1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2018, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "../precomp.hpp"
#ifdef HAVE_PROTOBUF
#include "tf_graph_simplifier.hpp"
namespace cv { namespace dnn {
CV__DNN_EXPERIMENTAL_NS_BEGIN
using ::google::protobuf::RepeatedField;
using ::google::protobuf::MapPair;
class Subgraph // Interface to match and replace TensorFlow subgraphs.
{
public:
virtual ~Subgraph() {}
// Add a node to be matched in the origin graph. Specify ids of nodes that
// are expected to be inputs. Returns id of a newly added node.
// TODO: Replace inputs to std::vector<int> in C++11
int addNodeToMatch(const std::string& op, int input_0 = -1, int input_1 = -1,
int input_2 = -1, int input_3 = -1)
{
int nodeInputs[] = {input_0, input_1, input_2, input_3};
int numInputs = 0;
for (int i = 0; i < 4; ++i)
{
numInputs += (int)(nodeInputs[i] != -1);
}
return addNodeToMatch(op, std::vector<int>(&nodeInputs[0], &nodeInputs[0] + numInputs));
}
int addNodeToMatch(const std::string& op, const std::vector<int>& inputs_)
{
for (int i = 0; i < inputs_.size(); ++i)
{
CV_Assert(inputs_[i] < (int)nodes.size());
}
nodes.push_back(op);
inputs.push_back(inputs_);
return nodes.size() - 1;
}
// Specify resulting node. All the matched nodes in subgraph excluding
// input nodes will be fused into this single node.
// TODO: Replace inputs to std::vector<int> in C++11
void setFusedNode(const std::string& op, int input_0 = -1, int input_1 = -1,
int input_2 = -1, int input_3 = -1, int input_4 = -1,
int input_5 = -1)
{
int nodeInputs[] = {input_0, input_1, input_2, input_3, input_4, input_5};
int numInputs = 0;
for (int i = 0; i < 6; ++i)
{
CV_Assert(nodeInputs[i] < (int)nodes.size());
numInputs += (int)(nodeInputs[i] != -1);
}
setFusedNode(op, std::vector<int>(&nodeInputs[0], &nodeInputs[0] + numInputs));
}
void setFusedNode(const std::string& op, const std::vector<int>& inputs_)
{
fusedNodeInputs = inputs_;
fusedNodeOp = op;
nodesToFuse.clear();
for (int i = 0; i < nodes.size(); ++i)
{
if (std::find(fusedNodeInputs.begin(), fusedNodeInputs.end(), i) == fusedNodeInputs.end() &&
nodes[i] != "Const")
nodesToFuse.push_back(i);
}
}
static const tensorflow::NodeDef& getInputNode(const tensorflow::GraphDef& net,
const tensorflow::NodeDef& node,
int inpId)
{
CV_Assert(inpId < node.input_size());
std::string name = node.input(inpId);
// If operation produces several tensors, they are specified by index
// after ':' character. In example, "input:0".
name = name.substr(0, name.rfind(':'));
const int numNodes = net.node_size();
for (int i = 0; i < numNodes; ++i)
{
if (net.node(i).name() == name)
return net.node(i);
}
CV_Error(Error::StsParseError, "Input node with name " + name + " not found");
}
// Match TensorFlow subgraph starting from <nodeId> with a set of nodes to be fused.
// Const nodes are skipped during matching. Returns true if nodes are matched and can be fused.
virtual bool match(const tensorflow::GraphDef& net, int nodeId, std::vector<int>& matchedNodesIds)
{
matchedNodesIds.clear();
matchedNodesIds.reserve(nodesToFuse.size());
int numNodes = net.node_size();
for (int i = 0; i < nodesToFuse.size(); ++i)
{
while (nodeId < numNodes && net.node(nodeId).op() == "Const")
{
nodeId += 1;
}
if (nodeId > numNodes - 1)
return false;
const tensorflow::NodeDef& node = net.node(nodeId);
if (node.op() != nodes[nodesToFuse[i]])
return false;
std::vector<int>& inputNodes = inputs[nodesToFuse[i]];
if (inputNodes.size() != node.input_size())
return false;
for (int j = 0; j < inputNodes.size(); ++j)
{
if (nodes[inputNodes[j]].empty()) // Unknown input node type.
