• Roman Donchenko's avatar
    Merge commit '43aec5ad' into merge-2.4 · 2c4bbb31
    Roman Donchenko authored
    Conflicts:
    	cmake/OpenCVConfig.cmake
    	cmake/OpenCVLegacyOptions.cmake
    	modules/contrib/src/retina.cpp
    	modules/gpu/doc/camera_calibration_and_3d_reconstruction.rst
    	modules/gpu/doc/video.rst
    	modules/gpu/src/speckle_filtering.cpp
    	modules/python/src2/cv2.cv.hpp
    	modules/python/test/test2.py
    	samples/python/watershed.py
    2c4bbb31
cascadedetect.hpp 16.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
#pragma once

namespace cv
{

#define CC_CASCADE_PARAMS "cascadeParams"
#define CC_STAGE_TYPE     "stageType"
#define CC_FEATURE_TYPE   "featureType"
#define CC_HEIGHT         "height"
#define CC_WIDTH          "width"

#define CC_STAGE_NUM    "stageNum"
#define CC_STAGES       "stages"
#define CC_STAGE_PARAMS "stageParams"

#define CC_BOOST            "BOOST"
#define CC_MAX_DEPTH        "maxDepth"
#define CC_WEAK_COUNT       "maxWeakCount"
#define CC_STAGE_THRESHOLD  "stageThreshold"
#define CC_WEAK_CLASSIFIERS "weakClassifiers"
#define CC_INTERNAL_NODES   "internalNodes"
#define CC_LEAF_VALUES      "leafValues"

#define CC_FEATURES       "features"
#define CC_FEATURE_PARAMS "featureParams"
#define CC_MAX_CAT_COUNT  "maxCatCount"

#define CC_HAAR   "HAAR"
#define CC_RECTS  "rects"
#define CC_TILTED "tilted"

#define CC_LBP  "LBP"
#define CC_RECT "rect"

#define CC_HOG  "HOG"

#define CV_SUM_PTRS( p0, p1, p2, p3, sum, rect, step )                    \
    /* (x, y) */                                                          \
    (p0) = sum + (rect).x + (step) * (rect).y,                            \
    /* (x + w, y) */                                                      \
    (p1) = sum + (rect).x + (rect).width + (step) * (rect).y,             \
    /* (x + w, y) */                                                      \
    (p2) = sum + (rect).x + (step) * ((rect).y + (rect).height),          \
    /* (x + w, y + h) */                                                  \
    (p3) = sum + (rect).x + (rect).width + (step) * ((rect).y + (rect).height)

#define CV_TILTED_PTRS( p0, p1, p2, p3, tilted, rect, step )                        \
    /* (x, y) */                                                                    \
    (p0) = tilted + (rect).x + (step) * (rect).y,                                   \
    /* (x - h, y + h) */                                                            \
    (p1) = tilted + (rect).x - (rect).height + (step) * ((rect).y + (rect).height), \
    /* (x + w, y + w) */                                                            \
    (p2) = tilted + (rect).x + (rect).width + (step) * ((rect).y + (rect).width),   \
    /* (x + w - h, y + w + h) */                                                    \
    (p3) = tilted + (rect).x + (rect).width - (rect).height                         \
           + (step) * ((rect).y + (rect).width + (rect).height)

#define CALC_SUM_(p0, p1, p2, p3, offset) \
    ((p0)[offset] - (p1)[offset] - (p2)[offset] + (p3)[offset])

#define CALC_SUM(rect,offset) CALC_SUM_((rect)[0], (rect)[1], (rect)[2], (rect)[3], offset)


//----------------------------------------------  HaarEvaluator ---------------------------------------
class HaarEvaluator : public FeatureEvaluator
{
public:
    struct Feature
    {
        Feature();

        float calc( int offset ) const;
        void updatePtrs( const Mat& sum );
        bool read( const FileNode& node );

        bool tilted;

        enum { RECT_NUM = 3 };

        struct
        {
            Rect r;
            float weight;
        } rect[RECT_NUM];

        const int* p[RECT_NUM][4];
    };

