1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/*M///////////////////////////////////////////////////////////////////////////////////////
//COPYRIGHT
//
//All contributions by the University of California:
//Copyright (c) 2014, The Regents of the University of California (Regents)
//All rights reserved.
//
//All other contributions:
//Copyright (c) 2014, the respective contributors
//All rights reserved.
//
//Caffe uses a shared copyright model: each contributor holds copyright over
//their contributions to Caffe. The project versioning records all such
//contribution and copyright details. If a contributor wants to further mark
//their specific copyright on a particular contribution, they should indicate
//their copyright solely in the commit message of the change when it is
//committed.
//
//LICENSE
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions are met:
//
//1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
//ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
//WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
//DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
//ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
//(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
//LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
//ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
//(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
//SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//CONTRIBUTION AGREEMENT
//
//By contributing to the BVLC/caffe repository through pull-request, comment,
//or otherwise, the contributor releases their content to the
//license and copyright terms herein.
//
//M*/
#include "../precomp.hpp"
#ifdef HAVE_PROTOBUF
#include <google/protobuf/io/coded_stream.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <google/protobuf/text_format.h>
#include <opencv2/core.hpp>
#include <map>
#include <string>
#include <fstream>
#include <vector>
#include "caffe_io.hpp"
#include "glog_emulator.hpp"
namespace cv {
namespace dnn {
using std::string;
using std::map;
using namespace caffe;
using namespace ::google::protobuf;
using namespace ::google::protobuf::io;
// Return true iff the net is not the current version.
bool NetNeedsUpgrade(const NetParameter& net_param);
// Return true iff any layer contains parameters specified using
// deprecated V0LayerParameter.
bool NetNeedsV0ToV1Upgrade(const NetParameter& net_param);
// Perform all necessary transformations to upgrade a V0NetParameter into a
// NetParameter (including upgrading padding layers and LayerParameters).
bool UpgradeV0Net(const NetParameter& v0_net_param, NetParameter* net_param);
// Upgrade NetParameter with padding layers to pad-aware conv layers.
// For any padding layer, remove it and put its pad parameter in any layers
// taking its top blob as input.
// Error if any of these above layers are not-conv layers.
void UpgradeV0PaddingLayers(const NetParameter& param,
NetParameter* param_upgraded_pad);
// Upgrade a single V0LayerConnection to the V1LayerParameter format.
bool UpgradeV0LayerParameter(V1LayerParameter* v0_layer_connection,
V1LayerParameter* layer_param);
V1LayerParameter_LayerType UpgradeV0LayerType(const string& type);
// Return true iff any layer contains deprecated data transformation parameters.
bool NetNeedsDataUpgrade(const NetParameter& net_param);
// Perform all necessary transformations to upgrade old transformation fields
// into a TransformationParameter.
void UpgradeNetDataTransformation(NetParameter* net_param);
// Return true iff the Net contains any layers specified as V1LayerParameters.
bool NetNeedsV1ToV2Upgrade(const NetParameter& net_param);
// Perform all necessary transformations to upgrade a NetParameter with
// deprecated V1LayerParameters.
bool UpgradeV1Net(NetParameter* net_param);
bool UpgradeV1LayerParameter(V1LayerParameter* v1_layer_param,
LayerParameter* layer_param);
const char* UpgradeV1LayerType(const V1LayerParameter_LayerType type);
bool NetNeedsBatchNormUpgrade(const NetParameter& net_param);
void UpgradeNetBatchNorm(NetParameter* net_param);
// Check for deprecations and upgrade the NetParameter as needed.
bool UpgradeNetAsNeeded(const string& param_file, NetParameter* param);
bool NetNeedsUpgrade(const NetParameter& net_param) {
return NetNeedsV0ToV1Upgrade(net_param) || NetNeedsV1ToV2Upgrade(net_param) ||
NetNeedsBatchNormUpgrade(net_param);
}
bool NetNeedsV0ToV1Upgrade(const NetParameter& net_param) {
for (int i = 0; i < net_param.layers_size(); ++i) {
if (net_param.layers(i).has_layer()) {
return true;
}
}
return false;
}
bool NetNeedsV1ToV2Upgrade(const NetParameter& net_param) {
return net_param.layers_size() > 0;
}
bool UpgradeV0Net(const NetParameter& v0_net_param_padding_layers,
NetParameter* net_param) {
// First upgrade padding layers to padded conv layers.