continue;
const tensorflow::NodeDef& inpNode = getInputNode(net, node, j);
if (inpNode.op() != nodes[inputNodes[j]])
return false;
}
matchedNodesIds.push_back(nodeId);
nodeId += 1;
}
return true;
}
// Fuse matched subgraph.
void replace(tensorflow::GraphDef& net, const std::vector<int>& matchedNodesIds)
{
// Extract names of input nodes.
std::vector<std::string> inputsNames(fusedNodeInputs.size());
for (int i = 0; i < fusedNodeInputs.size(); ++i)
{
std::string inpName;
// Find input node name looking at inputs of fused nodes.
for (int j = 0; j < matchedNodesIds.size() && inpName.empty(); ++j)
{
const tensorflow::NodeDef &node = net.node(matchedNodesIds[j]);
std::vector<int>& inpIndices = inputs[nodesToFuse[j]];
CV_Assert(node.input_size() == inpIndices.size());
for (int k = 0; k < inpIndices.size(); ++k)
{
if (inpIndices[k] == fusedNodeInputs[i])
{
inpName = node.input(k);
break;
}
}
}
CV_Assert(!inpName.empty());
inputsNames[i] = inpName;
}
// Remove matched nodes except the last one. Indices in ascending order are expected.
tensorflow::NodeDef* node = net.mutable_node(matchedNodesIds.back());
for (int i = matchedNodesIds.size() - 2; i >= 0; --i)
net.mutable_node()->DeleteSubrange(matchedNodesIds[i], 1);
// Modify the last node to be a fused one.
node->set_op(fusedNodeOp);
node->clear_input();
for (int i = 0; i < inputsNames.size(); ++i)
{
node->add_input(inputsNames[i]);
}
std::vector<tensorflow::NodeDef*> inputNodes(inputsNames.size());
for (int i = 0; i < inputsNames.size(); ++i)
{
inputNodes[i] = (tensorflow::NodeDef*)&getInputNode(net, *node, i);
}
finalize(net, node, inputNodes);
}
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef*,
std::vector<tensorflow::NodeDef*>&) {}
private:
std::vector<std::string> nodes; // Nodes to be matched in the origin graph.
std::vector<std::vector<int> > inputs; // Connections of an every node to it's inputs.
std::string fusedNodeOp; // Operation name of resulting fused node.
std::vector<int> nodesToFuse; // Set of nodes to be fused.
std::vector<int> fusedNodeInputs; // Inputs of fused node.
};
class BatchNormSubgraph : public Subgraph
{
public:
BatchNormSubgraph()
{
int input = addNodeToMatch("");
int epsilon = addNodeToMatch("Const");
int moving_variance = addNodeToMatch("Const");
int moving_mean = addNodeToMatch("Const");
int beta = addNodeToMatch("Const");
int gamma = addNodeToMatch("Const");
int add = addNodeToMatch("Add", moving_variance, epsilon);
int rsqrt = addNodeToMatch("Rsqrt", add);
int mul = addNodeToMatch("Mul", rsqrt, gamma);
int mul_1 = addNodeToMatch("Mul", input, mul);
int mul_2 = addNodeToMatch("Mul", moving_mean, mul);
int sub = addNodeToMatch("Sub", beta, mul_2);
addNodeToMatch("Add", mul_1, sub);
setFusedNode("FusedBatchNorm", input, gamma, beta, moving_mean, moving_variance, epsilon);
}
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode,
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE
{
Mat epsMat = getTensorContent(inputNodes.back()->attr().at("value").tensor());
CV_CheckEQ(epsMat.total(), (size_t)1, ""); CV_CheckTypeEQ(epsMat.type(), CV_32FC1, "");
fusedNode->mutable_input()->RemoveLast();
fusedNode->clear_attr();
tensorflow::AttrValue epsilon;
epsilon.set_f(epsMat.at<float>(0));
fusedNode->mutable_attr()->insert(MapPair<std::string, tensorflow::AttrValue>("epsilon", epsilon));
}
};
class BatchNormNoGammaSubgraph : public Subgraph
{
public:
BatchNormNoGammaSubgraph()
{
int input = addNodeToMatch("");
int epsilon = addNodeToMatch("Const");
int moving_variance = addNodeToMatch("Const");
int moving_mean = addNodeToMatch("Const");
int beta = addNodeToMatch("Const");
int add = addNodeToMatch("Add", moving_variance, epsilon);
int rsqrt = addNodeToMatch("Rsqrt", add);
int mul = addNodeToMatch("Mul", input, rsqrt);
int mul_1 = addNodeToMatch("Mul", moving_mean, rsqrt);
int sub = addNodeToMatch("Sub", beta, mul_1);
addNodeToMatch("Add", mul, sub);
// There is a fake reference to beta that will be replaced to a new gamma tensor.