    HaarEvaluator();
    virtual ~HaarEvaluator();

    virtual bool read( const FileNode& node );
    virtual Ptr<FeatureEvaluator> clone() const;
    virtual int getFeatureType() const { return FeatureEvaluator::HAAR; }

    virtual bool setImage(const Mat&, Size origWinSize);
    virtual bool setWindow(Point pt);

    double operator()(int featureIdx) const
    { return featuresPtr[featureIdx].calc(offset) * varianceNormFactor; }
    virtual double calcOrd(int featureIdx) const
    { return (*this)(featureIdx); }

protected:
    Size origWinSize;
    Ptr<std::vector<Feature> > features;
    Feature* featuresPtr; // optimization
    bool hasTiltedFeatures;

    Mat sum0, sqsum0, tilted0;
    Mat sum, sqsum, tilted;

    Rect normrect;
    const int *p[4];
    const double *pq[4];

    int offset;
    double varianceNormFactor;
};

inline HaarEvaluator::Feature :: Feature()
{
    tilted = false;
    rect[0].r = rect[1].r = rect[2].r = Rect();
    rect[0].weight = rect[1].weight = rect[2].weight = 0;
    p[0][0] = p[0][1] = p[0][2] = p[0][3] =
        p[1][0] = p[1][1] = p[1][2] = p[1][3] =
        p[2][0] = p[2][1] = p[2][2] = p[2][3] = 0;
}

inline float HaarEvaluator::Feature :: calc( int _offset ) const
{
    float ret = rect[0].weight * CALC_SUM(p[0], _offset) + rect[1].weight * CALC_SUM(p[1], _offset);

    if( rect[2].weight != 0.0f )
        ret += rect[2].weight * CALC_SUM(p[2], _offset);

    return ret;
}

inline void HaarEvaluator::Feature :: updatePtrs( const Mat& _sum )
{
    const int* ptr = (const int*)_sum.data;
    size_t step = _sum.step/sizeof(ptr[0]);
    if (tilted)
    {
        CV_TILTED_PTRS( p[0][0], p[0][1], p[0][2], p[0][3], ptr, rect[0].r, step );
        CV_TILTED_PTRS( p[1][0], p[1][1], p[1][2], p[1][3], ptr, rect[1].r, step );
        if (rect[2].weight)
            CV_TILTED_PTRS( p[2][0], p[2][1], p[2][2], p[2][3], ptr, rect[2].r, step );
    }
    else
    {
        CV_SUM_PTRS( p[0][0], p[0][1], p[0][2], p[0][3], ptr, rect[0].r, step );
        CV_SUM_PTRS( p[1][0], p[1][1], p[1][2], p[1][3], ptr, rect[1].r, step );
        if (rect[2].weight)
            CV_SUM_PTRS( p[2][0], p[2][1], p[2][2], p[2][3], ptr, rect[2].r, step );
    }
}


//----------------------------------------------  LBPEvaluator -------------------------------------

class LBPEvaluator : public FeatureEvaluator
{
public:
    struct Feature
    {
        Feature();
        Feature( int x, int y, int _block_w, int _block_h  ) :
        rect(x, y, _block_w, _block_h) {}

        int calc( int offset ) const;
        void updatePtrs( const Mat& sum );
        bool read(const FileNode& node );

        Rect rect; // weight and height for block
        const int* p[16]; // fast
    };