NetParameter v0_net_param;
UpgradeV0PaddingLayers(v0_net_param_padding_layers, &v0_net_param);
// Now upgrade layer parameters.
bool is_fully_compatible = true;
net_param->Clear();
if (v0_net_param.has_name()) {
net_param->set_name(v0_net_param.name());
}
for (int i = 0; i < v0_net_param.layers_size(); ++i) {
is_fully_compatible &= UpgradeV0LayerParameter(v0_net_param.mutable_layers(i),
net_param->add_layers());
}
for (int i = 0; i < v0_net_param.input_size(); ++i) {
net_param->add_input(v0_net_param.input(i));
}
for (int i = 0; i < v0_net_param.input_dim_size(); ++i) {
net_param->add_input_dim(v0_net_param.input_dim(i));
}
if (v0_net_param.has_force_backward()) {
net_param->set_force_backward(v0_net_param.force_backward());
}
return is_fully_compatible;
}
void UpgradeV0PaddingLayers(const NetParameter& param,
NetParameter* param_upgraded_pad) {
// Copy everything other than the layers from the original param.
param_upgraded_pad->Clear();
param_upgraded_pad->CopyFrom(param);
param_upgraded_pad->clear_layers();
// Figure out which layer each bottom blob comes from.
map<string, int> blob_name_to_last_top_idx;
for (int i = 0; i < param.input_size(); ++i) {
const string& blob_name = param.input(i);
blob_name_to_last_top_idx[blob_name] = -1;
}
for (int i = 0; i < param.layers_size(); ++i) {
const V1LayerParameter& layer_connection = param.layers(i);
const V0LayerParameter& layer_param = layer_connection.layer();
// Add the layer to the new net, unless it's a padding layer.
if (layer_param.type() != "padding") {
param_upgraded_pad->add_layers()->CopyFrom(layer_connection);
}
for (int j = 0; j < layer_connection.bottom_size(); ++j) {
const string& blob_name = layer_connection.bottom(j);
if (blob_name_to_last_top_idx.find(blob_name) ==
blob_name_to_last_top_idx.end()) {
LOG(FATAL) << "Unknown blob input " << blob_name << " to layer " << j;
}
const int top_idx = blob_name_to_last_top_idx[blob_name];
if (top_idx == -1) {
continue;
}
const V1LayerParameter& source_layer = param.layers(top_idx);
if (source_layer.layer().type() == "padding") {
// This layer has a padding layer as input -- check that it is a conv
// layer or a pooling layer and takes only one input. Also check that
// the padding layer input has only one input and one output. Other
// cases have undefined behavior in Caffe.
CHECK((layer_param.type() == "conv") || (layer_param.type() == "pool"))
<< "Padding layer input to "
"non-convolutional / non-pooling layer type "
<< layer_param.type();
CHECK_EQ(layer_connection.bottom_size(), 1)
<< "Conv Layer takes a single blob as input.";
CHECK_EQ(source_layer.bottom_size(), 1)
<< "Padding Layer takes a single blob as input.";
CHECK_EQ(source_layer.top_size(), 1)
<< "Padding Layer produces a single blob as output.";
int layer_index = param_upgraded_pad->layers_size() - 1;
param_upgraded_pad->mutable_layers(layer_index)->mutable_layer()
->set_pad(source_layer.layer().pad());
param_upgraded_pad->mutable_layers(layer_index)
->set_bottom(j, source_layer.bottom(0));
}
}
for (int j = 0; j < layer_connection.top_size(); ++j) {
const string& blob_name = layer_connection.top(j);
blob_name_to_last_top_idx[blob_name] = i;
}
}
}
bool UpgradeV0LayerParameter(V1LayerParameter* v0_layer_connection_,
V1LayerParameter* layer_param) {
CV_Assert(v0_layer_connection_ != NULL);
const V1LayerParameter& v0_layer_connection = *v0_layer_connection_;
bool is_fully_compatible = true;
layer_param->Clear();
for (int i = 0; i < v0_layer_connection.bottom_size(); ++i) {
layer_param->add_bottom(v0_layer_connection.bottom(i));
}
for (int i = 0; i < v0_layer_connection.top_size(); ++i) {
layer_param->add_top(v0_layer_connection.top(i));
}
if (v0_layer_connection.has_layer()) {
const V0LayerParameter& v0_layer_param = v0_layer_connection.layer();
if (v0_layer_param.has_name()) {
layer_param->set_name(v0_layer_param.name());
}
const string& type = v0_layer_param.type();
if (v0_layer_param.has_type()) {
layer_param->set_type(UpgradeV0LayerType(type));