setFusedNode("FusedBatchNorm", input, beta, beta, moving_mean, moving_variance, epsilon);
}
virtual void finalize(tensorflow::GraphDef& net, tensorflow::NodeDef* fusedNode,
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE
{
Mat epsMat = getTensorContent(inputNodes.back()->attr().at("value").tensor());
CV_CheckEQ(epsMat.total(), (size_t)1, ""); CV_CheckTypeEQ(epsMat.type(), CV_32FC1, "");
fusedNode->mutable_input()->RemoveLast();
fusedNode->clear_attr();
tensorflow::AttrValue epsilon;
epsilon.set_f(epsMat.at<float>(0));
fusedNode->mutable_attr()->insert(MapPair<std::string, tensorflow::AttrValue>("epsilon", epsilon));
tensorflow::NodeDef* gamma = net.add_node();
gamma->set_op("Const");
gamma->set_name(fusedNode->name() + "/gamma");
// Just put a single value to recognize this node as Const.
gamma->mutable_attr()->insert(MapPair<std::string, tensorflow::AttrValue>("value", epsilon));
fusedNode->set_input(1, gamma->name());
}
};
// tf.contrib.layers.flatten
class FlattenSubgraph : public Subgraph
{
public:
FlattenSubgraph()
{
int input = addNodeToMatch("");
int shape = addNodeToMatch("Const");
int stack = addNodeToMatch("Const");
int stack_1 = addNodeToMatch("Const");
int stack_2 = addNodeToMatch("Const");
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
int shape_pack = addNodeToMatch("Const");
int pack = addNodeToMatch("Pack", strided_slice, shape_pack);
addNodeToMatch("Reshape", input, pack);
setFusedNode("Flatten", input);
}
};
// tf.contrib.layers.flatten in case of unknown batch size
class FlattenShapeSubgraph : public Subgraph
{
public:
FlattenShapeSubgraph()
{
int input = addNodeToMatch("");
int shape = addNodeToMatch("Shape", input);
int stack = addNodeToMatch("Const");
int stack_1 = addNodeToMatch("Const");
int stack_2 = addNodeToMatch("Const");
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
int shape_pack = addNodeToMatch("Const");
int pack = addNodeToMatch("Pack", strided_slice, shape_pack);
addNodeToMatch("Reshape", input, pack);
setFusedNode("Flatten", input);
}
};
// K.layers.Softmax
class SoftMaxKerasSubgraph : public Subgraph
{
public:
SoftMaxKerasSubgraph()
{
int input = addNodeToMatch("");
int maxReductionIndices = addNodeToMatch("Const");
int smMax = addNodeToMatch("Max", input, maxReductionIndices);
int smSub = addNodeToMatch("Sub", input, smMax);
int smExp = addNodeToMatch("Exp", smSub);
int sumReductionIndices = addNodeToMatch("Const");
int smSum = addNodeToMatch("Sum", smExp, sumReductionIndices);
addNodeToMatch("RealDiv", smExp, smSum);
setFusedNode("Softmax", input);
}
};
class ReLU6KerasSubgraph : public Subgraph
{
public:
ReLU6KerasSubgraph()
{
int input = addNodeToMatch("");
int relu = addNodeToMatch("Relu", input);
int maxValue = addNodeToMatch("Const");
int clipValue = addNodeToMatch("Const");
int minimum = addNodeToMatch("Minimum", relu, maxValue);
addNodeToMatch("Maximum", minimum, clipValue);
setFusedNode("Relu6", input);
}
virtual bool match(const tensorflow::GraphDef& net, int nodeId, std::vector<int>& matchedNodesIds) CV_OVERRIDE
{
if (!Subgraph::match(net, nodeId, matchedNodesIds))
return false;
Mat maxValue = getTensorContent(net.node(nodeId + 1).attr().at("value").tensor());
return maxValue.type() == CV_32FC1 && maxValue.total() == 1 && maxValue.at<float>(0) == 6;
}
};
// Keras' reshape stores output shape in separate Const nodes by one value.