    LBPEvaluator();
    virtual ~LBPEvaluator();

    virtual bool read( const FileNode& node );
    virtual Ptr<FeatureEvaluator> clone() const;
    virtual int getFeatureType() const { return FeatureEvaluator::LBP; }

    virtual bool setImage(const Mat& image, Size _origWinSize);
    virtual bool setWindow(Point pt);

    int operator()(int featureIdx) const
    { return featuresPtr[featureIdx].calc(offset); }
    virtual int calcCat(int featureIdx) const
    { return (*this)(featureIdx); }
protected:
    Size origWinSize;
    Ptr<std::vector<Feature> > features;
    Feature* featuresPtr; // optimization
    Mat sum0, sum;
    Rect normrect;

    int offset;
};


inline LBPEvaluator::Feature :: Feature()
{
    rect = Rect();
    for( int i = 0; i < 16; i++ )
        p[i] = 0;
}

inline int LBPEvaluator::Feature :: calc( int _offset ) const
{
    int cval = CALC_SUM_( p[5], p[6], p[9], p[10], _offset );

    return (CALC_SUM_( p[0], p[1], p[4], p[5], _offset ) >= cval ? 128 : 0) |   // 0
           (CALC_SUM_( p[1], p[2], p[5], p[6], _offset ) >= cval ? 64 : 0) |    // 1
           (CALC_SUM_( p[2], p[3], p[6], p[7], _offset ) >= cval ? 32 : 0) |    // 2
           (CALC_SUM_( p[6], p[7], p[10], p[11], _offset ) >= cval ? 16 : 0) |  // 5
           (CALC_SUM_( p[10], p[11], p[14], p[15], _offset ) >= cval ? 8 : 0)|  // 8
           (CALC_SUM_( p[9], p[10], p[13], p[14], _offset ) >= cval ? 4 : 0)|   // 7
           (CALC_SUM_( p[8], p[9], p[12], p[13], _offset ) >= cval ? 2 : 0)|    // 6
           (CALC_SUM_( p[4], p[5], p[8], p[9], _offset ) >= cval ? 1 : 0);
}

inline void LBPEvaluator::Feature :: updatePtrs( const Mat& _sum )
{
    const int* ptr = (const int*)_sum.data;
    size_t step = _sum.step/sizeof(ptr[0]);
    Rect tr = rect;
    CV_SUM_PTRS( p[0], p[1], p[4], p[5], ptr, tr, step );
    tr.x += 2*rect.width;
    CV_SUM_PTRS( p[2], p[3], p[6], p[7], ptr, tr, step );
    tr.y += 2*rect.height;
    CV_SUM_PTRS( p[10], p[11], p[14], p[15], ptr, tr, step );
    tr.x -= 2*rect.width;
    CV_SUM_PTRS( p[8], p[9], p[12], p[13], ptr, tr, step );
}

//---------------------------------------------- HOGEvaluator -------------------------------------------

class HOGEvaluator : public FeatureEvaluator
{
public:
    struct Feature
    {
        Feature();
        float calc( int offset ) const;
        void updatePtrs( const std::vector<Mat>& _hist, const Mat &_normSum );
        bool read( const FileNode& node );

        enum { CELL_NUM = 4, BIN_NUM = 9 };

        Rect rect[CELL_NUM];
        int featComponent; //component index from 0 to 35
        const float* pF[4]; //for feature calculation
        const float* pN[4]; //for normalization calculation
    };
    HOGEvaluator();
    virtual ~HOGEvaluator();
    virtual bool read( const FileNode& node );
    virtual Ptr<FeatureEvaluator> clone() const;
    virtual int getFeatureType() const { return FeatureEvaluator::HOG; }
    virtual bool setImage( const Mat& image, Size winSize );
    virtual bool setWindow( Point pt );
    double operator()(int featureIdx) const
    {
        return featuresPtr[featureIdx].calc(offset);
    }
    virtual double calcOrd( int featureIdx ) const
    {
        return (*this)(featureIdx);
    }

private:
    virtual void integralHistogram( const Mat& srcImage, std::vector<Mat> &histogram, Mat &norm, int nbins ) const;