}
layer_param->mutable_blobs()->Swap(v0_layer_connection_->mutable_blobs());
for (int i = 0; i < v0_layer_param.blobs_lr_size(); ++i) {
layer_param->add_blobs_lr(v0_layer_param.blobs_lr(i));
}
for (int i = 0; i < v0_layer_param.weight_decay_size(); ++i) {
layer_param->add_weight_decay(v0_layer_param.weight_decay(i));
}
if (v0_layer_param.has_num_output()) {
if (type == "conv") {
layer_param->mutable_convolution_param()->set_num_output(
v0_layer_param.num_output());
} else if (type == "innerproduct") {
layer_param->mutable_inner_product_param()->set_num_output(
v0_layer_param.num_output());
} else {
LOG(ERROR) << "Unknown parameter num_output for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_biasterm()) {
if (type == "conv") {
layer_param->mutable_convolution_param()->set_bias_term(
v0_layer_param.biasterm());
} else if (type == "innerproduct") {
layer_param->mutable_inner_product_param()->set_bias_term(
v0_layer_param.biasterm());
} else {
LOG(ERROR) << "Unknown parameter biasterm for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_weight_filler()) {
if (type == "conv") {
layer_param->mutable_convolution_param()->
mutable_weight_filler()->CopyFrom(v0_layer_param.weight_filler());
} else if (type == "innerproduct") {
layer_param->mutable_inner_product_param()->
mutable_weight_filler()->CopyFrom(v0_layer_param.weight_filler());
} else {
LOG(ERROR) << "Unknown parameter weight_filler for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_bias_filler()) {
if (type == "conv") {
layer_param->mutable_convolution_param()->
mutable_bias_filler()->CopyFrom(v0_layer_param.bias_filler());
} else if (type == "innerproduct") {
layer_param->mutable_inner_product_param()->
mutable_bias_filler()->CopyFrom(v0_layer_param.bias_filler());
} else {
LOG(ERROR) << "Unknown parameter bias_filler for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_pad()) {
if (type == "conv") {
layer_param->mutable_convolution_param()->add_pad(v0_layer_param.pad());
} else if (type == "pool") {
layer_param->mutable_pooling_param()->set_pad(v0_layer_param.pad());
} else {
LOG(ERROR) << "Unknown parameter pad for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_kernelsize()) {
if (type == "conv") {
layer_param->mutable_convolution_param()->add_kernel_size(
v0_layer_param.kernelsize());
} else if (type == "pool") {
layer_param->mutable_pooling_param()->set_kernel_size(
v0_layer_param.kernelsize());
} else {
LOG(ERROR) << "Unknown parameter kernelsize for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_group()) {
if (type == "conv") {
layer_param->mutable_convolution_param()->set_group(
v0_layer_param.group());
} else {
LOG(ERROR) << "Unknown parameter group for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_stride()) {
if (type == "conv") {
layer_param->mutable_convolution_param()->add_stride(
v0_layer_param.stride());
} else if (type == "pool") {
layer_param->mutable_pooling_param()->set_stride(
v0_layer_param.stride());
} else {
LOG(ERROR) << "Unknown parameter stride for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_pool()) {
if (type == "pool") {
V0LayerParameter_PoolMethod pool = v0_layer_param.pool();
switch (pool) {
case V0LayerParameter_PoolMethod_MAX:
layer_param->mutable_pooling_param()->set_pool(
PoolingParameter_PoolMethod_MAX);
break;
case V0LayerParameter_PoolMethod_AVE:
layer_param->mutable_pooling_param()->set_pool(
PoolingParameter_PoolMethod_AVE);
break;
case V0LayerParameter_PoolMethod_STOCHASTIC:
layer_param->mutable_pooling_param()->set_pool(
PoolingParameter_PoolMethod_STOCHASTIC);
break;
default:
LOG(ERROR) << "Unknown pool method " << (int)pool;
is_fully_compatible = false;
}
} else {
LOG(ERROR) << "Unknown parameter pool for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_dropout_ratio()) {
if (type == "dropout") {
layer_param->mutable_dropout_param()->set_dropout_ratio(
v0_layer_param.dropout_ratio());
} else {
