \\ M_c = \left ( \sum _{I: \; \texttt{mask} (I) \ne 0}{ \texttt{mtx} (I)_c} \right )/N \end{array}\f]
When all the mask elements are 0's, the functions return Scalar::all(0)
@param src input array that should have from 1 to 4 channels so that the result can be stored in
Scalar_ .
@param mask optional operation mask.
@sa countNonZero, meanStdDev, norm, minMaxLoc
*/
CV_EXPORTS_W Scalar mean(InputArray src, InputArray mask = noArray());
/** Calculates a mean and standard deviation of array elements.
The function meanStdDev calculates the mean and the standard deviation M
of array elements independently for each channel and returns it via the
output parameters:
\f[\begin{array}{l} N = \sum _{I, \texttt{mask} (I) \ne 0} 1 \\ \texttt{mean} _c = \frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \texttt{src} (I)_c}{N} \\ \texttt{stddev} _c = \sqrt{\frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \left ( \texttt{src} (I)_c - \texttt{mean} _c \right )^2}{N}} \end{array}\f]
When all the mask elements are 0's, the functions return
mean=stddev=Scalar::all(0).
@note The calculated standard deviation is only the diagonal of the
complete normalized covariance matrix. If the full matrix is needed, you
can reshape the multi-channel array M x N to the single-channel array
M\*N x mtx.channels() (only possible when the matrix is continuous) and
then pass the matrix to calcCovarMatrix .
@param src input array that should have from 1 to 4 channels so that the results can be stored in
Scalar_ 's.
@param mean output parameter: calculated mean value.
@param stddev output parameter: calculateded standard deviation.
@param mask optional operation mask.
@sa countNonZero, mean, norm, minMaxLoc, calcCovarMatrix
*/
CV_EXPORTS_W void meanStdDev(InputArray src, OutputArray mean, OutputArray stddev,
InputArray mask=noArray());
/** @brief Calculates an absolute array norm, an absolute difference norm, or a
relative difference norm.
The functions norm calculate an absolute norm of src1 (when there is no
src2 ):
\f[norm = \forkthree{\|\texttt{src1}\|_{L_{\infty}} = \max _I | \texttt{src1} (I)|}{if \(\texttt{normType} = \texttt{NORM\_INF}\) }
{ \| \texttt{src1} \| _{L_1} = \sum _I | \texttt{src1} (I)|}{if \(\texttt{normType} = \texttt{NORM\_L1}\) }
{ \| \texttt{src1} \| _{L_2} = \sqrt{\sum_I \texttt{src1}(I)^2} }{if \(\texttt{normType} = \texttt{NORM\_L2}\) }\f]
or an absolute or relative difference norm if src2 is there:
\f[norm = \forkthree{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}} = \max _I | \texttt{src1} (I) - \texttt{src2} (I)|}{if \(\texttt{normType} = \texttt{NORM\_INF}\) }
{ \| \texttt{src1} - \texttt{src2} \| _{L_1} = \sum _I | \texttt{src1} (I) - \texttt{src2} (I)|}{if \(\texttt{normType} = \texttt{NORM\_L1}\) }
{ \| \texttt{src1} - \texttt{src2} \| _{L_2} = \sqrt{\sum_I (\texttt{src1}(I) - \texttt{src2}(I))^2} }{if \(\texttt{normType} = \texttt{NORM\_L2}\) }\f]
or
\f[norm = \forkthree{\frac{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}} }{\|\texttt{src2}\|_{L_{\infty}} }}{if \(\texttt{normType} = \texttt{NORM\_RELATIVE\_INF}\) }
{ \frac{\|\texttt{src1}-\texttt{src2}\|_{L_1} }{\|\texttt{src2}\|_{L_1}} }{if \(\texttt{normType} = \texttt{NORM\_RELATIVE\_L1}\) }
{ \frac{\|\texttt{src1}-\texttt{src2}\|_{L_2} }{\|\texttt{src2}\|_{L_2}} }{if \(\texttt{normType} = \texttt{NORM\_RELATIVE\_L2}\) }\f]
The functions norm return the calculated norm.
When the mask parameter is specified and it is not empty, the norm is
calculated only over the region specified by the mask.
A multi-channel input arrays are treated as a single-channel, that is,
the results for all channels are combined.
@param src1 first input array.
@param normType type of the norm (see cv::NormTypes).
@param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type.
*/
CV_EXPORTS_W double norm(InputArray src1, int normType = NORM_L2, InputArray mask = noArray());
/** @overload
@param src1 first input array.
@param src2 second input array of the same size and the same type as src1.
@param normType type of the norm (cv::NormTypes).
@param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type.
*/
CV_EXPORTS_W double norm(InputArray src1, InputArray src2,
int normType = NORM_L2, InputArray mask = noArray());
/** @overload
@param src first input array.
@param normType type of the norm (see cv::NormTypes).
*/
CV_EXPORTS double norm( const SparseMat& src, int normType );
/** @brief computes PSNR image/video quality metric
see http://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio for details
@todo document
*/
CV_EXPORTS_W double PSNR(InputArray src1, InputArray src2);
/** @brief naive nearest neighbor finder
see http://en.wikipedia.org/wiki/Nearest_neighbor_search
@todo document
*/
CV_EXPORTS_W void batchDistance(InputArray src1, InputArray src2,
OutputArray dist, int dtype, OutputArray nidx,
int normType = NORM_L2, int K = 0,
InputArray mask = noArray(), int update = 0,
bool crosscheck = false);
/** @brief Normalizes the norm or value range of an array.
The functions normalize scale and shift the input array elements so that
\f[\| \texttt{dst} \| _{L_p}= \texttt{alpha}\f]
(where p=Inf, 1 or 2) when normType=NORM_INF, NORM_L1, or NORM_L2, respectively; or so that
\f[\min _I \texttt{dst} (I)= \texttt{alpha} , \, \, \max _I \texttt{dst} (I)= \texttt{beta}\f]
when normType=NORM_MINMAX (for dense arrays only). The optional mask specifies a sub-array to be
normalized. This means that the norm or min-n-max are calculated over the sub-array, and then this
sub-array is modified to be normalized. If you want to only use the mask to calculate the norm or
min-max but modify the whole array, you can use norm and Mat::convertTo.
In case of sparse matrices, only the non-zero values are analyzed and transformed. Because of this,
the range transformation for sparse matrices is not allowed since it can shift the zero level.
@param src input array.
@param dst output array of the same size as src .
@param alpha norm value to normalize to or the lower range boundary in case of the range
normalization.
@param beta upper range boundary in case of the range normalization; it is not used for the norm
normalization.
@param norm_type normalization type (see cv::NormTypes).
@param dtype when negative, the output array has the same type as src; otherwise, it has the same
number of channels as src and the depth =CV_MAT_DEPTH(dtype).
@param mask optional operation mask.
@sa norm, Mat::convertTo, SparseMat::convertTo
*/
CV_EXPORTS_W void normalize( InputArray src, InputOutputArray dst, double alpha = 1, double beta = 0,
int norm_type = NORM_L2, int dtype = -1, InputArray mask = noArray());
/** @overload
@param src input array.
@param dst output array of the same size as src .
@param alpha norm value to normalize to or the lower range boundary in case of the range
normalization.
@param normType normalization type (see cv::NormTypes).
*/
CV_EXPORTS void normalize( const SparseMat& src, SparseMat& dst, double alpha, int normType );
/** @brief Finds the global minimum and maximum in an array.
The functions minMaxLoc find the minimum and maximum element values and their positions. The
extremums are searched across the whole array or, if mask is not an empty array, in the specified
array region.
The functions do not work with multi-channel arrays. If you need to find minimum or maximum
elements across all the channels, use Mat::reshape first to reinterpret the array as
single-channel. Or you may extract the particular channel using either extractImageCOI , or
mixChannels , or split .
@param src input single-channel array.
@param minVal pointer to the returned minimum value; NULL is used if not required.
@param maxVal pointer to the returned maximum value; NULL is used if not required.
@param minLoc pointer to the returned minimum location (in 2D case); NULL is used if not required.
@param maxLoc pointer to the returned maximum location (in 2D case); NULL is used if not required.
@param mask optional mask used to select a sub-array.
@sa max, min, compare, inRange, extractImageCOI, mixChannels, split, Mat::reshape
*/
CV_EXPORTS_W void minMaxLoc(InputArray src, CV_OUT double* minVal,
CV_OUT double* maxVal = 0, CV_OUT Point* minLoc = 0,
CV_OUT Point* maxLoc = 0, InputArray mask = noArray());
/** @brief Finds the global minimum and maximum in an array
The function minMaxIdx finds the minimum and maximum element values and their positions. The
extremums are searched across the whole array or, if mask is not an empty array, in the specified
array region. The function does not work with multi-channel arrays. If you need to find minimum or
maximum elements across all the channels, use Mat::reshape first to reinterpret the array as
single-channel. Or you may extract the particular channel using either extractImageCOI , or
mixChannels , or split . In case of a sparse matrix, the minimum is found among non-zero elements
only.
@note When minIdx is not NULL, it must have at least 2 elements (as well as maxIdx), even if src is
a single-row or single-column matrix. In OpenCV (following MATLAB) each array has at least 2
dimensions, i.e. single-column matrix is Mx1 matrix (and therefore minIdx/maxIdx will be
(i1,0)/(i2,0)) and single-row matrix is 1xN matrix (and therefore minIdx/maxIdx will be
(0,j1)/(0,j2)).
@param src input single-channel array.
@param minVal pointer to the returned minimum value; NULL is used if not required.
@param maxVal pointer to the returned maximum value; NULL is used if not required.
@param minIdx pointer to the returned minimum location (in nD case); NULL is used if not required;
Otherwise, it must point to an array of src.dims elements, the coordinates of the minimum element
in each dimension are stored there sequentially.
@param maxIdx pointer to the returned maximum location (in nD case). NULL is used if not required.
@param mask specified array region
*/
CV_EXPORTS void minMaxIdx(InputArray src, double* minVal, double* maxVal = 0,
int* minIdx = 0, int* maxIdx = 0, InputArray mask = noArray());
/** @overload
@param a input single-channel array.
@param minVal pointer to the returned minimum value; NULL is used if not required.
@param maxVal pointer to the returned maximum value; NULL is used if not required.
@param minIdx pointer to the returned minimum location (in nD case); NULL is used if not required;
Otherwise, it must point to an array of src.dims elements, the coordinates of the minimum element
in each dimension are stored there sequentially.
@param maxIdx pointer to the returned maximum location (in nD case). NULL is used if not required.
*/
CV_EXPORTS void minMaxLoc(const SparseMat& a, double* minVal,
double* maxVal, int* minIdx = 0, int* maxIdx = 0);
/** @brief Reduces a matrix to a vector.
The function reduce reduces the matrix to a vector by treating the matrix rows/columns as a set of
1D vectors and performing the specified operation on the vectors until a single row/column is
obtained. For example, the function can be used to compute horizontal and vertical projections of a
raster image. In case of REDUCE_SUM and REDUCE_AVG , the output may have a larger element
bit-depth to preserve accuracy. And multi-channel arrays are also supported in these two reduction
modes.
@param src input 2D matrix.
@param dst output vector. Its size and type is defined by dim and dtype parameters.
@param dim dimension index along which the matrix is reduced. 0 means that the matrix is reduced to
a single row. 1 means that the matrix is reduced to a single column.
@param rtype reduction operation that could be one of cv::ReduceTypes
@param dtype when negative, the output vector will have the same type as the input matrix,
otherwise, its type will be CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), src.channels()).
@sa repeat
*/
CV_EXPORTS_W void reduce(InputArray src, OutputArray dst, int dim, int rtype, int dtype = -1);
/** @brief Creates one multichannel array out of several single-channel ones.
The functions merge merge several arrays to make a single multi-channel array. That is, each
element of the output array will be a concatenation of the elements of the input arrays, where
elements of i-th input array are treated as mv[i].channels()-element vectors.
The function split does the reverse operation. If you need to shuffle channels in some other
advanced way, use mixChannels .
@param mv input array of matrices to be merged; all the matrices in mv must have the same
size and the same depth.
@param count number of input matrices when mv is a plain C array; it must be greater than zero.
@param dst output array of the same size and the same depth as mv[0]; The number of channels will
be the total number of channels in the matrix array.
@sa mixChannels, split, Mat::reshape
*/
CV_EXPORTS void merge(const Mat* mv, size_t count, OutputArray dst);
/** @overload
@param mv input vector of matrices to be merged; all the matrices in mv must have the same
size and the same depth.
@param dst output array of the same size and the same depth as mv[0]; The number of channels will
be the total number of channels in the matrix array.
*/
CV_EXPORTS_W void merge(InputArrayOfArrays mv, OutputArray dst);
/** @brief Divides a multi-channel array into several single-channel arrays.
The functions split split a multi-channel array into separate single-channel arrays:
\f[\texttt{mv} [c](I) = \texttt{src} (I)_c\f]
If you need to extract a single channel or do some other sophisticated channel permutation, use
mixChannels .
@param src input multi-channel array.
@param mvbegin output array; the number of arrays must match src.channels(); the arrays themselves are
reallocated, if needed.
@sa merge, mixChannels, cvtColor
*/
CV_EXPORTS void split(const Mat& src, Mat* mvbegin);
/** @overload
@param m input multi-channel array.
@param mv output vector of arrays; the arrays themselves are reallocated, if needed.
*/
CV_EXPORTS_W void split(InputArray m, OutputArrayOfArrays mv);
/** @brief Copies specified channels from input arrays to the specified channels of
output arrays.
The functions mixChannels provide an advanced mechanism for shuffling image channels.
split and merge and some forms of cvtColor are partial cases of mixChannels .