    Size origWinSize;
    Ptr<std::vector<Feature> > features;
    Feature* featuresPtr;
    std::vector<Mat> hist;
    Mat normSum;
    int offset;
};

inline HOGEvaluator::Feature :: Feature()
{
    rect[0] = rect[1] = rect[2] = rect[3] = Rect();
    pF[0] = pF[1] = pF[2] = pF[3] = 0;
    pN[0] = pN[1] = pN[2] = pN[3] = 0;
    featComponent = 0;
}

inline float HOGEvaluator::Feature :: calc( int _offset ) const
{
    float res = CALC_SUM(pF, _offset);
    float normFactor = CALC_SUM(pN, _offset);
    res = (res > 0.001f) ? (res / ( normFactor + 0.001f) ) : 0.f;
    return res;
}

inline void HOGEvaluator::Feature :: updatePtrs( const std::vector<Mat> &_hist, const Mat &_normSum )
{
    int binIdx = featComponent % BIN_NUM;
    int cellIdx = featComponent / BIN_NUM;
    Rect normRect = Rect( rect[0].x, rect[0].y, 2*rect[0].width, 2*rect[0].height );

    const float* featBuf = (const float*)_hist[binIdx].data;
    size_t featStep = _hist[0].step / sizeof(featBuf[0]);

    const float* normBuf = (const float*)_normSum.data;
    size_t normStep = _normSum.step / sizeof(normBuf[0]);

    CV_SUM_PTRS( pF[0], pF[1], pF[2], pF[3], featBuf, rect[cellIdx], featStep );
    CV_SUM_PTRS( pN[0], pN[1], pN[2], pN[3], normBuf, normRect, normStep );
}




//----------------------------------------------  predictor functions -------------------------------------

template<class FEval>
inline int predictOrdered( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_featureEvaluator, double& sum )
{
    int nstages = (int)cascade.data.stages.size();
    int nodeOfs = 0, leafOfs = 0;
    FEval& featureEvaluator = (FEval&)*_featureEvaluator;
    float* cascadeLeaves = &cascade.data.leaves[0];
    CascadeClassifier::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0];
    CascadeClassifier::Data::DTree* cascadeWeaks = &cascade.data.classifiers[0];
    CascadeClassifier::Data::Stage* cascadeStages = &cascade.data.stages[0];

    for( int si = 0; si < nstages; si++ )
    {
        CascadeClassifier::Data::Stage& stage = cascadeStages[si];
        int wi, ntrees = stage.ntrees;
        sum = 0;

        for( wi = 0; wi < ntrees; wi++ )
        {
            CascadeClassifier::Data::DTree& weak = cascadeWeaks[stage.first + wi];
            int idx = 0, root = nodeOfs;

            do
            {
                CascadeClassifier::Data::DTreeNode& node = cascadeNodes[root + idx];
                double val = featureEvaluator(node.featureIdx);
                idx = val < node.threshold ? node.left : node.right;
            }
            while( idx > 0 );
            sum += cascadeLeaves[leafOfs - idx];
            nodeOfs += weak.nodeCount;
            leafOfs += weak.nodeCount + 1;
        }
        if( sum < stage.threshold )
            return -si;
    }
    return 1;
}

template<class FEval>
inline int predictCategorical( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_featureEvaluator, double& sum )
{
    int nstages = (int)cascade.data.stages.size();
    int nodeOfs = 0, leafOfs = 0;
    FEval& featureEvaluator = (FEval&)*_featureEvaluator;
    size_t subsetSize = (cascade.data.ncategories + 31)/32;
    int* cascadeSubsets = &cascade.data.subsets[0];
    float* cascadeLeaves = &cascade.data.leaves[0];
    CascadeClassifier::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0];
    CascadeClassifier::Data::DTree* cascadeWeaks = &cascade.data.classifiers[0];
    CascadeClassifier::Data::Stage* cascadeStages = &cascade.data.stages[0];

    for(int si = 0; si < nstages; si++ )
    {
        CascadeClassifier::Data::Stage& stage = cascadeStages[si];
        int wi, ntrees = stage.ntrees;
        sum = 0;