LOG(ERROR) << "Unknown parameter dropout_ratio for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_local_size()) {
if (type == "lrn") {
layer_param->mutable_lrn_param()->set_local_size(
v0_layer_param.local_size());
} else {
LOG(ERROR) << "Unknown parameter local_size for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_alpha()) {
if (type == "lrn") {
layer_param->mutable_lrn_param()->set_alpha(v0_layer_param.alpha());
} else {
LOG(ERROR) << "Unknown parameter alpha for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_beta()) {
if (type == "lrn") {
layer_param->mutable_lrn_param()->set_beta(v0_layer_param.beta());
} else {
LOG(ERROR) << "Unknown parameter beta for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_k()) {
if (type == "lrn") {
layer_param->mutable_lrn_param()->set_k(v0_layer_param.k());
} else {
LOG(ERROR) << "Unknown parameter k for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_source()) {
if (type == "data") {
layer_param->mutable_data_param()->set_source(v0_layer_param.source());
} else if (type == "hdf5_data") {
layer_param->mutable_hdf5_data_param()->set_source(
v0_layer_param.source());
} else if (type == "images") {
layer_param->mutable_image_data_param()->set_source(
v0_layer_param.source());
} else if (type == "window_data") {
layer_param->mutable_window_data_param()->set_source(
v0_layer_param.source());
} else if (type == "infogain_loss") {
layer_param->mutable_infogain_loss_param()->set_source(
v0_layer_param.source());
} else {
LOG(ERROR) << "Unknown parameter source for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_scale()) {
layer_param->mutable_transform_param()->
set_scale(v0_layer_param.scale());
}
if (v0_layer_param.has_meanfile()) {
layer_param->mutable_transform_param()->
set_mean_file(v0_layer_param.meanfile());
}
if (v0_layer_param.has_batchsize()) {
if (type == "data") {
layer_param->mutable_data_param()->set_batch_size(
v0_layer_param.batchsize());
} else if (type == "hdf5_data") {
layer_param->mutable_hdf5_data_param()->set_batch_size(
v0_layer_param.batchsize());
} else if (type == "images") {
layer_param->mutable_image_data_param()->set_batch_size(
v0_layer_param.batchsize());
} else if (type == "window_data") {
layer_param->mutable_window_data_param()->set_batch_size(
v0_layer_param.batchsize());
} else {
LOG(ERROR) << "Unknown parameter batchsize for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_cropsize()) {
layer_param->mutable_transform_param()->
set_crop_size(v0_layer_param.cropsize());
}
if (v0_layer_param.has_mirror()) {
layer_param->mutable_transform_param()->
set_mirror(v0_layer_param.mirror());
}
if (v0_layer_param.has_rand_skip()) {
if (type == "data") {
layer_param->mutable_data_param()->set_rand_skip(
v0_layer_param.rand_skip());
} else if (type == "images") {
layer_param->mutable_image_data_param()->set_rand_skip(
v0_layer_param.rand_skip());
} else {
LOG(ERROR) << "Unknown parameter rand_skip for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_shuffle_images()) {
if (type == "images") {
layer_param->mutable_image_data_param()->set_shuffle(
v0_layer_param.shuffle_images());
} else {
LOG(ERROR) << "Unknown parameter shuffle for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_new_height()) {
if (type == "images") {
layer_param->mutable_image_data_param()->set_new_height(
v0_layer_param.new_height());
} else {
LOG(ERROR) << "Unknown parameter new_height for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_new_width()) {
if (type == "images") {
layer_param->mutable_image_data_param()->set_new_width(
v0_layer_param.new_width());
} else {
LOG(ERROR) << "Unknown parameter new_width for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_concat_dim()) {
if (type == "concat") {
layer_param->mutable_concat_param()->set_concat_dim(
v0_layer_param.concat_dim());
} else {
LOG(ERROR) << "Unknown parameter concat_dim for layer type " << type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_det_fg_threshold()) {
if (type == "window_data") {