In the example below, the code splits a 4-channel RGBA image into a 3-channel BGR (with R and B
channels swapped) and a separate alpha-channel image:
@code{.cpp}
Mat rgba( 100, 100, CV_8UC4, Scalar(1,2,3,4) );
Mat bgr( rgba.rows, rgba.cols, CV_8UC3 );
Mat alpha( rgba.rows, rgba.cols, CV_8UC1 );
// forming an array of matrices is a quite efficient operation,
// because the matrix data is not copied, only the headers
Mat out[] = { bgr, alpha };
// rgba[0] -> bgr[2], rgba[1] -> bgr[1],
// rgba[2] -> bgr[0], rgba[3] -> alpha[0]
int from_to[] = { 0,2, 1,1, 2,0, 3,3 };
mixChannels( &rgba, 1, out, 2, from_to, 4 );
@endcode
@note Unlike many other new-style C++ functions in OpenCV (see the introduction section and
Mat::create ), mixChannels requires the output arrays to be pre-allocated before calling the
function.
@param src input array or vector of matricesl; all of the matrices must have the same size and the
same depth.
@param nsrcs number of matrices in src.
@param dst output array or vector of matrices; all the matrices *must be allocated*; their size and
depth must be the same as in src[0].
@param ndsts number of matrices in dst.
@param fromTo array of index pairs specifying which channels are copied and where; fromTo[k\*2] is
a 0-based index of the input channel in src, fromTo[k\*2+1] is an index of the output channel in
dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to
src[0].channels()-1, the second input image channels are indexed from src[0].channels() to
src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image
channels; as a special case, when fromTo[k\*2] is negative, the corresponding output channel is
filled with zero .
@param npairs number of index pairs in fromTo.
@sa split, merge, cvtColor
*/
CV_EXPORTS void mixChannels(const Mat* src, size_t nsrcs, Mat* dst, size_t ndsts,
const int* fromTo, size_t npairs);
/** @overload
@param src input array or vector of matricesl; all of the matrices must have the same size and the
same depth.
@param dst output array or vector of matrices; all the matrices *must be allocated*; their size and
depth must be the same as in src[0].
@param fromTo array of index pairs specifying which channels are copied and where; fromTo[k\*2] is
a 0-based index of the input channel in src, fromTo[k\*2+1] is an index of the output channel in
dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to
src[0].channels()-1, the second input image channels are indexed from src[0].channels() to
src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image
channels; as a special case, when fromTo[k\*2] is negative, the corresponding output channel is
filled with zero .
@param npairs number of index pairs in fromTo.
*/
CV_EXPORTS void mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst,
const int* fromTo, size_t npairs);
/** @overload
@param src input array or vector of matricesl; all of the matrices must have the same size and the
same depth.
@param dst output array or vector of matrices; all the matrices *must be allocated*; their size and
depth must be the same as in src[0].
@param fromTo array of index pairs specifying which channels are copied and where; fromTo[k\*2] is
a 0-based index of the input channel in src, fromTo[k\*2+1] is an index of the output channel in
dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to
src[0].channels()-1, the second input image channels are indexed from src[0].channels() to
src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image
channels; as a special case, when fromTo[k\*2] is negative, the corresponding output channel is
filled with zero .
*/
CV_EXPORTS_W void mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst,
const std::vector<int>& fromTo);
/** @brief extracts a single channel from src (coi is 0-based index)
@todo document
*/
CV_EXPORTS_W void extractChannel(InputArray src, OutputArray dst, int coi);
/** @brief inserts a single channel to dst (coi is 0-based index)
@todo document
*/
CV_EXPORTS_W void insertChannel(InputArray src, InputOutputArray dst, int coi);
/** @brief Flips a 2D array around vertical, horizontal, or both axes.
The function flip flips the array in one of three different ways (row
and column indices are 0-based):
\f[\texttt{dst} _{ij} =
\left\{
\begin{array}{l l}
\texttt{src} _{\texttt{src.rows}-i-1,j} & if\; \texttt{flipCode} = 0 \\
\texttt{src} _{i, \texttt{src.cols} -j-1} & if\; \texttt{flipCode} > 0 \\
\texttt{src} _{ \texttt{src.rows} -i-1, \texttt{src.cols} -j-1} & if\; \texttt{flipCode} < 0 \\
\end{array}
\right.\f]
The example scenarios of using the function are the following:
* Vertical flipping of the image (flipCode == 0) to switch between
top-left and bottom-left image origin. This is a typical operation
in video processing on Microsoft Windows\* OS.
* Horizontal flipping of the image with the subsequent horizontal
shift and absolute difference calculation to check for a
vertical-axis symmetry (flipCode \> 0).
* Simultaneous horizontal and vertical flipping of the image with
the subsequent shift and absolute difference calculation to check
for a central symmetry (flipCode \< 0).
* Reversing the order of point arrays (flipCode \> 0 or
flipCode == 0).
@param src input array.
@param dst output array of the same size and type as src.
@param flipCode a flag to specify how to flip the array; 0 means
flipping around the x-axis and positive value (for example, 1) means
flipping around y-axis. Negative value (for example, -1) means flipping
around both axes.
@sa transpose , repeat , completeSymm
*/
CV_EXPORTS_W void flip(InputArray src, OutputArray dst, int flipCode);
/** @brief Fills the output array with repeated copies of the input array.
The functions repeat duplicate the input array one or more times along each of the two axes:
\f[\texttt{dst} _{ij}= \texttt{src} _{i\mod src.rows, \; j\mod src.cols }\f]
The second variant of the function is more convenient to use with @ref MatrixExpressions.
@param src input array to replicate.
@param dst output array of the same type as src.
@param ny Flag to specify how many times the src is repeated along the
vertical axis.
@param nx Flag to specify how many times the src is repeated along the
horizontal axis.
@sa reduce
*/
CV_EXPORTS_W void repeat(InputArray src, int ny, int nx, OutputArray dst);
/** @overload
@param src input array to replicate.
@param ny Flag to specify how many times the src is repeated along the
vertical axis.
@param nx Flag to specify how many times the src is repeated along the
horizontal axis.
*/
CV_EXPORTS Mat repeat(const Mat& src, int ny, int nx);
/** @brief concatenate matrices horizontally
@todo document
*/
CV_EXPORTS void hconcat(const Mat* src, size_t nsrc, OutputArray dst);
/** @overload */
CV_EXPORTS void hconcat(InputArray src1, InputArray src2, OutputArray dst);
/** @overload */
CV_EXPORTS_W void hconcat(InputArrayOfArrays src, OutputArray dst);
/** @brief concatenate matrices vertically
@todo document
*/
CV_EXPORTS void vconcat(const Mat* src, size_t nsrc, OutputArray dst);
/** @overload */
CV_EXPORTS void vconcat(InputArray src1, InputArray src2, OutputArray dst);
/** @overload */
CV_EXPORTS_W void vconcat(InputArrayOfArrays src, OutputArray dst);
/** @brief computes bitwise conjunction of the two arrays (dst = src1 & src2)
Calculates the per-element bit-wise conjunction of two arrays or an
array and a scalar.
The function calculates the per-element bit-wise logical conjunction for:
* Two arrays when src1 and src2 have the same size:
\f[\texttt{dst} (I) = \texttt{src1} (I) \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
* An array and a scalar when src2 is constructed from Scalar or has
the same number of elements as `src1.channels()`:
\f[\texttt{dst} (I) = \texttt{src1} (I) \wedge \texttt{src2} \quad \texttt{if mask} (I) \ne0\f]
* A scalar and an array when src1 is constructed from Scalar or has
the same number of elements as `src2.channels()`:
\f[\texttt{dst} (I) = \texttt{src1} \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
In case of floating-point arrays, their machine-specific bit
representations (usually IEEE754-compliant) are used for the operation.
In case of multi-channel arrays, each channel is processed
independently. In the second and third cases above, the scalar is first
converted to the array type.
@param src1 first input array or a scalar.
@param src2 second input array or a scalar.
@param dst output array that has the same size and type as the input
arrays.
@param mask optional operation mask, 8-bit single channel array, that
specifies elements of the output array to be changed.
*/
CV_EXPORTS_W void bitwise_and(InputArray src1, InputArray src2,
OutputArray dst, InputArray mask = noArray());
/** @brief Calculates the per-element bit-wise disjunction of two arrays or an
array and a scalar.
The function calculates the per-element bit-wise logical disjunction for:
* Two arrays when src1 and src2 have the same size:
\f[\texttt{dst} (I) = \texttt{src1} (I) \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
* An array and a scalar when src2 is constructed from Scalar or has
the same number of elements as `src1.channels()`:
\f[\texttt{dst} (I) = \texttt{src1} (I) \vee \texttt{src2} \quad \texttt{if mask} (I) \ne0\f]
* A scalar and an array when src1 is constructed from Scalar or has
the same number of elements as `src2.channels()`:
\f[\texttt{dst} (I) = \texttt{src1} \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
In case of floating-point arrays, their machine-specific bit
representations (usually IEEE754-compliant) are used for the operation.
In case of multi-channel arrays, each channel is processed
independently. In the second and third cases above, the scalar is first
converted to the array type.
@param src1 first input array or a scalar.
@param src2 second input array or a scalar.
@param dst output array that has the same size and type as the input
arrays.
@param mask optional operation mask, 8-bit single channel array, that
specifies elements of the output array to be changed.
*/
CV_EXPORTS_W void bitwise_or(InputArray src1, InputArray src2,
OutputArray dst, InputArray mask = noArray());
/** @brief Calculates the per-element bit-wise "exclusive or" operation on two
arrays or an array and a scalar.
The function calculates the per-element bit-wise logical "exclusive-or"
operation for:
* Two arrays when src1 and src2 have the same size:
\f[\texttt{dst} (I) = \texttt{src1} (I) \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
* An array and a scalar when src2 is constructed from Scalar or has
the same number of elements as `src1.channels()`:
\f[\texttt{dst} (I) = \texttt{src1} (I) \oplus \texttt{src2} \quad \texttt{if mask} (I) \ne0\f]
* A scalar and an array when src1 is constructed from Scalar or has
the same number of elements as `src2.channels()`:
\f[\texttt{dst} (I) = \texttt{src1} \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
In case of floating-point arrays, their machine-specific bit
representations (usually IEEE754-compliant) are used for the operation.
In case of multi-channel arrays, each channel is processed
independently. In the 2nd and 3rd cases above, the scalar is first
converted to the array type.
@param src1 first input array or a scalar.
@param src2 second input array or a scalar.
@param dst output array that has the same size and type as the input
arrays.
@param mask optional operation mask, 8-bit single channel array, that
specifies elements of the output array to be changed.
*/
CV_EXPORTS_W void bitwise_xor(InputArray src1, InputArray src2,
OutputArray dst, InputArray mask = noArray());
/** @brief Inverts every bit of an array.
The function calculates per-element bit-wise inversion of the input
array:
\f[\texttt{dst} (I) = \neg \texttt{src} (I)\f]
In case of a floating-point input array, its machine-specific bit
representation (usually IEEE754-compliant) is used for the operation. In
case of multi-channel arrays, each channel is processed independently.
@param src input array.
@param dst output array that has the same size and type as the input
array.
@param mask optional operation mask, 8-bit single channel array, that
specifies elements of the output array to be changed.
*/
CV_EXPORTS_W void bitwise_not(InputArray src, OutputArray dst,
InputArray mask = noArray());
/** @brief Calculates the per-element absolute difference between two arrays or between an array and a scalar.
The function absdiff calculates:
* Absolute difference between two arrays when they have the same
size and type:
\f[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1}(I) - \texttt{src2}(I)|)\f]
* Absolute difference between an array and a scalar when the second
array is constructed from Scalar or has as many elements as the
number of channels in `src1`:
\f[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1}(I) - \texttt{src2} |)\f]
* Absolute difference between a scalar and an array when the first
array is constructed from Scalar or has as many elements as the
number of channels in `src2`:
\f[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1} - \texttt{src2}(I) |)\f]
where I is a multi-dimensional index of array elements. In case of
multi-channel arrays, each channel is processed independently.
@note Saturation is not applied when the arrays have the depth CV_32S.
You may even get a negative value in the case of overflow.
@param src1 first input array or a scalar.
@param src2 second input array or a scalar.
@param dst output array that has the same size and type as input arrays.
@sa cv::abs(const Mat&)
*/
CV_EXPORTS_W void absdiff(InputArray src1, InputArray src2, OutputArray dst);
/** @brief Checks if array elements lie between the elements of two other arrays.
The function checks the range as follows:
- For every element of a single-channel input array:
\f[\texttt{dst} (I)= \texttt{lowerb} (I)_0 \leq \texttt{src} (I)_0 \leq \texttt{upperb} (I)_0\f]
- For two-channel arrays:
\f[\texttt{dst} (I)= \texttt{lowerb} (I)_0 \leq \texttt{src} (I)_0 \leq \texttt{upperb} (I)_0 \land \texttt{lowerb} (I)_1 \leq \texttt{src} (I)_1 \leq \texttt{upperb} (I)_1\f]
- and so forth.
That is, dst (I) is set to 255 (all 1 -bits) if src (I) is within the
specified 1D, 2D, 3D, ... box and 0 otherwise.
When the lower and/or upper boundary parameters are scalars, the indexes
(I) at lowerb and upperb in the above formulas should be omitted.
@param src first input array.
@param lowerb inclusive lower boundary array or a scalar.
@param upperb inclusive upper boundary array or a scalar.
@param dst output array of the same size as src and CV_8U type.
*/
CV_EXPORTS_W void inRange(InputArray src, InputArray lowerb,
InputArray upperb, OutputArray dst);
/** @brief Performs the per-element comparison of two arrays or an array and scalar value.
The function compares:
* Elements of two arrays when src1 and src2 have the same size:
\f[\texttt{dst} (I) = \texttt{src1} (I) \,\texttt{cmpop}\, \texttt{src2} (I)\f]
* Elements of src1 with a scalar src2 when src2 is constructed from
Scalar or has a single element:
\f[\texttt{dst} (I) = \texttt{src1}(I) \,\texttt{cmpop}\, \texttt{src2}\f]
* src1 with elements of src2 when src1 is constructed from Scalar or
has a single element:
\f[\texttt{dst} (I) = \texttt{src1} \,\texttt{cmpop}\, \texttt{src2} (I)\f]
When the comparison result is true, the corresponding element of output
array is set to 255. The comparison operations can be replaced with the
equivalent matrix expressions:
@code{.cpp}
Mat dst1 = src1 >= src2;
Mat dst2 = src1 < 8;
...