        for( wi = 0; wi < ntrees; wi++ )
        {
            CascadeClassifier::Data::DTree& weak = cascadeWeaks[stage.first + wi];
            int idx = 0, root = nodeOfs;
            do
            {
                CascadeClassifier::Data::DTreeNode& node = cascadeNodes[root + idx];
                int c = featureEvaluator(node.featureIdx);
                const int* subset = &cascadeSubsets[(root + idx)*subsetSize];
                idx = (subset[c>>5] & (1 << (c & 31))) ? node.left : node.right;
            }
            while( idx > 0 );
            sum += cascadeLeaves[leafOfs - idx];
            nodeOfs += weak.nodeCount;
            leafOfs += weak.nodeCount + 1;
        }
        if( sum < stage.threshold )
            return -si;
    }
    return 1;
}

template<class FEval>
inline int predictOrderedStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_featureEvaluator, double& sum )
{
    int nodeOfs = 0, leafOfs = 0;
    FEval& featureEvaluator = (FEval&)*_featureEvaluator;
    float* cascadeLeaves = &cascade.data.leaves[0];
    CascadeClassifier::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0];
    CascadeClassifier::Data::Stage* cascadeStages = &cascade.data.stages[0];

    int nstages = (int)cascade.data.stages.size();
    for( int stageIdx = 0; stageIdx < nstages; stageIdx++ )
    {
        CascadeClassifier::Data::Stage& stage = cascadeStages[stageIdx];
        sum = 0.0;

        int ntrees = stage.ntrees;
        for( int i = 0; i < ntrees; i++, nodeOfs++, leafOfs+= 2 )
        {
            CascadeClassifier::Data::DTreeNode& node = cascadeNodes[nodeOfs];
            double value = featureEvaluator(node.featureIdx);
            sum += cascadeLeaves[ value < node.threshold ? leafOfs : leafOfs + 1 ];
        }

        if( sum < stage.threshold )
            return -stageIdx;
    }

    return 1;
}

template<class FEval>
inline int predictCategoricalStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_featureEvaluator, double& sum )
{
    int nstages = (int)cascade.data.stages.size();
    int nodeOfs = 0, leafOfs = 0;
    FEval& featureEvaluator = (FEval&)*_featureEvaluator;
    size_t subsetSize = (cascade.data.ncategories + 31)/32;
    int* cascadeSubsets = &cascade.data.subsets[0];
    float* cascadeLeaves = &cascade.data.leaves[0];
    CascadeClassifier::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0];
    CascadeClassifier::Data::Stage* cascadeStages = &cascade.data.stages[0];

#ifdef HAVE_TEGRA_OPTIMIZATION
    float tmp = 0; // float accumulator -- float operations are quicker
#endif
    for( int si = 0; si < nstages; si++ )
    {
        CascadeClassifier::Data::Stage& stage = cascadeStages[si];
        int wi, ntrees = stage.ntrees;
#ifdef HAVE_TEGRA_OPTIMIZATION
        tmp = 0;
#else
        sum = 0;
#endif

        for( wi = 0; wi < ntrees; wi++ )
        {
            CascadeClassifier::Data::DTreeNode& node = cascadeNodes[nodeOfs];
            int c = featureEvaluator(node.featureIdx);
            const int* subset = &cascadeSubsets[nodeOfs*subsetSize];
#ifdef HAVE_TEGRA_OPTIMIZATION
            tmp += cascadeLeaves[ subset[c>>5] & (1 << (c & 31)) ? leafOfs : leafOfs+1];
#else
            sum += cascadeLeaves[ subset[c>>5] & (1 << (c & 31)) ? leafOfs : leafOfs+1];
#endif
            nodeOfs++;
            leafOfs += 2;
        }
#ifdef HAVE_TEGRA_OPTIMIZATION
        if( tmp < stage.threshold ) {
            sum = (double)tmp;
            return -si;
        }
#else
        if( sum < stage.threshold )
            return -si;
#endif
    }

#ifdef HAVE_TEGRA_OPTIMIZATION
    sum = (double)tmp;
#endif

    return 1;
}
}