// Need to merge them into a single Const node.
class ReshapeKerasSubgraph : public Subgraph
{
public:
ReshapeKerasSubgraph(int _numOutDims) : numOutDims(_numOutDims)
{
int input = addNodeToMatch("");
int shape = addNodeToMatch("Shape", input);
int stack = addNodeToMatch("Const");
int stack_1 = addNodeToMatch("Const");
int stack_2 = addNodeToMatch("Const");
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
std::vector<int> ids(1 + numOutDims);
ids[0] = strided_slice;
for (int i = 0; i < numOutDims; ++i)
ids[1 + i] = addNodeToMatch("Const");
int pack = addNodeToMatch("Pack", ids);
addNodeToMatch("Reshape", input, pack);
ids[0] = input;
setFusedNode("Reshape", ids);
}
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode,
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE
{
std::vector<int> shape(numOutDims + 1); // batch size in Keras is implicit.
shape[0] = -1;
for (int i = 0; i < numOutDims; ++i)
{
shape[1 + i] = inputNodes[1 + i]->attr().at("value").tensor().int_val(0);
}
tensorflow::TensorProto* shapeTensor = inputNodes[1]->mutable_attr()->at("value").mutable_tensor();
fusedNode->mutable_input()->DeleteSubrange(2, numOutDims - 1);
shapeTensor->clear_int_val();
for (int i = 0; i < shape.size(); ++i)
{
shapeTensor->add_int_val(shape[i]);
}
}
private:
int numOutDims;
};
class L2NormalizeSubgraph : public Subgraph
{
public:
L2NormalizeSubgraph()
{
int input = addNodeToMatch("");
int square = addNodeToMatch("Square", input);
int reductionIndices = addNodeToMatch("Const");
int sum = addNodeToMatch("Sum", square, reductionIndices);
int y = addNodeToMatch("Const");
int maximum = addNodeToMatch("Maximum", sum, y);
int rsqrt = addNodeToMatch("Rsqrt", maximum);
addNodeToMatch("Mul", input, rsqrt);
setFusedNode("L2Normalize", input, reductionIndices);
}
};
class DeconvolutionValidKerasSubgraph : public Subgraph
{
public:
DeconvolutionValidKerasSubgraph()
{
int input = addNodeToMatch("");
int shape = addNodeToMatch("Shape", input);
int kernel = addNodeToMatch("Const");
int stack = addNodeToMatch("Const");
int stack_1 = addNodeToMatch("Const");
int stack_2 = addNodeToMatch("Const");
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
stack = addNodeToMatch("Const");
stack_1 = addNodeToMatch("Const");
stack_2 = addNodeToMatch("Const");
int strided_slice_1 = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
stack = addNodeToMatch("Const");
stack_1 = addNodeToMatch("Const");
stack_2 = addNodeToMatch("Const");
int strided_slice_2 = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
int mul = addNodeToMatch("Mul", strided_slice_1, addNodeToMatch("Const"));
int add = addNodeToMatch("Add", mul, addNodeToMatch("Const"));
int mul_1 = addNodeToMatch("Mul", strided_slice_2, addNodeToMatch("Const"));
int add_1 = addNodeToMatch("Add", mul_1, addNodeToMatch("Const"));
int pack = addNodeToMatch("Pack", strided_slice, add, add_1, addNodeToMatch("Const"));
addNodeToMatch("Conv2DBackpropInput", pack, kernel, input);
// Put any unused Const op to the first input.