@endcode
@param src1 first input array or a scalar; when it is an array, it must have a single channel.
@param src2 second input array or a scalar; when it is an array, it must have a single channel.
@param dst output array that has the same size and type as the input arrays.
@param cmpop a flag, that specifies correspondence between the arrays (cv::CmpTypes)
@sa checkRange, min, max, threshold
*/
CV_EXPORTS_W void compare(InputArray src1, InputArray src2, OutputArray dst, int cmpop);
/** @brief Calculates per-element minimum of two arrays or an array and a scalar.
The functions min calculate the per-element minimum of two arrays:
\f[\texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{src2} (I))\f]
or array and a scalar:
\f[\texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{value} )\f]
@param src1 first input array.
@param src2 second input array of the same size and type as src1.
@param dst output array of the same size and type as src1.
@sa max, compare, inRange, minMaxLoc
*/
CV_EXPORTS_W void min(InputArray src1, InputArray src2, OutputArray dst);
/** @overload
needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare)
*/
CV_EXPORTS void min(const Mat& src1, const Mat& src2, Mat& dst);
/** @overload
needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare)
*/
CV_EXPORTS void min(const UMat& src1, const UMat& src2, UMat& dst);
/** @brief Calculates per-element maximum of two arrays or an array and a scalar.
The functions max calculate the per-element maximum of two arrays:
\f[\texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{src2} (I))\f]
or array and a scalar:
\f[\texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{value} )\f]
@param src1 first input array.
@param src2 second input array of the same size and type as src1 .
@param dst output array of the same size and type as src1.
@sa min, compare, inRange, minMaxLoc, @ref MatrixExpressions
*/
CV_EXPORTS_W void max(InputArray src1, InputArray src2, OutputArray dst);
/** @overload
needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare)
*/
CV_EXPORTS void max(const Mat& src1, const Mat& src2, Mat& dst);
/** @overload
needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare)
*/
CV_EXPORTS void max(const UMat& src1, const UMat& src2, UMat& dst);
/** @brief Calculates a square root of array elements.
The functions sqrt calculate a square root of each input array element.
In case of multi-channel arrays, each channel is processed
independently. The accuracy is approximately the same as of the built-in
std::sqrt .
@param src input floating-point array.
@param dst output array of the same size and type as src.
*/
CV_EXPORTS_W void sqrt(InputArray src, OutputArray dst);
/** @brief Raises every array element to a power.
The function pow raises every element of the input array to power :
\f[\texttt{dst} (I) = \fork{\texttt{src}(I)^power}{if \texttt{power} is integer}{|\texttt{src}(I)|^power}{otherwise}\f]
So, for a non-integer power exponent, the absolute values of input array
elements are used. However, it is possible to get true values for
negative values using some extra operations. In the example below,
computing the 5th root of array src shows:
@code{.cpp}
Mat mask = src < 0;
pow(src, 1./5, dst);
subtract(Scalar::all(0), dst, dst, mask);
@endcode
For some values of power, such as integer values, 0.5 and -0.5,
specialized faster algorithms are used.
Special values (NaN, Inf) are not handled.
@param src input array.
@param power exponent of power.
@param dst output array of the same size and type as src.
@sa sqrt, exp, log, cartToPolar, polarToCart
*/
CV_EXPORTS_W void pow(InputArray src, double power, OutputArray dst);
/** @brief Calculates the exponent of every array element.
The function exp calculates the exponent of every element of the input
array:
\f[\texttt{dst} [I] = e^{ src(I) }\f]
The maximum relative error is about 7e-6 for single-precision input and
less than 1e-10 for double-precision input. Currently, the function
converts denormalized values to zeros on output. Special values (NaN,
Inf) are not handled.
@param src input array.
@param dst output array of the same size and type as src.
@sa log , cartToPolar , polarToCart , phase , pow , sqrt , magnitude
*/
CV_EXPORTS_W void exp(InputArray src, OutputArray dst);
/** @brief Calculates the natural logarithm of every array element.
The function log calculates the natural logarithm of the absolute value
of every element of the input array:
\f[\texttt{dst} (I) = \fork{\log |\texttt{src}(I)|}{if \(\texttt{src}(I) \ne 0\) }{\texttt{C}}{otherwise}\f]
where C is a large negative number (about -700 in the current
implementation). The maximum relative error is about 7e-6 for
single-precision input and less than 1e-10 for double-precision input.
Special values (NaN, Inf) are not handled.
@param src input array.
@param dst output array of the same size and type as src .
@sa exp, cartToPolar, polarToCart, phase, pow, sqrt, magnitude
*/
CV_EXPORTS_W void log(InputArray src, OutputArray dst);
/** @brief Calculates x and y coordinates of 2D vectors from their magnitude and angle.
The function polarToCart calculates the Cartesian coordinates of each 2D
vector represented by the corresponding elements of magnitude and angle:
\f[\begin{array}{l} \texttt{x} (I) = \texttt{magnitude} (I) \cos ( \texttt{angle} (I)) \\ \texttt{y} (I) = \texttt{magnitude} (I) \sin ( \texttt{angle} (I)) \\ \end{array}\f]
The relative accuracy of the estimated coordinates is about 1e-6.
@param magnitude input floating-point array of magnitudes of 2D vectors;
it can be an empty matrix (=Mat()), in this case, the function assumes
that all the magnitudes are =1; if it is not empty, it must have the
same size and type as angle.
@param angle input floating-point array of angles of 2D vectors.
@param x output array of x-coordinates of 2D vectors; it has the same
size and type as angle.
@param y output array of y-coordinates of 2D vectors; it has the same
size and type as angle.
@param angleInDegrees when true, the input angles are measured in
degrees, otherwise, they are measured in radians.
@sa cartToPolar, magnitude, phase, exp, log, pow, sqrt
*/
CV_EXPORTS_W void polarToCart(InputArray magnitude, InputArray angle,
OutputArray x, OutputArray y, bool angleInDegrees = false);
/** @brief Calculates the magnitude and angle of 2D vectors.
The function cartToPolar calculates either the magnitude, angle, or both
for every 2D vector (x(I),y(I)):
\f[\begin{array}{l} \texttt{magnitude} (I)= \sqrt{\texttt{x}(I)^2+\texttt{y}(I)^2} , \\ \texttt{angle} (I)= \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))[ \cdot180 / \pi ] \end{array}\f]
The angles are calculated with accuracy about 0.3 degrees. For the point
(0,0), the angle is set to 0.
@param x array of x-coordinates; this must be a single-precision or
double-precision floating-point array.
@param y array of y-coordinates, that must have the same size and same type as x.
@param magnitude output array of magnitudes of the same size and type as x.
@param angle output array of angles that has the same size and type as
x; the angles are measured in radians (from 0 to 2\*Pi) or in degrees (0 to 360 degrees).
@param angleInDegrees a flag, indicating whether the angles are measured
in radians (which is by default), or in degrees.
@sa Sobel, Scharr
*/
CV_EXPORTS_W void cartToPolar(InputArray x, InputArray y,
OutputArray magnitude, OutputArray angle,
bool angleInDegrees = false);
/** @brief Calculates the rotation angle of 2D vectors.
The function phase calculates the rotation angle of each 2D vector that
is formed from the corresponding elements of x and y :
\f[\texttt{angle} (I) = \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))\f]
The angle estimation accuracy is about 0.3 degrees. When x(I)=y(I)=0 ,
the corresponding angle(I) is set to 0.
@param x input floating-point array of x-coordinates of 2D vectors.
@param y input array of y-coordinates of 2D vectors; it must have the
same size and the same type as x.
@param angle output array of vector angles; it has the same size and
same type as x .
@param angleInDegrees when true, the function calculates the angle in
degrees, otherwise, they are measured in radians.
*/
CV_EXPORTS_W void phase(InputArray x, InputArray y, OutputArray angle,
bool angleInDegrees = false);
/** @brief Calculates the magnitude of 2D vectors.
The function magnitude calculates the magnitude of 2D vectors formed
from the corresponding elements of x and y arrays:
\f[\texttt{dst} (I) = \sqrt{\texttt{x}(I)^2 + \texttt{y}(I)^2}\f]
@param x floating-point array of x-coordinates of the vectors.
@param y floating-point array of y-coordinates of the vectors; it must
have the same size as x.
@param magnitude output array of the same size and type as x.
@sa cartToPolar, polarToCart, phase, sqrt
*/
CV_EXPORTS_W void magnitude(InputArray x, InputArray y, OutputArray magnitude);
/** @brief Checks every element of an input array for invalid values.
The functions checkRange check that every array element is neither NaN nor infinite. When minVal \<
-DBL_MAX and maxVal \< DBL_MAX, the functions also check that each value is between minVal and
maxVal. In case of multi-channel arrays, each channel is processed independently. If some values
are out of range, position of the first outlier is stored in pos (when pos != NULL). Then, the
functions either return false (when quiet=true) or throw an exception.
@param a input array.
@param quiet a flag, indicating whether the functions quietly return false when the array elements
are out of range or they throw an exception.
@param pos optional output parameter, when not NULL, must be a pointer to array of src.dims
elements.
@param minVal inclusive lower boundary of valid values range.
@param maxVal exclusive upper boundary of valid values range.
*/
CV_EXPORTS_W bool checkRange(InputArray a, bool quiet = true, CV_OUT Point* pos = 0,
double minVal = -DBL_MAX, double maxVal = DBL_MAX);
/** @brief converts NaN's to the given number
*/
CV_EXPORTS_W void patchNaNs(InputOutputArray a, double val = 0);
/** @brief Performs generalized matrix multiplication.
The function performs generalized matrix multiplication similar to the
gemm functions in BLAS level 3. For example,
`gemm(src1, src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T)`
corresponds to
\f[\texttt{dst} = \texttt{alpha} \cdot \texttt{src1} ^T \cdot \texttt{src2} + \texttt{beta} \cdot \texttt{src3} ^T\f]
In case of complex (two-channel) data, performed a complex matrix
multiplication.
The function can be replaced with a matrix expression. For example, the
above call can be replaced with:
@code{.cpp}
dst = alpha*src1.t()*src2 + beta*src3.t();
@endcode
@param src1 first multiplied input matrix that could be real(CV_32FC1,
CV_64FC1) or complex(CV_32FC2, CV_64FC2).
@param src2 second multiplied input matrix of the same type as src1.
@param alpha weight of the matrix product.
@param src3 third optional delta matrix added to the matrix product; it
should have the same type as src1 and src2.
@param beta weight of src3.
@param dst output matrix; it has the proper size and the same type as
input matrices.
@param flags operation flags (cv::GemmFlags)
@sa mulTransposed , transform
*/
CV_EXPORTS_W void gemm(InputArray src1, InputArray src2, double alpha,
InputArray src3, double beta, OutputArray dst, int flags = 0);
/** @brief Calculates the product of a matrix and its transposition.
The function mulTransposed calculates the product of src and its
transposition:
\f[\texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} )^T ( \texttt{src} - \texttt{delta} )\f]
if aTa=true , and
\f[\texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} ) ( \texttt{src} - \texttt{delta} )^T\f]
otherwise. The function is used to calculate the covariance matrix. With
zero delta, it can be used as a faster substitute for general matrix
product A\*B when B=A'
@param src input single-channel matrix. Note that unlike gemm, the
function can multiply not only floating-point matrices.
@param dst output square matrix.
@param aTa Flag specifying the multiplication ordering. See the
description below.
@param delta Optional delta matrix subtracted from src before the
multiplication. When the matrix is empty ( delta=noArray() ), it is
assumed to be zero, that is, nothing is subtracted. If it has the same
size as src , it is simply subtracted. Otherwise, it is "repeated" (see
repeat ) to cover the full src and then subtracted. Type of the delta
matrix, when it is not empty, must be the same as the type of created
output matrix. See the dtype parameter description below.
@param scale Optional scale factor for the matrix product.
@param dtype Optional type of the output matrix. When it is negative,
the output matrix will have the same type as src . Otherwise, it will be
type=CV_MAT_DEPTH(dtype) that should be either CV_32F or CV_64F .
@sa calcCovarMatrix, gemm, repeat, reduce
*/
CV_EXPORTS_W void mulTransposed( InputArray src, OutputArray dst, bool aTa,
InputArray delta = noArray(),
double scale = 1, int dtype = -1 );
/** @brief Transposes a matrix.
The function transpose transposes the matrix src :
\f[\texttt{dst} (i,j) = \texttt{src} (j,i)\f]
@note No complex conjugation is done in case of a complex matrix. It it
should be done separately if needed.
@param src input array.
@param dst output array of the same type as src.
*/
CV_EXPORTS_W void transpose(InputArray src, OutputArray dst);
/** @brief Performs the matrix transformation of every array element.
The function transform performs the matrix transformation of every
element of the array src and stores the results in dst :
\f[\texttt{dst} (I) = \texttt{m} \cdot \texttt{src} (I)\f]
(when m.cols=src.channels() ), or
\f[\texttt{dst} (I) = \texttt{m} \cdot [ \texttt{src} (I); 1]\f]
(when m.cols=src.channels()+1 )
Every element of the N -channel array src is interpreted as N -element
vector that is transformed using the M x N or M x (N+1) matrix m to
M-element vector - the corresponding element of the output array dst .
The function may be used for geometrical transformation of
N -dimensional points, arbitrary linear color space transformation (such
as various kinds of RGB to YUV transforms), shuffling the image
channels, and so forth.
@param src input array that must have as many channels (1 to 4) as
m.cols or m.cols-1.
@param dst output array of the same size and depth as src; it has as
many channels as m.rows.
@param m transformation 2x2 or 2x3 floating-point matrix.
@sa perspectiveTransform, getAffineTransform, estimateRigidTransform, warpAffine, warpPerspective
*/
CV_EXPORTS_W void transform(InputArray src, OutputArray dst, InputArray m );
/** @brief Performs the perspective matrix transformation of vectors.