layer_param->mutable_window_data_param()->set_fg_threshold(
v0_layer_param.det_fg_threshold());
} else {
LOG(ERROR) << "Unknown parameter det_fg_threshold for layer type "
<< type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_det_bg_threshold()) {
if (type == "window_data") {
layer_param->mutable_window_data_param()->set_bg_threshold(
v0_layer_param.det_bg_threshold());
} else {
LOG(ERROR) << "Unknown parameter det_bg_threshold for layer type "
<< type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_det_fg_fraction()) {
if (type == "window_data") {
layer_param->mutable_window_data_param()->set_fg_fraction(
v0_layer_param.det_fg_fraction());
} else {
LOG(ERROR) << "Unknown parameter det_fg_fraction for layer type "
<< type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_det_context_pad()) {
if (type == "window_data") {
layer_param->mutable_window_data_param()->set_context_pad(
v0_layer_param.det_context_pad());
} else {
LOG(ERROR) << "Unknown parameter det_context_pad for layer type "
<< type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_det_crop_mode()) {
if (type == "window_data") {
layer_param->mutable_window_data_param()->set_crop_mode(
v0_layer_param.det_crop_mode());
} else {
LOG(ERROR) << "Unknown parameter det_crop_mode for layer type "
<< type;
is_fully_compatible = false;
}
}
if (v0_layer_param.has_hdf5_output_param()) {
if (type == "hdf5_output") {
layer_param->mutable_hdf5_output_param()->CopyFrom(
v0_layer_param.hdf5_output_param());
} else {
LOG(ERROR) << "Unknown parameter hdf5_output_param for layer type "
<< type;
is_fully_compatible = false;
}
}
}
return is_fully_compatible;
}
V1LayerParameter_LayerType UpgradeV0LayerType(const string& type) {
if (type == "accuracy") {
return V1LayerParameter_LayerType_ACCURACY;
} else if (type == "bnll") {
return V1LayerParameter_LayerType_BNLL;
} else if (type == "concat") {
return V1LayerParameter_LayerType_CONCAT;
} else if (type == "conv") {
return V1LayerParameter_LayerType_CONVOLUTION;
} else if (type == "data") {
return V1LayerParameter_LayerType_DATA;
} else if (type == "dropout") {
return V1LayerParameter_LayerType_DROPOUT;
} else if (type == "euclidean_loss") {
return V1LayerParameter_LayerType_EUCLIDEAN_LOSS;
} else if (type == "flatten") {
return V1LayerParameter_LayerType_FLATTEN;
} else if (type == "hdf5_data") {
return V1LayerParameter_LayerType_HDF5_DATA;
} else if (type == "hdf5_output") {
return V1LayerParameter_LayerType_HDF5_OUTPUT;
} else if (type == "im2col") {
return V1LayerParameter_LayerType_IM2COL;
} else if (type == "images") {
return V1LayerParameter_LayerType_IMAGE_DATA;
} else if (type == "infogain_loss") {
return V1LayerParameter_LayerType_INFOGAIN_LOSS;
} else if (type == "innerproduct") {
return V1LayerParameter_LayerType_INNER_PRODUCT;
} else if (type == "lrn") {
return V1LayerParameter_LayerType_LRN;
} else if (type == "multinomial_logistic_loss") {
return V1LayerParameter_LayerType_MULTINOMIAL_LOGISTIC_LOSS;
} else if (type == "pool") {
return V1LayerParameter_LayerType_POOLING;
} else if (type == "relu") {
return V1LayerParameter_LayerType_RELU;
} else if (type == "sigmoid") {
return V1LayerParameter_LayerType_SIGMOID;
} else if (type == "softmax") {
return V1LayerParameter_LayerType_SOFTMAX;
} else if (type == "softmax_loss") {
return V1LayerParameter_LayerType_SOFTMAX_LOSS;
} else if (type == "split") {
return V1LayerParameter_LayerType_SPLIT;
} else if (type == "tanh") {
return V1LayerParameter_LayerType_TANH;
} else if (type == "window_data") {
return V1LayerParameter_LayerType_WINDOW_DATA;
} else {
LOG(FATAL) << "Unknown layer name: " << type;
return V1LayerParameter_LayerType_NONE;
}
}
bool NetNeedsDataUpgrade(const NetParameter& net_param) {
for (int i = 0; i < net_param.layers_size(); ++i) {
if (net_param.layers(i).type() == V1LayerParameter_LayerType_DATA) {
DataParameter layer_param = net_param.layers(i).data_param();
if (layer_param.has_scale()) { return true; }