setFusedNode("Conv2DBackpropInput", stack, kernel, input);
}
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode,
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE
{
// Disable adjusted paddings (see Conv2DBackpropInput layer at tf_importer.cpp)
// adj_w = (outW - (pad == "SAME") ? 1 : kernelW) % strideX;
// adj_h = (outH - (pad == "SAME") ? 1 : kernelH) % strideY;
// Where outH and outW are 1st and 2nd dimensions (NHWC) or 2nd and third (NCHW).
std::string padMode = fusedNode->attr().at("padding").s();
CV_Assert(padMode == "VALID");
const tensorflow::TensorShapeProto& kernelShape =
inputNodes[1]->mutable_attr()->at("value").tensor().tensor_shape();
CV_Assert(kernelShape.dim_size() == 4);
const int kernelHeight = kernelShape.dim(0).size();
const int kernelWidth = kernelShape.dim(1).size();
tensorflow::TensorProto* outShape = inputNodes[0]->mutable_attr()->at("value").mutable_tensor();
outShape->clear_int_val();
outShape->add_int_val(-1);
outShape->add_int_val(kernelHeight);
outShape->add_int_val(kernelWidth);
outShape->add_int_val(-1);
}
};
class DeconvolutionSameKerasSubgraph : public Subgraph
{
public:
DeconvolutionSameKerasSubgraph()
{
int input = addNodeToMatch("");
int shape = addNodeToMatch("Shape", input);
int kernel = addNodeToMatch("Const");
int stack = addNodeToMatch("Const");
int stack_1 = addNodeToMatch("Const");
int stack_2 = addNodeToMatch("Const");
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
stack = addNodeToMatch("Const");
stack_1 = addNodeToMatch("Const");
stack_2 = addNodeToMatch("Const");
int strided_slice_1 = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
stack = addNodeToMatch("Const");
stack_1 = addNodeToMatch("Const");
stack_2 = addNodeToMatch("Const");
int strided_slice_2 = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
int mul = addNodeToMatch("Mul", strided_slice_1, addNodeToMatch("Const"));
int mul_1 = addNodeToMatch("Mul", strided_slice_2, addNodeToMatch("Const"));
int pack = addNodeToMatch("Pack", strided_slice, mul, mul_1, addNodeToMatch("Const"));
addNodeToMatch("Conv2DBackpropInput", pack, kernel, input);
// Put any unused Const op to the first input.
setFusedNode("Conv2DBackpropInput", stack, kernel, input);
}
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode,
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE
{
// Disable adjusted paddings (see Conv2DBackpropInput layer at tf_importer.cpp)
// adj_w = (outW - (pad == "SAME") ? 1 : kernelW) % strideX;
// adj_h = (outH - (pad == "SAME") ? 1 : kernelH) % strideY;
// Where outH and outW are 1st and 2nd dimensions (NHWC) or 2nd and third (NCHW).
std::string padMode = fusedNode->attr().at("padding").s();
CV_Assert(padMode == "SAME");
const tensorflow::AttrValue_ListValue& strides = fusedNode->attr().at("strides").list();
CV_Assert(strides.i_size() == 4);
const int strideY = strides.i(1);
const int strideX = strides.i(2);
tensorflow::TensorProto* outShape = inputNodes[0]->mutable_attr()->at("value").mutable_tensor();
outShape->clear_int_val();
outShape->add_int_val(-1);
outShape->add_int_val(strideY);
outShape->add_int_val(strideX);
outShape->add_int_val(-1);
}
};
// In case of resizing by factor.