The function perspectiveTransform transforms every element of src by
treating it as a 2D or 3D vector, in the following way:
\f[(x, y, z) \rightarrow (x'/w, y'/w, z'/w)\f]
where
\f[(x', y', z', w') = \texttt{mat} \cdot \begin{bmatrix} x & y & z & 1 \end{bmatrix}\f]
and
\f[w = \fork{w'}{if \(w' \ne 0\)}{\infty}{otherwise}\f]
Here a 3D vector transformation is shown. In case of a 2D vector
transformation, the z component is omitted.
@note The function transforms a sparse set of 2D or 3D vectors. If you
want to transform an image using perspective transformation, use
warpPerspective . If you have an inverse problem, that is, you want to
compute the most probable perspective transformation out of several
pairs of corresponding points, you can use getPerspectiveTransform or
findHomography .
@param src input two-channel or three-channel floating-point array; each
element is a 2D/3D vector to be transformed.
@param dst output array of the same size and type as src.
@param m 3x3 or 4x4 floating-point transformation matrix.
@sa transform, warpPerspective, getPerspectiveTransform, findHomography
*/
CV_EXPORTS_W void perspectiveTransform(InputArray src, OutputArray dst, InputArray m );
/** @brief Copies the lower or the upper half of a square matrix to another half.
The function completeSymm copies the lower half of a square matrix to
its another half. The matrix diagonal remains unchanged:
* \f$\texttt{mtx}_{ij}=\texttt{mtx}_{ji}\f$ for \f$i > j\f$ if
lowerToUpper=false
* \f$\texttt{mtx}_{ij}=\texttt{mtx}_{ji}\f$ for \f$i < j\f$ if
lowerToUpper=true
@param mtx input-output floating-point square matrix.
@param lowerToUpper operation flag; if true, the lower half is copied to
the upper half. Otherwise, the upper half is copied to the lower half.
@sa flip, transpose
*/
CV_EXPORTS_W void completeSymm(InputOutputArray mtx, bool lowerToUpper = false);
/** @brief Initializes a scaled identity matrix.
The function setIdentity initializes a scaled identity matrix:
\f[\texttt{mtx} (i,j)= \fork{\texttt{value}}{ if \(i=j\)}{0}{otherwise}\f]
The function can also be emulated using the matrix initializers and the
matrix expressions:
@code
Mat A = Mat::eye(4, 3, CV_32F)*5;
// A will be set to [[5, 0, 0], [0, 5, 0], [0, 0, 5], [0, 0, 0]]
@endcode
@param mtx matrix to initialize (not necessarily square).
@param s value to assign to diagonal elements.
@sa Mat::zeros, Mat::ones, Mat::setTo, Mat::operator=
*/
CV_EXPORTS_W void setIdentity(InputOutputArray mtx, const Scalar& s = Scalar(1));
/** @brief Returns the determinant of a square floating-point matrix.
The function determinant calculates and returns the determinant of the
specified matrix. For small matrices ( mtx.cols=mtx.rows\<=3 ), the
direct method is used. For larger matrices, the function uses LU
factorization with partial pivoting.
For symmetric positively-determined matrices, it is also possible to use
eigen decomposition to calculate the determinant.
@param mtx input matrix that must have CV_32FC1 or CV_64FC1 type and
square size.
@sa trace, invert, solve, eigen, @ref MatrixExpressions
*/
CV_EXPORTS_W double determinant(InputArray mtx);
/** @brief Returns the trace of a matrix.
The function trace returns the sum of the diagonal elements of the
matrix mtx .
\f[\mathrm{tr} ( \texttt{mtx} ) = \sum _i \texttt{mtx} (i,i)\f]
@param mtx input matrix.
*/
CV_EXPORTS_W Scalar trace(InputArray mtx);
/** @brief Finds the inverse or pseudo-inverse of a matrix.
The function invert inverts the matrix src and stores the result in dst
. When the matrix src is singular or non-square, the function calculates
the pseudo-inverse matrix (the dst matrix) so that norm(src\*dst - I) is
minimal, where I is an identity matrix.
In case of the DECOMP_LU method, the function returns non-zero value if
the inverse has been successfully calculated and 0 if src is singular.
In case of the DECOMP_SVD method, the function returns the inverse
condition number of src (the ratio of the smallest singular value to the
largest singular value) and 0 if src is singular. The SVD method
calculates a pseudo-inverse matrix if src is singular.
Similarly to DECOMP_LU, the method DECOMP_CHOLESKY works only with
non-singular square matrices that should also be symmetrical and
positively defined. In this case, the function stores the inverted
matrix in dst and returns non-zero. Otherwise, it returns 0.
@param src input floating-point M x N matrix.
@param dst output matrix of N x M size and the same type as src.
@param flags inversion method (cv::DecompTypes)
@sa solve, SVD
*/
CV_EXPORTS_W double invert(InputArray src, OutputArray dst, int flags = DECOMP_LU);
/** @brief Solves one or more linear systems or least-squares problems.
The function solve solves a linear system or least-squares problem (the
latter is possible with SVD or QR methods, or by specifying the flag
DECOMP_NORMAL ):
\f[\texttt{dst} = \arg \min _X \| \texttt{src1} \cdot \texttt{X} - \texttt{src2} \|\f]
If DECOMP_LU or DECOMP_CHOLESKY method is used, the function returns 1
if src1 (or \f$\texttt{src1}^T\texttt{src1}\f$ ) is non-singular. Otherwise,
it returns 0. In the latter case, dst is not valid. Other methods find a
pseudo-solution in case of a singular left-hand side part.
@note If you want to find a unity-norm solution of an under-defined
singular system \f$\texttt{src1}\cdot\texttt{dst}=0\f$ , the function solve
will not do the work. Use SVD::solveZ instead.
@param src1 input matrix on the left-hand side of the system.
@param src2 input matrix on the right-hand side of the system.
@param dst output solution.
@param flags solution (matrix inversion) method (cv::DecompTypes)
@sa invert, SVD, eigen
*/
CV_EXPORTS_W bool solve(InputArray src1, InputArray src2,
OutputArray dst, int flags = DECOMP_LU);
/** @brief Sorts each row or each column of a matrix.
The function sort sorts each matrix row or each matrix column in
ascending or descending order. So you should pass two operation flags to
get desired behaviour. If you want to sort matrix rows or columns
lexicographically, you can use STL std::sort generic function with the
proper comparison predicate.
@param src input single-channel array.
@param dst output array of the same size and type as src.
@param flags operation flags, a combination of cv::SortFlags
@sa sortIdx, randShuffle
*/
CV_EXPORTS_W void sort(InputArray src, OutputArray dst, int flags);
/** @brief Sorts each row or each column of a matrix.
The function sortIdx sorts each matrix row or each matrix column in the
ascending or descending order. So you should pass two operation flags to
get desired behaviour. Instead of reordering the elements themselves, it
stores the indices of sorted elements in the output array. For example:
@code
Mat A = Mat::eye(3,3,CV_32F), B;
sortIdx(A, B, SORT_EVERY_ROW + SORT_ASCENDING);
// B will probably contain
// (because of equal elements in A some permutations are possible):
// [[1, 2, 0], [0, 2, 1], [0, 1, 2]]
@endcode
@param src input single-channel array.
@param dst output integer array of the same size as src.
@param flags operation flags that could be a combination of cv::SortFlags
@sa sort, randShuffle
*/
CV_EXPORTS_W void sortIdx(InputArray src, OutputArray dst, int flags);
/** @brief Finds the real roots of a cubic equation.
The function solveCubic finds the real roots of a cubic equation:
- if coeffs is a 4-element vector:
\f[\texttt{coeffs} [0] x^3 + \texttt{coeffs} [1] x^2 + \texttt{coeffs} [2] x + \texttt{coeffs} [3] = 0\f]
- if coeffs is a 3-element vector:
\f[x^3 + \texttt{coeffs} [0] x^2 + \texttt{coeffs} [1] x + \texttt{coeffs} [2] = 0\f]
The roots are stored in the roots array.
@param coeffs equation coefficients, an array of 3 or 4 elements.
@param roots output array of real roots that has 1 or 3 elements.
*/
CV_EXPORTS_W int solveCubic(InputArray coeffs, OutputArray roots);
/** @brief Finds the real or complex roots of a polynomial equation.
The function solvePoly finds real and complex roots of a polynomial equation:
\f[\texttt{coeffs} [n] x^{n} + \texttt{coeffs} [n-1] x^{n-1} + ... + \texttt{coeffs} [1] x + \texttt{coeffs} [0] = 0\f]
@param coeffs array of polynomial coefficients.
@param roots output (complex) array of roots.
@param maxIters maximum number of iterations the algorithm does.
*/
CV_EXPORTS_W double solvePoly(InputArray coeffs, OutputArray roots, int maxIters = 300);
/** @brief Calculates eigenvalues and eigenvectors of a symmetric matrix.
The functions eigen calculate just eigenvalues, or eigenvalues and eigenvectors of the symmetric
matrix src:
@code
src*eigenvectors.row(i).t() = eigenvalues.at<srcType>(i)*eigenvectors.row(i).t()
@endcode
@note in the new and the old interfaces different ordering of eigenvalues and eigenvectors
parameters is used.
@param src input matrix that must have CV_32FC1 or CV_64FC1 type, square size and be symmetrical
(src ^T^ == src).
@param eigenvalues output vector of eigenvalues of the same type as src; the eigenvalues are stored
in the descending order.
@param eigenvectors output matrix of eigenvectors; it has the same size and type as src; the
eigenvectors are stored as subsequent matrix rows, in the same order as the corresponding
eigenvalues.
@sa completeSymm , PCA
*/
CV_EXPORTS_W bool eigen(InputArray src, OutputArray eigenvalues,
OutputArray eigenvectors = noArray());
/** @brief Calculates the covariance matrix of a set of vectors.
The functions calcCovarMatrix calculate the covariance matrix and, optionally, the mean vector of
the set of input vectors.
@param samples samples stored as separate matrices
@param nsamples number of samples
@param covar output covariance matrix of the type ctype and square size.
@param mean input or output (depending on the flags) array as the average value of the input vectors.
@param flags operation flags as a combination of cv::CovarFlags
@param ctype type of the matrixl; it equals 'CV_64F' by default.
@sa PCA, mulTransposed, Mahalanobis
@todo InputArrayOfArrays
*/
CV_EXPORTS void calcCovarMatrix( const Mat* samples, int nsamples, Mat& covar, Mat& mean,
int flags, int ctype = CV_64F);
/** @overload
@note use cv::COVAR_ROWS or cv::COVAR_COLS flag
@param samples samples stored as rows/columns of a single matrix.
@param covar output covariance matrix of the type ctype and square size.
@param mean input or output (depending on the flags) array as the average value of the input vectors.
@param flags operation flags as a combination of cv::CovarFlags
@param ctype type of the matrixl; it equals 'CV_64F' by default.
*/
CV_EXPORTS_W void calcCovarMatrix( InputArray samples, OutputArray covar,
InputOutputArray mean, int flags, int ctype = CV_64F);
/** wrap PCA::operator() */
CV_EXPORTS_W void PCACompute(InputArray data, InputOutputArray mean,
OutputArray eigenvectors, int maxComponents = 0);
/** wrap PCA::operator() */
CV_EXPORTS_W void PCACompute(InputArray data, InputOutputArray mean,
OutputArray eigenvectors, double retainedVariance);
/** wrap PCA::project */
CV_EXPORTS_W void PCAProject(InputArray data, InputArray mean,
InputArray eigenvectors, OutputArray result);
/** wrap PCA::backProject */
CV_EXPORTS_W void PCABackProject(InputArray data, InputArray mean,
InputArray eigenvectors, OutputArray result);
/** wrap SVD::compute */
CV_EXPORTS_W void SVDecomp( InputArray src, OutputArray w, OutputArray u, OutputArray vt, int flags = 0 );
/** wrap SVD::backSubst */
CV_EXPORTS_W void SVBackSubst( InputArray w, InputArray u, InputArray vt,
InputArray rhs, OutputArray dst );
/** @brief Calculates the Mahalanobis distance between two vectors.
The function Mahalanobis calculates and returns the weighted distance between two vectors:
\f[d( \texttt{vec1} , \texttt{vec2} )= \sqrt{\sum_{i,j}{\texttt{icovar(i,j)}\cdot(\texttt{vec1}(I)-\texttt{vec2}(I))\cdot(\texttt{vec1(j)}-\texttt{vec2(j)})} }\f]
The covariance matrix may be calculated using the cv::calcCovarMatrix function and then inverted using
the invert function (preferably using the cv::DECOMP_SVD method, as the most accurate).
@param v1 first 1D input vector.
@param v2 second 1D input vector.
@param icovar inverse covariance matrix.
*/
CV_EXPORTS_W double Mahalanobis(InputArray v1, InputArray v2, InputArray icovar);
/** @brief Performs a forward or inverse Discrete Fourier transform of a 1D or 2D floating-point array.