if (layer_param.has_mean_file()) { return true; }
if (layer_param.has_crop_size()) { return true; }
if (layer_param.has_mirror()) { return true; }
}
if (net_param.layers(i).type() == V1LayerParameter_LayerType_IMAGE_DATA) {
ImageDataParameter layer_param = net_param.layers(i).image_data_param();
if (layer_param.has_scale()) { return true; }
if (layer_param.has_mean_file()) { return true; }
if (layer_param.has_crop_size()) { return true; }
if (layer_param.has_mirror()) { return true; }
}
if (net_param.layers(i).type() == V1LayerParameter_LayerType_WINDOW_DATA) {
WindowDataParameter layer_param = net_param.layers(i).window_data_param();
if (layer_param.has_scale()) { return true; }
if (layer_param.has_mean_file()) { return true; }
if (layer_param.has_crop_size()) { return true; }
if (layer_param.has_mirror()) { return true; }
}
}
return false;
}
#define CONVERT_LAYER_TRANSFORM_PARAM(TYPE, Name, param_name) \
do { \
if (net_param->layers(i).type() == V1LayerParameter_LayerType_##TYPE) { \
Name##Parameter* layer_param = \
net_param->mutable_layers(i)->mutable_##param_name##_param(); \
TransformationParameter* transform_param = \
net_param->mutable_layers(i)->mutable_transform_param(); \
if (layer_param->has_scale()) { \
transform_param->set_scale(layer_param->scale()); \
layer_param->clear_scale(); \
} \
if (layer_param->has_mean_file()) { \
transform_param->set_mean_file(layer_param->mean_file()); \
layer_param->clear_mean_file(); \
} \
if (layer_param->has_crop_size()) { \
transform_param->set_crop_size(layer_param->crop_size()); \
layer_param->clear_crop_size(); \
} \
if (layer_param->has_mirror()) { \
transform_param->set_mirror(layer_param->mirror()); \
layer_param->clear_mirror(); \
} \
} \
} while (0)
void UpgradeNetDataTransformation(NetParameter* net_param) {
for (int i = 0; i < net_param->layers_size(); ++i) {
CONVERT_LAYER_TRANSFORM_PARAM(DATA, Data, data);
CONVERT_LAYER_TRANSFORM_PARAM(IMAGE_DATA, ImageData, image_data);
CONVERT_LAYER_TRANSFORM_PARAM(WINDOW_DATA, WindowData, window_data);
}
}
bool UpgradeNetAsNeeded(const string& param_file, NetParameter* param) {
bool success = true;
if (NetNeedsV0ToV1Upgrade(*param)) {
// NetParameter was specified using the old style (V0LayerParameter); try to
// upgrade it.
LOG(ERROR) << "Attempting to upgrade input file specified using deprecated "
<< "V0LayerParameter: " << param_file;
NetParameter original_param(*param);
if (!UpgradeV0Net(original_param, param)) {
success = false;
LOG(ERROR) << "Warning: had one or more problems upgrading "
<< "V0NetParameter to NetParameter (see above); continuing anyway.";
} else {
LOG(INFO) << "Successfully upgraded file specified using deprecated "
<< "V0LayerParameter";
}
LOG(ERROR) << "Note that future Caffe releases will not support "
<< "V0NetParameter; use ./build/tools/upgrade_net_proto_text for "
<< "prototxt and ./build/tools/upgrade_net_proto_binary for model "
<< "weights upgrade this and any other net protos to the new format.";
}
// NetParameter uses old style data transformation fields; try to upgrade it.
if (NetNeedsDataUpgrade(*param)) {
LOG(ERROR) << "Attempting to upgrade input file specified using deprecated "
<< "transformation parameters: " << param_file;
UpgradeNetDataTransformation(param);
LOG(INFO) << "Successfully upgraded file specified using deprecated "
<< "data transformation parameters.";
LOG(ERROR) << "Note that future Caffe releases will only support "
<< "transform_param messages for transformation fields.";
}
if (NetNeedsV1ToV2Upgrade(*param)) {
LOG(ERROR) << "Attempting to upgrade input file specified using deprecated "
<< "V1LayerParameter: " << param_file;
if (!UpgradeV1Net(param)) {
success = false;
LOG(ERROR) << "Warning: had one or more problems upgrading "
<< "V1LayerParameter (see above); continuing anyway.";
} else {
LOG(INFO) << "Successfully upgraded file specified using deprecated "
<< "V1LayerParameter";
}
}
// NetParameter uses old style batch norm layers; try to upgrade it.