class ResizeBilinearSubgraph : public Subgraph
{
public:
ResizeBilinearSubgraph()
{
int input = addNodeToMatch("");
int shape = addNodeToMatch("Shape", input);
int stack = addNodeToMatch("Const");
int stack_1 = addNodeToMatch("Const");
int stack_2 = addNodeToMatch("Const");
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
int factorY = addNodeToMatch("Const");
int mul = addNodeToMatch("Mul", strided_slice, factorY);
shape = addNodeToMatch("Shape", input);
stack = addNodeToMatch("Const");
stack_1 = addNodeToMatch("Const");
stack_2 = addNodeToMatch("Const");
strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
int factorX = addNodeToMatch("Const");
int mul_1 = addNodeToMatch("Mul", strided_slice, factorX);
int pack = addNodeToMatch("Pack", mul, mul_1);
addNodeToMatch("ResizeBilinear", input, pack);
setFusedNode("ResizeBilinear", input, factorY, factorX);
}
};
// In case of resizing by factor.
class UpsamplingKerasSubgraph : public Subgraph
{
public:
UpsamplingKerasSubgraph()
{
int input = addNodeToMatch("");
int shape = addNodeToMatch("Shape", input);
int stack = addNodeToMatch("Const");
int stack_1 = addNodeToMatch("Const");
int stack_2 = addNodeToMatch("Const");
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
int factors = addNodeToMatch("Const");
int mul = addNodeToMatch("Mul", strided_slice, factors);
addNodeToMatch("ResizeNearestNeighbor", input, mul);
setFusedNode("ResizeNearestNeighbor", input, factors);
}
virtual void finalize(tensorflow::GraphDef& net, tensorflow::NodeDef* fusedNode,
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE
{
Mat factorsMat = getTensorContent(inputNodes[1]->attr().at("value").tensor());
CV_CheckEQ(factorsMat.total(), (size_t)2, ""); CV_CheckTypeEQ(factorsMat.type(), CV_32SC1, "");
// Height scale factor
tensorflow::TensorProto* factorY = inputNodes[1]->mutable_attr()->at("value").mutable_tensor();
factorY->clear_int_val();
factorY->clear_tensor_content();
factorY->add_int_val(factorsMat.at<int>(0, 0));
// Width scale factor.
tensorflow::NodeDef* factorXNode = net.add_node();
factorXNode->set_op("Const");
factorXNode->set_name(fusedNode->name() + "/factor_y");
tensorflow::AttrValue factorX;
factorX.mutable_tensor()->set_dtype(tensorflow::DT_INT32);
factorX.mutable_tensor()->add_int_val(factorsMat.at<int>(0, 1));
factorXNode->mutable_attr()->insert(MapPair<std::string, tensorflow::AttrValue>("value", factorX));
fusedNode->add_input(factorXNode->name());
}
};
class ReshapeAsShapeSubgraph : public Subgraph
{
public:
ReshapeAsShapeSubgraph()
{
int input = addNodeToMatch("");
int shapeSrc = addNodeToMatch("");
int shape = addNodeToMatch("Shape", shapeSrc);
addNodeToMatch("Reshape", input, shape);
setFusedNode("Reshape", input, shapeSrc);
}
};
void simplifySubgraphs(tensorflow::GraphDef& net)
{
std::vector<Ptr<Subgraph> > subgraphs;
subgraphs.push_back(Ptr<Subgraph>(new BatchNormSubgraph()));
subgraphs.push_back(Ptr<Subgraph>(new BatchNormNoGammaSubgraph()));
subgraphs.push_back(Ptr<Subgraph>(new FlattenSubgraph()));
subgraphs.push_back(Ptr<Subgraph>(new FlattenShapeSubgraph()));
subgraphs.push_back(Ptr<Subgraph>(new SoftMaxKerasSubgraph()));
subgraphs.push_back(Ptr<Subgraph>(new ReLU6KerasSubgraph()));
subgraphs.push_back(Ptr<Subgraph>(new ReshapeKerasSubgraph(3)));
subgraphs.push_back(Ptr<Subgraph>(new L2NormalizeSubgraph()));
subgraphs.push_back(Ptr<Subgraph>(new DeconvolutionValidKerasSubgraph()));
subgraphs.push_back(Ptr<Subgraph>(new DeconvolutionSameKerasSubgraph()));
subgraphs.push_back(Ptr<Subgraph>(new ResizeBilinearSubgraph()));
subgraphs.push_back(Ptr<Subgraph>(new UpsamplingKerasSubgraph()));
subgraphs.push_back(Ptr<Subgraph>(new ReshapeAsShapeSubgraph()));
int numNodes = net.node_size();
std::vector<int> matchedNodesIds;
for (int i = 0; i < numNodes; ++i)
{
for (int j = 0; j < subgraphs.size(); ++j)
{
if (subgraphs[j]->match(net, i, matchedNodesIds))
{
subgraphs[j]->replace(net, matchedNodesIds);
numNodes -= matchedNodesIds.size() - 1; // #matchedNodes removed and one added.