The function performs one of the following:
- Forward the Fourier transform of a 1D vector of N elements:
\f[Y = F^{(N)} \cdot X,\f]
where \f$F^{(N)}_{jk}=\exp(-2\pi i j k/N)\f$ and \f$i=\sqrt{-1}\f$
- Inverse the Fourier transform of a 1D vector of N elements:
\f[\begin{array}{l} X'= \left (F^{(N)} \right )^{-1} \cdot Y = \left (F^{(N)} \right )^* \cdot y \\ X = (1/N) \cdot X, \end{array}\f]
where \f$F^*=\left(\textrm{Re}(F^{(N)})-\textrm{Im}(F^{(N)})\right)^T\f$
- Forward the 2D Fourier transform of a M x N matrix:
\f[Y = F^{(M)} \cdot X \cdot F^{(N)}\f]
- Inverse the 2D Fourier transform of a M x N matrix:
\f[\begin{array}{l} X'= \left (F^{(M)} \right )^* \cdot Y \cdot \left (F^{(N)} \right )^* \\ X = \frac{1}{M \cdot N} \cdot X' \end{array}\f]
In case of real (single-channel) data, the output spectrum of the forward Fourier transform or input
spectrum of the inverse Fourier transform can be represented in a packed format called *CCS*
(complex-conjugate-symmetrical). It was borrowed from IPL (Intel\* Image Processing Library). Here
is how 2D *CCS* spectrum looks:
\f[\begin{bmatrix} Re Y_{0,0} & Re Y_{0,1} & Im Y_{0,1} & Re Y_{0,2} & Im Y_{0,2} & \cdots & Re Y_{0,N/2-1} & Im Y_{0,N/2-1} & Re Y_{0,N/2} \\ Re Y_{1,0} & Re Y_{1,1} & Im Y_{1,1} & Re Y_{1,2} & Im Y_{1,2} & \cdots & Re Y_{1,N/2-1} & Im Y_{1,N/2-1} & Re Y_{1,N/2} \\ Im Y_{1,0} & Re Y_{2,1} & Im Y_{2,1} & Re Y_{2,2} & Im Y_{2,2} & \cdots & Re Y_{2,N/2-1} & Im Y_{2,N/2-1} & Im Y_{1,N/2} \\ \hdotsfor{9} \\ Re Y_{M/2-1,0} & Re Y_{M-3,1} & Im Y_{M-3,1} & \hdotsfor{3} & Re Y_{M-3,N/2-1} & Im Y_{M-3,N/2-1}& Re Y_{M/2-1,N/2} \\ Im Y_{M/2-1,0} & Re Y_{M-2,1} & Im Y_{M-2,1} & \hdotsfor{3} & Re Y_{M-2,N/2-1} & Im Y_{M-2,N/2-1}& Im Y_{M/2-1,N/2} \\ Re Y_{M/2,0} & Re Y_{M-1,1} & Im Y_{M-1,1} & \hdotsfor{3} & Re Y_{M-1,N/2-1} & Im Y_{M-1,N/2-1}& Re Y_{M/2,N/2} \end{bmatrix}\f]
In case of 1D transform of a real vector, the output looks like the first row of the matrix above.
So, the function chooses an operation mode depending on the flags and size of the input array:
- If DFT_ROWS is set or the input array has a single row or single column, the function
performs a 1D forward or inverse transform of each row of a matrix when DFT_ROWS is set.
Otherwise, it performs a 2D transform.
- If the input array is real and DFT_INVERSE is not set, the function performs a forward 1D or
2D transform:
- When DFT_COMPLEX_OUTPUT is set, the output is a complex matrix of the same size as
input.
- When DFT_COMPLEX_OUTPUT is not set, the output is a real matrix of the same size as
input. In case of 2D transform, it uses the packed format as shown above. In case of a
single 1D transform, it looks like the first row of the matrix above. In case of
multiple 1D transforms (when using the DFT_ROWS flag), each row of the output matrix
looks like the first row of the matrix above.
- If the input array is complex and either DFT_INVERSE or DFT_REAL_OUTPUT are not set, the
output is a complex array of the same size as input. The function performs a forward or
inverse 1D or 2D transform of the whole input array or each row of the input array
independently, depending on the flags DFT_INVERSE and DFT_ROWS.
- When DFT_INVERSE is set and the input array is real, or it is complex but DFT_REAL_OUTPUT
is set, the output is a real array of the same size as input. The function performs a 1D or 2D
inverse transformation of the whole input array or each individual row, depending on the flags
DFT_INVERSE and DFT_ROWS.
If DFT_SCALE is set, the scaling is done after the transformation.
Unlike dct , the function supports arrays of arbitrary size. But only those arrays are processed
efficiently, whose sizes can be factorized in a product of small prime numbers (2, 3, and 5 in the
current implementation). Such an efficient DFT size can be calculated using the getOptimalDFTSize
method.
The sample below illustrates how to calculate a DFT-based convolution of two 2D real arrays:
@code
void convolveDFT(InputArray A, InputArray B, OutputArray C)
{
// reallocate the output array if needed
C.create(abs(A.rows - B.rows)+1, abs(A.cols - B.cols)+1, A.type());
Size dftSize;
// calculate the size of DFT transform
dftSize.width = getOptimalDFTSize(A.cols + B.cols - 1);
dftSize.height = getOptimalDFTSize(A.rows + B.rows - 1);
// allocate temporary buffers and initialize them with 0's
Mat tempA(dftSize, A.type(), Scalar::all(0));
Mat tempB(dftSize, B.type(), Scalar::all(0));
// copy A and B to the top-left corners of tempA and tempB, respectively
Mat roiA(tempA, Rect(0,0,A.cols,A.rows));
A.copyTo(roiA);
Mat roiB(tempB, Rect(0,0,B.cols,B.rows));
B.copyTo(roiB);
// now transform the padded A & B in-place;
// use "nonzeroRows" hint for faster processing
dft(tempA, tempA, 0, A.rows);
dft(tempB, tempB, 0, B.rows);
// multiply the spectrums;
// the function handles packed spectrum representations well
mulSpectrums(tempA, tempB, tempA);
// transform the product back from the frequency domain.
// Even though all the result rows will be non-zero,
// you need only the first C.rows of them, and thus you
// pass nonzeroRows == C.rows
dft(tempA, tempA, DFT_INVERSE + DFT_SCALE, C.rows);
// now copy the result back to C.
tempA(Rect(0, 0, C.cols, C.rows)).copyTo(C);
// all the temporary buffers will be deallocated automatically
}
@endcode
To optimize this sample, consider the following approaches:
- Since nonzeroRows != 0 is passed to the forward transform calls and since A and B are copied to
the top-left corners of tempA and tempB, respectively, it is not necessary to clear the whole
tempA and tempB. It is only necessary to clear the tempA.cols - A.cols ( tempB.cols - B.cols)
rightmost columns of the matrices.
- This DFT-based convolution does not have to be applied to the whole big arrays, especially if B
is significantly smaller than A or vice versa. Instead, you can calculate convolution by parts.
To do this, you need to split the output array C into multiple tiles. For each tile, estimate
which parts of A and B are required to calculate convolution in this tile. If the tiles in C are
too small, the speed will decrease a lot because of repeated work. In the ultimate case, when
each tile in C is a single pixel, the algorithm becomes equivalent to the naive convolution
algorithm. If the tiles are too big, the temporary arrays tempA and tempB become too big and
there is also a slowdown because of bad cache locality. So, there is an optimal tile size
somewhere in the middle.
- If different tiles in C can be calculated in parallel and, thus, the convolution is done by
parts, the loop can be threaded.
All of the above improvements have been implemented in matchTemplate and filter2D . Therefore, by
using them, you can get the performance even better than with the above theoretically optimal
implementation. Though, those two functions actually calculate cross-correlation, not convolution,
so you need to "flip" the second convolution operand B vertically and horizontally using flip .
@note
- An example using the discrete fourier transform can be found at
opencv_source_code/samples/cpp/dft.cpp
- (Python) An example using the dft functionality to perform Wiener deconvolution can be found
at opencv_source/samples/python2/deconvolution.py
- (Python) An example rearranging the quadrants of a Fourier image can be found at
opencv_source/samples/python2/dft.py
@param src input array that could be real or complex.
@param dst output array whose size and type depends on the flags .
@param flags transformation flags, representing a combination of the cv::DftFlags
@param nonzeroRows when the parameter is not zero, the function assumes that only the first
nonzeroRows rows of the input array (DFT_INVERSE is not set) or only the first nonzeroRows of the
output array (DFT_INVERSE is set) contain non-zeros, thus, the function can handle the rest of the
rows more efficiently and save some time; this technique is very useful for calculating array
cross-correlation or convolution using DFT.
@sa dct , getOptimalDFTSize , mulSpectrums, filter2D , matchTemplate , flip , cartToPolar ,
magnitude , phase
*/
CV_EXPORTS_W void dft(InputArray src, OutputArray dst, int flags = 0, int nonzeroRows = 0);
/** @brief Calculates the inverse Discrete Fourier Transform of a 1D or 2D array.
idft(src, dst, flags) is equivalent to dft(src, dst, flags | DFT_INVERSE) .
@note None of dft and idft scales the result by default. So, you should pass DFT_SCALE to one of
dft or idft explicitly to make these transforms mutually inverse.
@sa dft, dct, idct, mulSpectrums, getOptimalDFTSize
@param src input floating-point real or complex array.
@param dst output array whose size and type depend on the flags.
@param flags operation flags (see dft and cv::DftFlags).
@param nonzeroRows number of dst rows to process; the rest of the rows have undefined content (see
the convolution sample in dft description.
*/
CV_EXPORTS_W void idft(InputArray src, OutputArray dst, int flags = 0, int nonzeroRows = 0);
/** @brief Performs a forward or inverse discrete Cosine transform of 1D or 2D array.
The function dct performs a forward or inverse discrete Cosine transform (DCT) of a 1D or 2D
floating-point array:
- Forward Cosine transform of a 1D vector of N elements:
\f[Y = C^{(N)} \cdot X\f]
where
\f[C^{(N)}_{jk}= \sqrt{\alpha_j/N} \cos \left ( \frac{\pi(2k+1)j}{2N} \right )\f]
and
\f$\alpha_0=1\f$, \f$\alpha_j=2\f$ for *j \> 0*.
- Inverse Cosine transform of a 1D vector of N elements:
\f[X = \left (C^{(N)} \right )^{-1} \cdot Y = \left (C^{(N)} \right )^T \cdot Y\f]
(since \f$C^{(N)}\f$ is an orthogonal matrix, \f$C^{(N)} \cdot \left(C^{(N)}\right)^T = I\f$ )
- Forward 2D Cosine transform of M x N matrix:
\f[Y = C^{(N)} \cdot X \cdot \left (C^{(N)} \right )^T\f]
- Inverse 2D Cosine transform of M x N matrix:
\f[X = \left (C^{(N)} \right )^T \cdot X \cdot C^{(N)}\f]
The function chooses the mode of operation by looking at the flags and size of the input array:
- If (flags & DCT_INVERSE) == 0 , the function does a forward 1D or 2D transform. Otherwise, it
is an inverse 1D or 2D transform.
- If (flags & DCT_ROWS) != 0 , the function performs a 1D transform of each row.
- If the array is a single column or a single row, the function performs a 1D transform.
- If none of the above is true, the function performs a 2D transform.
@note Currently dct supports even-size arrays (2, 4, 6 ...). For data analysis and approximation, you
can pad the array when necessary.
Also, the function performance depends very much, and not monotonically, on the array size (see
getOptimalDFTSize ). In the current implementation DCT of a vector of size N is calculated via DFT
of a vector of size N/2 . Thus, the optimal DCT size N1 \>= N can be calculated as:
@code
size_t getOptimalDCTSize(size_t N) { return 2*getOptimalDFTSize((N+1)/2); }
N1 = getOptimalDCTSize(N);
@endcode
@param src input floating-point array.
@param dst output array of the same size and type as src .
@param flags transformation flags as a combination of cv::DftFlags (DCT_*)
@sa dft , getOptimalDFTSize , idct
*/
CV_EXPORTS_W void dct(InputArray src, OutputArray dst, int flags = 0);
/** @brief Calculates the inverse Discrete Cosine Transform of a 1D or 2D array.
idct(src, dst, flags) is equivalent to dct(src, dst, flags | DCT_INVERSE).
@param src input floating-point single-channel array.
@param dst output array of the same size and type as src.
@param flags operation flags.
@sa dct, dft, idft, getOptimalDFTSize
*/
CV_EXPORTS_W void idct(InputArray src, OutputArray dst, int flags = 0);
/** @brief Performs the per-element multiplication of two Fourier spectrums.
The function mulSpectrums performs the per-element multiplication of the two CCS-packed or complex
matrices that are results of a real or complex Fourier transform.
The function, together with dft and idft , may be used to calculate convolution (pass conjB=false )
or correlation (pass conjB=true ) of two arrays rapidly. When the arrays are complex, they are
simply multiplied (per element) with an optional conjugation of the second-array elements. When the
arrays are real, they are assumed to be CCS-packed (see dft for details).
@param a first input array.
@param b second input array of the same size and type as src1 .
@param c output array of the same size and type as src1 .
@param flags operation flags; currently, the only supported flag is cv::DFT_ROWS, which indicates that
each row of src1 and src2 is an independent 1D Fourier spectrum. If you do not want to use this flag, then simply add a `0` as value.
@param conjB optional flag that conjugates the second input array before the multiplication (true)
or not (false).
*/
CV_EXPORTS_W void mulSpectrums(InputArray a, InputArray b, OutputArray c,
int flags, bool conjB = false);
/** @brief Returns the optimal DFT size for a given vector size.
DFT performance is not a monotonic function of a vector size. Therefore, when you calculate
convolution of two arrays or perform the spectral analysis of an array, it usually makes sense to
pad the input data with zeros to get a bit larger array that can be transformed much faster than the
original one. Arrays whose size is a power-of-two (2, 4, 8, 16, 32, ...) are the fastest to process.
Though, the arrays whose size is a product of 2's, 3's, and 5's (for example, 300 = 5\*5\*3\*2\*2)
are also processed quite efficiently.
The function getOptimalDFTSize returns the minimum number N that is greater than or equal to vecsize
so that the DFT of a vector of size N can be processed efficiently. In the current implementation N
= 2 ^p^ \* 3 ^q^ \* 5 ^r^ for some integer p, q, r.
The function returns a negative number if vecsize is too large (very close to INT_MAX ).
While the function cannot be used directly to estimate the optimal vector size for DCT transform
(since the current DCT implementation supports only even-size vectors), it can be easily processed
as getOptimalDFTSize((vecsize+1)/2)\*2.
@param vecsize vector size.
@sa dft , dct , idft , idct , mulSpectrums
*/
CV_EXPORTS_W int getOptimalDFTSize(int vecsize);
/** @brief Returns the default random number generator.
The function theRNG returns the default random number generator. For each thread, there is a
separate random number generator, so you can use the function safely in multi-thread environments.
If you just need to get a single random number using this generator or initialize an array, you can
use randu or randn instead. But if you are going to generate many random numbers inside a loop, it
is much faster to use this function to retrieve the generator and then use RNG::operator _Tp() .
@sa RNG, randu, randn
*/
CV_EXPORTS RNG& theRNG();
/** @brief Generates a single uniformly-distributed random number or an array of random numbers.