break;
}
}
}
}
void RemoveIdentityOps(tensorflow::GraphDef& net)
{
typedef std::map<String, String> IdentityOpsMap;
IdentityOpsMap identity_ops;
std::vector<int> identity_ops_idx;
int layersCount = net.node_size();
for (int li = 0; li < layersCount; li++)
{
const tensorflow::NodeDef &layer = net.node(li);
String type = layer.op();
if (type == "Identity" || type == "Dropout") {
identity_ops_idx.push_back(li);
identity_ops[layer.name()] = layer.input(0);
}
}
for (int li = 0; li < layersCount; li++)
{
tensorflow::NodeDef* layer = net.mutable_node(li);
for (int input_id = 0; input_id < layer->input_size(); input_id++) {
String input_op_name = layer->input(input_id);
IdentityOpsMap::iterator it = identity_ops.find(input_op_name);
if (it != identity_ops.end()) {
layer->set_input(input_id, it->second);
}
}
}
std::sort(identity_ops_idx.begin(), identity_ops_idx.end());
int removed_nodes = 0;
for(size_t i = 0; i < identity_ops_idx.size(); i++) {
int start_id = identity_ops_idx[i] - removed_nodes;
net.mutable_node()->DeleteSubrange(start_id, 1);
removed_nodes++;
}
}
Mat getTensorContent(const tensorflow::TensorProto &tensor)
{
const std::string& content = tensor.tensor_content();
switch (tensor.dtype())
{
case tensorflow::DT_FLOAT:
{
if (!content.empty())
return Mat(1, content.size() / sizeof(float), CV_32FC1, (void*)content.c_str()).clone();
else
{
const RepeatedField<float>& field = tensor.float_val();
CV_Assert(!field.empty());
return Mat(1, field.size(), CV_32FC1, (void*)field.data()).clone();
}
}
case tensorflow::DT_DOUBLE:
{
if (!content.empty())
return Mat(1, content.size() / sizeof(double), CV_64FC1, (void*)content.c_str()).clone();
else
{
const RepeatedField<double>& field = tensor.double_val();
CV_Assert(!field.empty());
return Mat(1, field.size(), CV_64FC1, (void*)field.data()).clone();
}
}
case tensorflow::DT_INT32:
{
if (!content.empty())
return Mat(1, content.size() / sizeof(int32_t), CV_32SC1, (void*)content.c_str()).clone();
else
{
const RepeatedField<int32_t>& field = tensor.int_val();
CV_Assert(!field.empty());
return Mat(1, field.size(), CV_32SC1, (void*)field.data()).clone();
}
}
case tensorflow::DT_HALF:
{
Mat halfs;
if (!content.empty())
{
static const int kHalfSize = 2;
halfs = Mat(1, content.size() / kHalfSize, CV_16UC1, (void*)content.c_str());
}
else
{
const RepeatedField<int32_t>& field = tensor.half_val();
CV_Assert(!field.empty());
Mat ints(1, field.size(), CV_32SC1, (void*)field.data());
ints.convertTo(halfs, CV_16UC1);
}
// Reinterpret as a signed shorts just for a convertFp16 call.