Non-template variant of the function fills the matrix dst with uniformly-distributed
random numbers from the specified range:
\f[\texttt{low} _c \leq \texttt{dst} (I)_c < \texttt{high} _c\f]
@param dst output array of random numbers; the array must be pre-allocated.
@param low inclusive lower boundary of the generated random numbers.
@param high exclusive upper boundary of the generated random numbers.
@sa RNG, randn, theRNG
*/
CV_EXPORTS_W void randu(InputOutputArray dst, InputArray low, InputArray high);
/** @brief Fills the array with normally distributed random numbers.
The function randn fills the matrix dst with normally distributed random numbers with the specified
mean vector and the standard deviation matrix. The generated random numbers are clipped to fit the
value range of the output array data type.
@param dst output array of random numbers; the array must be pre-allocated and have 1 to 4 channels.
@param mean mean value (expectation) of the generated random numbers.
@param stddev standard deviation of the generated random numbers; it can be either a vector (in
which case a diagonal standard deviation matrix is assumed) or a square matrix.
@sa RNG, randu
*/
CV_EXPORTS_W void randn(InputOutputArray dst, InputArray mean, InputArray stddev);
/** @brief Shuffles the array elements randomly.
The function randShuffle shuffles the specified 1D array by randomly choosing pairs of elements and
swapping them. The number of such swap operations will be dst.rows\*dst.cols\*iterFactor .
@param dst input/output numerical 1D array.
@param iterFactor scale factor that determines the number of random swap operations (see the details
below).
@param rng optional random number generator used for shuffling; if it is zero, theRNG () is used
instead.
@sa RNG, sort
*/
CV_EXPORTS_W void randShuffle(InputOutputArray dst, double iterFactor = 1., RNG* rng = 0);
/** @brief Principal Component Analysis
The class is used to calculate a special basis for a set of vectors. The
basis will consist of eigenvectors of the covariance matrix calculated
from the input set of vectors. The class %PCA can also transform
vectors to/from the new coordinate space defined by the basis. Usually,
in this new coordinate system, each vector from the original set (and
any linear combination of such vectors) can be quite accurately
approximated by taking its first few components, corresponding to the
eigenvectors of the largest eigenvalues of the covariance matrix.
Geometrically it means that you calculate a projection of the vector to
a subspace formed by a few eigenvectors corresponding to the dominant
eigenvalues of the covariance matrix. And usually such a projection is
very close to the original vector. So, you can represent the original
vector from a high-dimensional space with a much shorter vector
consisting of the projected vector's coordinates in the subspace. Such a
transformation is also known as Karhunen-Loeve Transform, or KLT.
See http://en.wikipedia.org/wiki/Principal_component_analysis
The sample below is the function that takes two matrices. The first
function stores a set of vectors (a row per vector) that is used to
calculate PCA. The second function stores another "test" set of vectors
(a row per vector). First, these vectors are compressed with PCA, then
reconstructed back, and then the reconstruction error norm is computed
and printed for each vector. :
@code{.cpp}
using namespace cv;
PCA compressPCA(const Mat& pcaset, int maxComponents,
const Mat& testset, Mat& compressed)
{
PCA pca(pcaset, // pass the data
Mat(), // we do not have a pre-computed mean vector,
// so let the PCA engine to compute it
PCA::DATA_AS_ROW, // indicate that the vectors
// are stored as matrix rows
// (use PCA::DATA_AS_COL if the vectors are
// the matrix columns)
maxComponents // specify, how many principal components to retain
);
// if there is no test data, just return the computed basis, ready-to-use
if( !testset.data )
return pca;
CV_Assert( testset.cols == pcaset.cols );
compressed.create(testset.rows, maxComponents, testset.type());
Mat reconstructed;
for( int i = 0; i < testset.rows; i++ )
{
Mat vec = testset.row(i), coeffs = compressed.row(i), reconstructed;
// compress the vector, the result will be stored
// in the i-th row of the output matrix
pca.project(vec, coeffs);
// and then reconstruct it
pca.backProject(coeffs, reconstructed);
// and measure the error
printf("%d. diff = %g\n", i, norm(vec, reconstructed, NORM_L2));
}
return pca;
}
@endcode
@sa calcCovarMatrix, mulTransposed, SVD, dft, dct
*/
class CV_EXPORTS PCA
{
public:
enum Flags { DATA_AS_ROW = 0, //!< indicates that the input samples are stored as matrix rows
DATA_AS_COL = 1, //!< indicates that the input samples are stored as matrix columns
USE_AVG = 2 //!
};
/** @brief default constructor
The default constructor initializes an empty %PCA structure. The other
constructors initialize the structure and call PCA::operator()().
*/
PCA();
/** @overload
@param data input samples stored as matrix rows or matrix columns.
@param mean optional mean value; if the matrix is empty (@c noArray()),
the mean is computed from the data.
@param flags operation flags; currently the parameter is only used to
specify the data layout (PCA::Flags)
@param maxComponents maximum number of components that %PCA should
retain; by default, all the components are retained.
*/
PCA(InputArray data, InputArray mean, int flags, int maxComponents = 0);
/** @overload
@param data input samples stored as matrix rows or matrix columns.
@param mean optional mean value; if the matrix is empty (noArray()),
the mean is computed from the data.
@param flags operation flags; currently the parameter is only used to
specify the data layout (PCA::Flags)
@param retainedVariance Percentage of variance that PCA should retain.
Using this parameter will let the PCA decided how many components to
retain but it will always keep at least 2.
*/
PCA(InputArray data, InputArray mean, int flags, double retainedVariance);
/** @brief performs %PCA
The operator performs %PCA of the supplied dataset. It is safe to reuse
the same PCA structure for multiple datasets. That is, if the structure
has been previously used with another dataset, the existing internal
data is reclaimed and the new eigenvalues, @ref eigenvectors , and @ref
mean are allocated and computed.
The computed eigenvalues are sorted from the largest to the smallest and
the corresponding eigenvectors are stored as eigenvectors rows.
@param data input samples stored as the matrix rows or as the matrix
columns.
@param mean optional mean value; if the matrix is empty (noArray()),
the mean is computed from the data.
@param flags operation flags; currently the parameter is only used to
specify the data layout. (Flags)
@param maxComponents maximum number of components that PCA should
retain; by default, all the components are retained.
*/
PCA& operator()(InputArray data, InputArray mean, int flags, int maxComponents = 0);
/** @overload
@param data input samples stored as the matrix rows or as the matrix
columns.
@param mean optional mean value; if the matrix is empty (noArray()),
the mean is computed from the data.
@param flags operation flags; currently the parameter is only used to
specify the data layout. (PCA::Flags)
@param retainedVariance Percentage of variance that %PCA should retain.
Using this parameter will let the %PCA decided how many components to
retain but it will always keep at least 2.
*/
PCA& operator()(InputArray data, InputArray mean, int flags, double retainedVariance);
/** @brief Projects vector(s) to the principal component subspace.
The methods project one or more vectors to the principal component
subspace, where each vector projection is represented by coefficients in
the principal component basis. The first form of the method returns the
matrix that the second form writes to the result. So the first form can
be used as a part of expression while the second form can be more
efficient in a processing loop.
@param vec input vector(s); must have the same dimensionality and the
same layout as the input data used at %PCA phase, that is, if
DATA_AS_ROW are specified, then `vec.cols==data.cols`
(vector dimensionality) and `vec.rows` is the number of vectors to
project, and the same is true for the PCA::DATA_AS_COL case.
*/
Mat project(InputArray vec) const;
/** @overload
@param vec input vector(s); must have the same dimensionality and the
same layout as the input data used at PCA phase, that is, if
DATA_AS_ROW are specified, then `vec.cols==data.cols`
(vector dimensionality) and `vec.rows` is the number of vectors to
project, and the same is true for the PCA::DATA_AS_COL case.
@param result output vectors; in case of PCA::DATA_AS_COL, the
output matrix has as many columns as the number of input vectors, this
means that `result.cols==vec.cols` and the number of rows match the
number of principal components (for example, `maxComponents` parameter
passed to the constructor).
*/
void project(InputArray vec, OutputArray result) const;
/** @brief Reconstructs vectors from their PC projections.
The methods are inverse operations to PCA::project. They take PC
coordinates of projected vectors and reconstruct the original vectors.
Unless all the principal components have been retained, the
reconstructed vectors are different from the originals. But typically,
the difference is small if the number of components is large enough (but
still much smaller than the original vector dimensionality). As a
result, PCA is used.
@param vec coordinates of the vectors in the principal component
subspace, the layout and size are the same as of PCA::project output
vectors.
*/
Mat backProject(InputArray vec) const;
/** @overload
@param vec coordinates of the vectors in the principal component
subspace, the layout and size are the same as of PCA::project output
vectors.
@param result reconstructed vectors; the layout and size are the same as
of PCA::project input vectors.
*/
void backProject(InputArray vec, OutputArray result) const;
/** @brief write and load PCA matrix
*/
void write(FileStorage& fs ) const;
void read(const FileNode& fs);
Mat eigenvectors; //!< eigenvectors of the covariation matrix
Mat eigenvalues; //!< eigenvalues of the covariation matrix
Mat mean; //!< mean value subtracted before the projection and added after the back projection
};
/** @example pca.cpp
An example using %PCA for dimensionality reduction while maintaining an amount of variance
*/
/**
@brief Linear Discriminant Analysis
@todo document this class
*/
class CV_EXPORTS LDA
{
public:
/** @brief constructor
Initializes a LDA with num_components (default 0) and specifies how
samples are aligned (default dataAsRow=true).
*/
explicit LDA(int num_components = 0);
/** Initializes and performs a Discriminant Analysis with Fisher's
Optimization Criterion on given data in src and corresponding labels
in labels. If 0 (or less) number of components are given, they are
automatically determined for given data in computation.
*/
LDA(InputArrayOfArrays src, InputArray labels, int num_components = 0);
/** Serializes this object to a given filename.
*/
void save(const String& filename) const;
/** Deserializes this object from a given filename.
*/
void load(const String& filename);
/** Serializes this object to a given cv::FileStorage.
*/
void save(FileStorage& fs) const;
/** Deserializes this object from a given cv::FileStorage.
*/
void load(const FileStorage& node);
/** destructor
*/
~LDA();
/** Compute the discriminants for data in src and labels.
*/
void compute(InputArrayOfArrays src, InputArray labels);
/** Projects samples into the LDA subspace.
*/
Mat project(InputArray src);
/** Reconstructs projections from the LDA subspace.
*/
Mat reconstruct(InputArray src);
/** Returns the eigenvectors of this LDA.
*/
Mat eigenvectors() const { return _eigenvectors; }
/** Returns the eigenvalues of this LDA.
*/
Mat eigenvalues() const { return _eigenvalues; }
static Mat subspaceProject(InputArray W, InputArray mean, InputArray src);
static Mat subspaceReconstruct(InputArray W, InputArray mean, InputArray src);
protected:
bool _dataAsRow;
int _num_components;
Mat _eigenvectors;
Mat _eigenvalues;
void lda(InputArrayOfArrays src, InputArray labels);
};
/** @brief Singular Value Decomposition
Class for computing Singular Value Decomposition of a floating-point
matrix. The Singular Value Decomposition is used to solve least-square
problems, under-determined linear systems, invert matrices, compute
condition numbers, and so on.
For a faster operation, you can pass flags=SVD::MODIFY_A|... to modify
the decomposed matrix when it is not necessary to preserve it. If you
want to compute a condition number of a matrix or an absolute value of
its determinant, you do not need `u` and `vt`. You can pass
flags=SVD::NO_UV|... . Another flag SVD::FULL_UV indicates that full-size u
and vt must be computed, which is not necessary most of the time.
@sa invert, solve, eigen, determinant
*/
class CV_EXPORTS SVD
{
public:
enum Flags {
/** use the algorithm to modify the decomposed matrix; it can save space and speed up
processing */
MODIFY_A = 1,
/** indicates that only a vector of singular values `w` is to be processed, while u and vt
will be set to empty matrices */
NO_UV = 2,
/** when the matrix is not square, by default the algorithm produces u and vt matrices of
sufficiently large size for the further A reconstruction; if, however, FULL_UV flag is
specified, u and vt will be full-size square orthogonal matrices.*/
FULL_UV = 4
};
/** @brief the default constructor
initializes an empty SVD structure
*/
SVD();
/** @overload
initializes an empty SVD structure and then calls SVD::operator()
@param src decomposed matrix.
@param flags operation flags (SVD::Flags)
*/
SVD( InputArray src, int flags = 0 );
/** @brief the operator that performs SVD. The previously allocated u, w and vt are released.
The operator performs the singular value decomposition of the supplied
matrix. The u,`vt` , and the vector of singular values w are stored in
the structure. The same SVD structure can be reused many times with
different matrices. Each time, if needed, the previous u,`vt` , and w
are reclaimed and the new matrices are created, which is all handled by
Mat::create.
@param src decomposed matrix.
@param flags operation flags (SVD::Flags)
*/
SVD& operator ()( InputArray src, int flags = 0 );
/** @brief decomposes matrix and stores the results to user-provided matrices
The methods/functions perform SVD of matrix. Unlike SVD::SVD constructor
and SVD::operator(), they store the results to the user-provided
matrices:
@code{.cpp}
Mat A, w, u, vt;
SVD::compute(A, w, u, vt);
@endcode
@param src decomposed matrix
@param w calculated singular values
@param u calculated left singular vectors
@param vt transposed matrix of right singular values
@param flags operation flags - see SVD::SVD.
*/
static void compute( InputArray src, OutputArray w,
OutputArray u, OutputArray vt, int flags = 0 );
/** @overload
computes singular values of a matrix
@param src decomposed matrix
@param w calculated singular values
@param flags operation flags - see SVD::Flags.
*/
static void compute( InputArray src, OutputArray w, int flags = 0 );
/** @brief performs back substitution
*/
static void backSubst( InputArray w, InputArray u,
InputArray vt, InputArray rhs,
OutputArray dst );
/** @brief solves an under-determined singular linear system
The method finds a unit-length solution x of a singular linear system
A\*x = 0. Depending on the rank of A, there can be no solutions, a
single solution or an infinite number of solutions. In general, the
algorithm solves the following problem:
\f[dst = \arg \min _{x: \| x \| =1} \| src \cdot x \|\f]
@param src left-hand-side matrix.