Mat halfsSigned(halfs.size(), CV_16SC1, halfs.data);
Mat floats(halfs.size(), CV_32FC1);
convertFp16(halfsSigned, floats);
return floats;
}
case tensorflow::DT_QUINT8:
{
CV_Assert(!content.empty());
return Mat(1, content.size(), CV_8UC1, (void*)content.c_str()).clone();
}
default:
CV_Error(Error::StsError, "Tensor's data type is not supported");
break;
}
return Mat();
}
void releaseTensor(tensorflow::TensorProto* tensor)
{
if (!tensor->mutable_tensor_content()->empty())
{
delete tensor->release_tensor_content();
}
}
static void permute(google::protobuf::RepeatedPtrField<tensorflow::NodeDef>* data,
const std::vector<int>& indices)
{
const int num = data->size();
CV_Assert(num == indices.size());
std::vector<int> elemIdToPos(num);
std::vector<int> posToElemId(num);
for (int i = 0; i < num; ++i)
{
elemIdToPos[i] = i;
posToElemId[i] = i;
}
for (int i = 0; i < num; ++i)
{
int elemId = indices[i];
int pos = elemIdToPos[elemId];
if (pos != i)
{
data->SwapElements(i, pos);
const int swappedElemId = posToElemId[i];
elemIdToPos[elemId] = i;
elemIdToPos[swappedElemId] = pos;
posToElemId[i] = elemId;
posToElemId[pos] = swappedElemId;
}
}
}
// Is based on tensorflow::graph_transforms::SortByExecutionOrder
void sortByExecutionOrder(tensorflow::GraphDef& net)
{
// Maps node's name to index at net.node() list.
std::map<std::string, int> nodesMap;
std::map<std::string, int>::iterator nodesMapIt;
for (int i = 0; i < net.node_size(); ++i)
{
const tensorflow::NodeDef& node = net.node(i);
nodesMap.insert(std::make_pair(node.name(), i));
}
// Indices of nodes which use specific node as input.
std::vector<std::vector<int> > edges(nodesMap.size());
std::vector<int> numRefsToAdd(nodesMap.size(), 0);
std::vector<int> nodesToAdd;
for (int i = 0; i < net.node_size(); ++i)
{
const tensorflow::NodeDef& node = net.node(i);
for (int j = 0; j < node.input_size(); ++j)
{
std::string inpName = node.input(j);
inpName = inpName.substr(0, inpName.rfind(':'));
inpName = inpName.substr(inpName.find('^') + 1);
nodesMapIt = nodesMap.find(inpName);
CV_Assert(nodesMapIt != nodesMap.end());
edges[nodesMapIt->second].push_back(i);
}
if (node.input_size() == 0)
nodesToAdd.push_back(i);
else
{
if (node.op() == "Merge" || node.op() == "RefMerge")
{
int numControlEdges = 0;
for (int j = 0; j < node.input_size(); ++j)
numControlEdges += node.input(j)[0] == '^';
numRefsToAdd[i] = numControlEdges + 1;
}
else
numRefsToAdd[i] = node.input_size();
}
}
std::vector<int> permIds;
permIds.reserve(net.node_size());
while (!nodesToAdd.empty())
{
int nodeToAdd = nodesToAdd.back();
nodesToAdd.pop_back();
permIds.push_back(nodeToAdd);
// std::cout << net.node(nodeToAdd).name() << '\n';
for (int i = 0; i < edges[nodeToAdd].size(); ++i)
{
int consumerId = edges[nodeToAdd][i];
if (numRefsToAdd[consumerId] > 0)
{
if (numRefsToAdd[consumerId] == 1)
nodesToAdd.push_back(consumerId);
else
CV_Assert(numRefsToAdd[consumerId] >= 0);
numRefsToAdd[consumerId] -= 1;
}
}
}
CV_Assert(permIds.size() == net.node_size());
permute(net.mutable_node(), permIds);
}
CV__DNN_EXPERIMENTAL_NS_END
}} // namespace dnn, namespace cv
#endif // HAVE_PROTOBUF