@param dst found solution.
*/
static void solveZ( InputArray src, OutputArray dst );
/** @brief performs a singular value back substitution.
The method calculates a back substitution for the specified right-hand
side:
\f[\texttt{x} = \texttt{vt} ^T \cdot diag( \texttt{w} )^{-1} \cdot \texttt{u} ^T \cdot \texttt{rhs} \sim \texttt{A} ^{-1} \cdot \texttt{rhs}\f]
Using this technique you can either get a very accurate solution of the
convenient linear system, or the best (in the least-squares terms)
pseudo-solution of an overdetermined linear system.
@param rhs right-hand side of a linear system (u\*w\*v')\*dst = rhs to
be solved, where A has been previously decomposed.
@param dst found solution of the system.
@note Explicit SVD with the further back substitution only makes sense
if you need to solve many linear systems with the same left-hand side
(for example, src ). If all you need is to solve a single system
(possibly with multiple rhs immediately available), simply call solve
add pass DECOMP_SVD there. It does absolutely the same thing.
*/
void backSubst( InputArray rhs, OutputArray dst ) const;
/** @todo document */
template<typename _Tp, int m, int n, int nm> static
void compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w, Matx<_Tp, m, nm>& u, Matx<_Tp, n, nm>& vt );
/** @todo document */
template<typename _Tp, int m, int n, int nm> static
void compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w );
/** @todo document */
template<typename _Tp, int m, int n, int nm, int nb> static
void backSubst( const Matx<_Tp, nm, 1>& w, const Matx<_Tp, m, nm>& u, const Matx<_Tp, n, nm>& vt, const Matx<_Tp, m, nb>& rhs, Matx<_Tp, n, nb>& dst );
Mat u, w, vt;
};
/** @brief Random Number Generator
Random number generator. It encapsulates the state (currently, a 64-bit
integer) and has methods to return scalar random values and to fill
arrays with random values. Currently it supports uniform and Gaussian
(normal) distributions. The generator uses Multiply-With-Carry
algorithm, introduced by G. Marsaglia (
<http://en.wikipedia.org/wiki/Multiply-with-carry> ).
Gaussian-distribution random numbers are generated using the Ziggurat
algorithm ( <http://en.wikipedia.org/wiki/Ziggurat_algorithm> ),
introduced by G. Marsaglia and W. W. Tsang.
*/
class CV_EXPORTS RNG
{
public:
enum { UNIFORM = 0,
NORMAL = 1
};
/** @brief constructor
These are the RNG constructors. The first form sets the state to some
pre-defined value, equal to 2\*\*32-1 in the current implementation. The
second form sets the state to the specified value. If you passed state=0
, the constructor uses the above default value instead to avoid the
singular random number sequence, consisting of all zeros.
*/
RNG();
/** @overload
@param state 64-bit value used to initialize the RNG.
*/
RNG(uint64 state);
/**The method updates the state using the MWC algorithm and returns the
next 32-bit random number.*/
unsigned next();
/**Each of the methods updates the state using the MWC algorithm and
returns the next random number of the specified type. In case of integer
types, the returned number is from the available value range for the
specified type. In case of floating-point types, the returned value is
from [0,1) range.
*/
operator uchar();
/** @overload */
operator schar();
/** @overload */
operator ushort();
/** @overload */
operator short();
/** @overload */
operator unsigned();
/** @overload */
operator int();
/** @overload */
operator float();
/** @overload */
operator double();
/** @brief returns a random integer sampled uniformly from [0, N).
The methods transform the state using the MWC algorithm and return the
next random number. The first form is equivalent to RNG::next . The
second form returns the random number modulo N , which means that the
result is in the range [0, N) .
*/
unsigned operator ()();
/** @overload
@param N upper non-inclusive boundary of the returned random number.
*/
unsigned operator ()(unsigned N);
/** @brief returns uniformly distributed integer random number from [a,b) range
The methods transform the state using the MWC algorithm and return the
next uniformly-distributed random number of the specified type, deduced
from the input parameter type, from the range [a, b) . There is a nuance
illustrated by the following sample:
@code{.cpp}
RNG rng;
// always produces 0
double a = rng.uniform(0, 1);
// produces double from [0, 1)
double a1 = rng.uniform((double)0, (double)1);
// produces float from [0, 1)
double b = rng.uniform(0.f, 1.f);
// produces double from [0, 1)
double c = rng.uniform(0., 1.);
// may cause compiler error because of ambiguity:
// RNG::uniform(0, (int)0.999999)? or RNG::uniform((double)0, 0.99999)?
double d = rng.uniform(0, 0.999999);
@endcode
The compiler does not take into account the type of the variable to
which you assign the result of RNG::uniform . The only thing that
matters to the compiler is the type of a and b parameters. So, if you
want a floating-point random number, but the range boundaries are
integer numbers, either put dots in the end, if they are constants, or
use explicit type cast operators, as in the a1 initialization above.
@param a lower inclusive boundary of the returned random numbers.
@param b upper non-inclusive boundary of the returned random numbers.
*/
int uniform(int a, int b);
/** @overload */
float uniform(float a, float b);
/** @overload */
double uniform(double a, double b);
/** @brief Fills arrays with random numbers.
@param mat 2D or N-dimensional matrix; currently matrices with more than
4 channels are not supported by the methods, use Mat::reshape as a
possible workaround.
@param distType distribution type, RNG::UNIFORM or RNG::NORMAL.
@param a first distribution parameter; in case of the uniform
distribution, this is an inclusive lower boundary, in case of the normal
distribution, this is a mean value.
@param b second distribution parameter; in case of the uniform
distribution, this is a non-inclusive upper boundary, in case of the
normal distribution, this is a standard deviation (diagonal of the
standard deviation matrix or the full standard deviation matrix).
@param saturateRange pre-saturation flag; for uniform distribution only;
if true, the method will first convert a and b to the acceptable value
range (according to the mat datatype) and then will generate uniformly
distributed random numbers within the range [saturate(a), saturate(b)),
if saturateRange=false, the method will generate uniformly distributed
random numbers in the original range [a, b) and then will saturate them,
it means, for example, that
<tt>theRNG().fill(mat_8u, RNG::UNIFORM, -DBL_MAX, DBL_MAX)</tt> will likely
produce array mostly filled with 0's and 255's, since the range (0, 255)
is significantly smaller than [-DBL_MAX, DBL_MAX).
Each of the methods fills the matrix with the random values from the
specified distribution. As the new numbers are generated, the RNG state
is updated accordingly. In case of multiple-channel images, every
channel is filled independently, which means that RNG cannot generate
samples from the multi-dimensional Gaussian distribution with
non-diagonal covariance matrix directly. To do that, the method
generates samples from multi-dimensional standard Gaussian distribution
with zero mean and identity covariation matrix, and then transforms them
using transform to get samples from the specified Gaussian distribution.
*/
void fill( InputOutputArray mat, int distType, InputArray a, InputArray b, bool saturateRange = false );
/** @brief Returns the next random number sampled from the Gaussian distribution
@param sigma standard deviation of the distribution.
The method transforms the state using the MWC algorithm and returns the
next random number from the Gaussian distribution N(0,sigma) . That is,
the mean value of the returned random numbers is zero and the standard
deviation is the specified sigma .
*/
double gaussian(double sigma);
uint64 state;
};
/** @brief Mersenne Twister random number generator
Inspired by http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/CODES/mt19937ar.c
@todo document
*/
class CV_EXPORTS RNG_MT19937
{
public:
RNG_MT19937();
RNG_MT19937(unsigned s);
void seed(unsigned s);
unsigned next();
operator int();
operator unsigned();
operator float();
operator double();
unsigned operator ()(unsigned N);
unsigned operator ()();
/** @brief returns uniformly distributed integer random number from [a,b) range
*/
int uniform(int a, int b);
/** @brief returns uniformly distributed floating-point random number from [a,b) range
*/
float uniform(float a, float b);
/** @brief returns uniformly distributed double-precision floating-point random number from [a,b) range
*/
double uniform(double a, double b);
private:
enum PeriodParameters {N = 624, M = 397};
unsigned state[N];
int mti;
};
//! @} core_array
//! @addtogroup core_cluster
//! @{
/** @example kmeans.cpp
An example on K-means clustering
*/
/** @brief Finds centers of clusters and groups input samples around the clusters.
The function kmeans implements a k-means algorithm that finds the centers of cluster_count clusters
and groups the input samples around the clusters. As an output, \f$\texttt{labels}_i\f$ contains a
0-based cluster index for the sample stored in the \f$i^{th}\f$ row of the samples matrix.
@note
- (Python) An example on K-means clustering can be found at
opencv_source_code/samples/python2/kmeans.py
@param data Data for clustering. An array of N-Dimensional points with float coordinates is needed.
Examples of this array can be:
- Mat points(count, 2, CV_32F);
- Mat points(count, 1, CV_32FC2);
- Mat points(1, count, CV_32FC2);
- std::vector\<cv::Point2f\> points(sampleCount);
@param K Number of clusters to split the set by.
@param bestLabels Input/output integer array that stores the cluster indices for every sample.
@param criteria The algorithm termination criteria, that is, the maximum number of iterations and/or
the desired accuracy. The accuracy is specified as criteria.epsilon. As soon as each of the cluster
centers moves by less than criteria.epsilon on some iteration, the algorithm stops.
@param attempts Flag to specify the number of times the algorithm is executed using different
initial labellings. The algorithm returns the labels that yield the best compactness (see the last
function parameter).
@param flags Flag that can take values of cv::KmeansFlags
@param centers Output matrix of the cluster centers, one row per each cluster center.
@return The function returns the compactness measure that is computed as
\f[\sum _i \| \texttt{samples} _i - \texttt{centers} _{ \texttt{labels} _i} \| ^2\f]
after every attempt. The best (minimum) value is chosen and the corresponding labels and the
compactness value are returned by the function. Basically, you can use only the core of the
function, set the number of attempts to 1, initialize labels each time using a custom algorithm,
pass them with the ( flags = KMEANS_USE_INITIAL_LABELS ) flag, and then choose the best
(most-compact) clustering.
*/
CV_EXPORTS_W double kmeans( InputArray data, int K, InputOutputArray bestLabels,
TermCriteria criteria, int attempts,
int flags, OutputArray centers = noArray() );
//! @} core_cluster
//! @addtogroup core_basic
//! @{
/////////////////////////////// Formatted output of cv::Mat ///////////////////////////
/** @todo document */
class CV_EXPORTS Formatted
{
public:
virtual const char* next() = 0;
virtual void reset() = 0;
virtual ~Formatted();
};
/** @todo document */
class CV_EXPORTS Formatter
{
public:
enum { FMT_DEFAULT = 0,
FMT_MATLAB = 1,
FMT_CSV = 2,
FMT_PYTHON = 3,
FMT_NUMPY = 4,
FMT_C = 5
};
virtual ~Formatter();
virtual Ptr<Formatted> format(const Mat& mtx) const = 0;
virtual void set32fPrecision(int p = 8) = 0;
virtual void set64fPrecision(int p = 16) = 0;
virtual void setMultiline(bool ml = true) = 0;
static Ptr<Formatter> get(int fmt = FMT_DEFAULT);
};
//////////////////////////////////////// Algorithm ////////////////////////////////////
class CV_EXPORTS Algorithm;
class CV_EXPORTS AlgorithmInfo;
struct CV_EXPORTS AlgorithmInfoData;
template<typename _Tp> struct ParamType {};
/** @brief This is a base class for all more or less complex algorithms in OpenCV
especially for classes of algorithms, for which there can be multiple implementations. The examples
are stereo correspondence (for which there are algorithms like block matching, semi-global block
matching, graph-cut etc.), background subtraction (which can be done using mixture-of-gaussians
models, codebook-based algorithm etc.), optical flow (block matching, Lucas-Kanade, Horn-Schunck
etc.).
The class provides the following features for all derived classes:
- so called "virtual constructor". That is, each Algorithm derivative is registered at program
start and you can get the list of registered algorithms and create instance of a particular
algorithm by its name (see Algorithm::create). If you plan to add your own algorithms, it is
good practice to add a unique prefix to your algorithms to distinguish them from other
algorithms.
- setting/retrieving algorithm parameters by name. If you used video capturing functionality
from OpenCV videoio module, you are probably familar with cvSetCaptureProperty(),
cvGetCaptureProperty(), VideoCapture::set() and VideoCapture::get(). Algorithm provides
similar method where instead of integer id's you specify the parameter names as text strings.
See Algorithm::set and Algorithm::get for details.
- reading and writing parameters from/to XML or YAML files. Every Algorithm derivative can store
all its parameters and then read them back. There is no need to re-implement it each time.
Here is example of SIFT use in your application via Algorithm interface:
@code
#include "opencv2/opencv.hpp"
#include "opencv2/xfeatures2d.hpp"
using namespace cv::xfeatures2d;
...
Ptr<Feature2D> sift = SIFT::create();
FileStorage fs("sift_params.xml", FileStorage::READ);
if( fs.isOpened() ) // if we have file with parameters, read them
{
sift->read(fs["sift_params"]);
fs.release();
}
else // else modify the parameters and store them; user can later edit the file to use different parameters
{
sift->setContrastThreshold(0.01f); // lower the contrast threshold, compared to the default value
{
WriteStructContext ws(fs, "sift_params", CV_NODE_MAP);
sift->write(fs);
}
}
Mat image = imread("myimage.png", 0), descriptors;
vector<KeyPoint> keypoints;
sift->detectAndCompute(image, noArray(), keypoints, descriptors);
@endcode
Creating Own Algorithms
-----------------------
If you want to make your own algorithm, derived from Algorithm, you should basically follow a few
conventions and add a little semi-standard piece of code to your class:
- Make a class and specify Algorithm as its base class.
- The algorithm parameters should be the class members. See Algorithm::get() for the list of
possible types of the parameters.
- Add public virtual method `AlgorithmInfo* info() const;` to your class.
- Add constructor function, AlgorithmInfo instance and implement the info() method. The simplest
way is to take <https://github.com/Itseez/opencv/tree/master/modules/ml/src/ml_init.cpp> as
the reference and modify it according to the list of your parameters.
- Add some public function (e.g. `initModule_<mymodule>()`) that calls info() of your algorithm
and put it into the same source file as info() implementation. This is to force C++ linker to
include this object file into the target application. See Algorithm::create() for details.
*/
class CV_EXPORTS_W Algorithm
{
public:
Algorithm();
virtual ~Algorithm();
/**Returns the algorithm name*/
String name() const;
/** @brief returns the algorithm parameter
The method returns value of the particular parameter. Since the compiler can not deduce the
type of the returned parameter, you should specify it explicitly in angle brackets. Here are
the allowed forms of get:
- myalgo.get\<int\>("param_name")
- myalgo.get\<double\>("param_name")
- myalgo.get\<bool\>("param_name")
- myalgo.get\<String\>("param_name")
- myalgo.get\<Mat\>("param_name")
- myalgo.get\<vector\<Mat\> \>("param_name")
- myalgo.get\<Algorithm\>("param_name") (it returns Ptr\<Algorithm\>).
In some cases the actual type of the parameter can be cast to the specified type, e.g. integer
parameter can be cast to double, bool can be cast to int. But "dangerous" transformations
(string\<-\>number, double-\>int, 1x1 Mat\<-\>number, ...) are not performed and the method
will throw an exception. In the case of Mat or vector\<Mat\> parameters the method does not
clone the matrix data, so do not modify the matrices. Use Algorithm::set instead - slower, but
more safe.
@param name The parameter name.
*/
template<typename _Tp> typename ParamType<_Tp>::member_type get(const String& name) const;
/** @overload */
template<typename _Tp> typename ParamType<_Tp>::member_type get(const char* name) const;
CV_WRAP int getInt(const String& name) const;
CV_WRAP double getDouble(const String& name) const;
CV_WRAP bool getBool(const String& name) const;
CV_WRAP String getString(const String& name) const;
CV_WRAP Mat getMat(const String& name) const;
CV_WRAP std::vector<Mat> getMatVector(const String& name) const;
CV_WRAP Ptr<Algorithm> getAlgorithm(const String& name) const;
/** @brief Sets the algorithm parameter
The method sets value of the particular parameter. Some of the algorithm
parameters may be declared as read-only. If you try to set such a
parameter, you will get exception with the corresponding error message.
@param name The parameter name.
@param value The parameter value.
*/
void set(const String& name, int value);
void set(const String& name, double value);
void set(const String& name, bool value);
void set(const String& name, const String& value);
void set(const String& name, const Mat& value);
void set(const String& name, const std::vector<Mat>& value);
void set(const String& name, const Ptr<Algorithm>& value);
template<typename _Tp> void set(const String& name, const Ptr<_Tp>& value);
CV_WRAP void setInt(const String& name, int value);
CV_WRAP void setDouble(const String& name, double value);
CV_WRAP void setBool(const String& name, bool value);
CV_WRAP void setString(const String& name, const String& value);
CV_WRAP void setMat(const String& name, const Mat& value);
CV_WRAP void setMatVector(const String& name, const std::vector<Mat>& value);
CV_WRAP void setAlgorithm(const String& name, const Ptr<Algorithm>& value);
template<typename _Tp> void setAlgorithm(const String& name, const Ptr<_Tp>& value);
void set(const char* name, int value);
void set(const char* name, double value);
void set(const char* name, bool value);
void set(const char* name, const String& value);
void set(const char* name, const Mat& value);
void set(const char* name, const std::vector<Mat>& value);
void set(const char* name, const Ptr<Algorithm>& value);
template<typename _Tp> void set(const char* name, const Ptr<_Tp>& value);
void setInt(const char* name, int value);
void setDouble(const char* name, double value);
void setBool(const char* name, bool value);
void setString(const char* name, const String& value);
void setMat(const char* name, const Mat& value);
void setMatVector(const char* name, const std::vector<Mat>& value);
void setAlgorithm(const char* name, const Ptr<Algorithm>& value);
template<typename _Tp> void setAlgorithm(const char* name, const Ptr<_Tp>& value);
CV_WRAP String paramHelp(const String& name) const;
int paramType(const char* name) const;
CV_WRAP int paramType(const String& name) const;
CV_WRAP void getParams(CV_OUT std::vector<String>& names) const;
/** @brief Stores algorithm parameters in a file storage
The method stores all the algorithm parameters (in alphabetic order) to
the file storage. The method is virtual. If you define your own
Algorithm derivative, your can override the method and store some extra
information. However, it's rarely needed. Here are some examples:
- SIFT feature detector (from xfeatures2d module). The class only
stores algorithm parameters and no keypoints or their descriptors.
Therefore, it's enough to store the algorithm parameters, which is
what Algorithm::write() does. Therefore, there is no dedicated
SIFT::write().
- Background subtractor (from video module). It has the algorithm
parameters and also it has the current background model. However,
the background model is not stored. First, it's rather big. Then,
if you have stored the background model, it would likely become
irrelevant on the next run (because of shifted camera, changed
background, different lighting etc.). Therefore,
BackgroundSubtractorMOG and BackgroundSubtractorMOG2 also rely on
the standard Algorithm::write() to store just the algorithm
parameters.
- Expectation Maximization (from ml module). The algorithm finds
mixture of gaussians that approximates user data best of all. In
this case the model may be re-used on the next run to test new
data against the trained statistical model. So EM needs to store
the model. However, since the model is described by a few
parameters that are available as read-only algorithm parameters
(i.e. they are available via EM::get()), EM also relies on
Algorithm::write() to store both EM parameters and the model
(represented by read-only algorithm parameters).
@param fs File storage.
*/
virtual void write(FileStorage& fs) const;
/** @brief Reads algorithm parameters from a file storage
The method reads all the algorithm parameters from the specified node of
a file storage. Similarly to Algorithm::write(), if you implement an
algorithm that needs to read some extra data and/or re-compute some
internal data, you may override the method.
@param fn File node of the file storage.
*/
virtual void read(const FileNode& fn);
typedef Algorithm* (*Constructor)(void);
typedef int (Algorithm::*Getter)() const;
typedef void (Algorithm::*Setter)(int);
/** @brief Returns the list of registered algorithms
This static method returns the list of registered algorithms in
alphabetical order. Here is how to use it :
@code{.cpp}
vector<String> algorithms;
Algorithm::getList(algorithms);
cout << "Algorithms: " << algorithms.size() << endl;
for (size_t i=0; i < algorithms.size(); i++)
cout << algorithms[i] << endl;
@endcode
@param algorithms The output vector of algorithm names.
*/
CV_WRAP static void getList(CV_OUT std::vector<String>& algorithms);
CV_WRAP static Ptr<Algorithm> _create(const String& name);
/** @brief Creates algorithm instance by name
This static method creates a new instance of the specified algorithm. If
there is no such algorithm, the method will silently return a null
pointer. Also, you should specify the particular Algorithm subclass as
_Tp (or simply Algorithm if you do not know it at that point). :
@code{.cpp}
Ptr<BackgroundSubtractor> bgfg = Algorithm::create<BackgroundSubtractor>("BackgroundSubtractor.MOG2");
@endcode
@note This is important note about seemingly mysterious behavior of
Algorithm::create() when it returns NULL while it should not. The reason
is simple - Algorithm::create() resides in OpenCV's core module and the
algorithms are implemented in other modules. If you create algorithms
dynamically, C++ linker may decide to throw away the modules where the
actual algorithms are implemented, since you do not call any functions
from the modules. To avoid this problem, you need to call
initModule_\<modulename\>(); somewhere in the beginning of the program
before Algorithm::create(). For example, call initModule_xfeatures2d()
in order to use SURF/SIFT, call initModule_ml() to use expectation
maximization etc.
@param name The algorithm name, one of the names returned by Algorithm::getList().
*/
template<typename _Tp> static Ptr<_Tp> create(const String& name);
virtual AlgorithmInfo* info() const /* TODO: make it = 0;*/ { return 0; }
};
/** @todo document */
class CV_EXPORTS AlgorithmInfo
{
public:
friend class Algorithm;
AlgorithmInfo(const String& name, Algorithm::Constructor create);
~AlgorithmInfo();
void get(const Algorithm* algo, const char* name, int argType, void* value) const;
void addParam_(Algorithm& algo, const char* name, int argType,
void* value, bool readOnly,
Algorithm::Getter getter, Algorithm::Setter setter,
const String& help=String());
String paramHelp(const char* name) const;
int paramType(const char* name) const;
void getParams(std::vector<String>& names) const;
void write(const Algorithm* algo, FileStorage& fs) const;
void read(Algorithm* algo, const FileNode& fn) const;
String name() const;
void addParam(Algorithm& algo, const char* name,
int& value, bool readOnly=false,
int (Algorithm::*getter)()=0,
void (Algorithm::*setter)(int)=0,
const String& help=String());
void addParam(Algorithm& algo, const char* name,
bool& value, bool readOnly=false,
int (Algorithm::*getter)()=0,
void (Algorithm::*setter)(int)=0,
const String& help=String());
void addParam(Algorithm& algo, const char* name,
double& value, bool readOnly=false,
double (Algorithm::*getter)()=0,
void (Algorithm::*setter)(double)=0,
const String& help=String());
void addParam(Algorithm& algo, const char* name,
String& value, bool readOnly=false,
String (Algorithm::*getter)()=0,
void (Algorithm::*setter)(const String&)=0,
const String& help=String());
void addParam(Algorithm& algo, const char* name,
Mat& value, bool readOnly=false,
Mat (Algorithm::*getter)()=0,
void (Algorithm::*setter)(const Mat&)=0,
const String& help=String());
void addParam(Algorithm& algo, const char* name,
std::vector<Mat>& value, bool readOnly=false,
std::vector<Mat> (Algorithm::*getter)()=0,
void (Algorithm::*setter)(const std::vector<Mat>&)=0,
const String& help=String());
void addParam(Algorithm& algo, const char* name,
Ptr<Algorithm>& value, bool readOnly=false,
Ptr<Algorithm> (Algorithm::*getter)()=0,
void (Algorithm::*setter)(const Ptr<Algorithm>&)=0,
const String& help=String());
void addParam(Algorithm& algo, const char* name,
float& value, bool readOnly=false,
float (Algorithm::*getter)()=0,
void (Algorithm::*setter)(float)=0,
const String& help=String());
void addParam(Algorithm& algo, const char* name,
unsigned int& value, bool readOnly=false,
unsigned int (Algorithm::*getter)()=0,
void (Algorithm::*setter)(unsigned int)=0,
const String& help=String());
void addParam(Algorithm& algo, const char* name,
uint64& value, bool readOnly=false,
uint64 (Algorithm::*getter)()=0,
void (Algorithm::*setter)(uint64)=0,
const String& help=String());
void addParam(Algorithm& algo, const char* name,
uchar& value, bool readOnly=false,
uchar (Algorithm::*getter)()=0,
void (Algorithm::*setter)(uchar)=0,
const String& help=String());
template<typename _Tp, typename _Base> void addParam(Algorithm& algo, const char* name,
Ptr<_Tp>& value, bool readOnly=false,
Ptr<_Tp> (Algorithm::*getter)()=0,
void (Algorithm::*setter)(const Ptr<_Tp>&)=0,
const String& help=String());
template<typename _Tp> void addParam(Algorithm& algo, const char* name,
Ptr<_Tp>& value, bool readOnly=false,
Ptr<_Tp> (Algorithm::*getter)()=0,
void (Algorithm::*setter)(const Ptr<_Tp>&)=0,
const String& help=String());
protected:
AlgorithmInfoData* data;
void set(Algorithm* algo, const char* name, int argType,
const void* value, bool force=false) const;
};
/** @todo document */
struct CV_EXPORTS Param
{
enum { INT=0, BOOLEAN=1, REAL=2, STRING=3, MAT=4, MAT_VECTOR=5, ALGORITHM=6, FLOAT=7, UNSIGNED_INT=8, UINT64=9, UCHAR=11 };
Param();
Param(int _type, bool _readonly, int _offset,
Algorithm::Getter _getter=0,
Algorithm::Setter _setter=0,
const String& _help=String());
int type;
int offset;
bool readonly;
Algorithm::Getter getter;
Algorithm::Setter setter;
String help;
};
template<> struct ParamType<bool>
{
typedef bool const_param_type;
typedef bool member_type;
enum { type = Param::BOOLEAN };
};
template<> struct ParamType<int>
{
typedef int const_param_type;
typedef int member_type;
enum { type = Param::INT };
};
template<> struct ParamType<double>
{
typedef double const_param_type;
typedef double member_type;
enum { type = Param::REAL };
};
template<> struct ParamType<String>
{
typedef const String& const_param_type;
typedef String member_type;
enum { type = Param::STRING };
};
template<> struct ParamType<Mat>
{
typedef const Mat& const_param_type;
typedef Mat member_type;
enum { type = Param::MAT };
};
template<> struct ParamType<std::vector<Mat> >
{
typedef const std::vector<Mat>& const_param_type;
typedef std::vector<Mat> member_type;
enum { type = Param::MAT_VECTOR };
};
template<> struct ParamType<Algorithm>
{
typedef const Ptr<Algorithm>& const_param_type;
typedef Ptr<Algorithm> member_type;
enum { type = Param::ALGORITHM };
};
template<> struct ParamType<float>
{
typedef float const_param_type;
typedef float member_type;
enum { type = Param::FLOAT };
};
template<> struct ParamType<unsigned>
{
typedef unsigned const_param_type;
typedef unsigned member_type;
enum { type = Param::UNSIGNED_INT };
};
template<> struct ParamType<uint64>
{
typedef uint64 const_param_type;
typedef uint64 member_type;
enum { type = Param::UINT64 };
};
template<> struct ParamType<uchar>
{
typedef uchar const_param_type;
typedef uchar member_type;
enum { type = Param::UCHAR };
};
//! @} core_basic
} //namespace cv
#include "opencv2/core/operations.hpp"
#include "opencv2/core/cvstd.inl.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/core/optim.hpp"
#endif /*__OPENCV_CORE_HPP__*/