if (NetNeedsBatchNormUpgrade(*param)) {
LOG(INFO) << "Attempting to upgrade batch norm layers using deprecated "
<< "params: " << param_file;
UpgradeNetBatchNorm(param);
LOG(INFO) << "Successfully upgraded batch norm layers using deprecated "
<< "params.";
}
return success;
}
bool UpgradeV1Net(NetParameter* net_param) {
// V1LayerParameter layers -> LayerParameter layer
CV_Assert(net_param != NULL);
bool is_fully_compatible = true;
if (net_param->layer_size() > 0) {
LOG(ERROR) << "Input NetParameter to be upgraded already specifies 'layer' "
<< "fields; these will be ignored for the upgrade.";
is_fully_compatible = false;
}
net_param->clear_layer();
for (int i = 0; i < net_param->layers_size(); ++i) {
if (!UpgradeV1LayerParameter(net_param->mutable_layers(i),
net_param->add_layer())) {
LOG(ERROR) << "Upgrade of input layer " << i << " failed.";
is_fully_compatible = false;
}
}
net_param->clear_layers();
return is_fully_compatible;
}
bool NetNeedsBatchNormUpgrade(const NetParameter& net_param) {
for (int i = 0; i < net_param.layer_size(); ++i) {
// Check if BatchNorm layers declare three parameters, as required by
// the previous BatchNorm layer definition.
if (net_param.layer(i).type() == "BatchNorm"
&& net_param.layer(i).param_size() == 3) {
return true;
}
}
return false;
}
void UpgradeNetBatchNorm(NetParameter* net_param) {
for (int i = 0; i < net_param->layer_size(); ++i) {
// Check if BatchNorm layers declare three parameters, as required by
// the previous BatchNorm layer definition.
if (net_param->layer(i).type() == "BatchNorm"
&& net_param->layer(i).param_size() == 3) {
net_param->mutable_layer(i)->clear_param();
}
}
}
bool UpgradeV1LayerParameter(V1LayerParameter* v1_layer_param_,
LayerParameter* layer_param) {
CV_Assert(v1_layer_param_ != NULL);
const V1LayerParameter& v1_layer_param = *v1_layer_param_;
layer_param->Clear();
bool is_fully_compatible = true;
for (int i = 0; i < v1_layer_param.bottom_size(); ++i) {
layer_param->add_bottom(v1_layer_param.bottom(i));
}
for (int i = 0; i < v1_layer_param.top_size(); ++i) {
layer_param->add_top(v1_layer_param.top(i));
}
if (v1_layer_param.has_name()) {
layer_param->set_name(v1_layer_param.name());
}
for (int i = 0; i < v1_layer_param.include_size(); ++i) {
layer_param->add_include()->CopyFrom(v1_layer_param.include(i));
}
for (int i = 0; i < v1_layer_param.exclude_size(); ++i) {
layer_param->add_exclude()->CopyFrom(v1_layer_param.exclude(i));
}
if (v1_layer_param.has_type()) {
layer_param->set_type(UpgradeV1LayerType(v1_layer_param.type()));
}
layer_param->mutable_blobs()->Swap(v1_layer_param_->mutable_blobs());
for (int i = 0; i < v1_layer_param.param_size(); ++i) {
while (layer_param->param_size() <= i) { layer_param->add_param(); }
layer_param->mutable_param(i)->set_name(v1_layer_param.param(i));
}
ParamSpec_DimCheckMode mode = ParamSpec_DimCheckMode_STRICT;
for (int i = 0; i < v1_layer_param.blob_share_mode_size(); ++i) {
while (layer_param->param_size() <= i) { layer_param->add_param(); }
switch (v1_layer_param.blob_share_mode(i)) {
case V1LayerParameter_DimCheckMode_STRICT:
mode = ParamSpec_DimCheckMode_STRICT;
break;
case V1LayerParameter_DimCheckMode_PERMISSIVE:
mode = ParamSpec_DimCheckMode_PERMISSIVE;
break;
default:
LOG(FATAL) << "Unknown blob_share_mode: "
<< (int)v1_layer_param.blob_share_mode(i);
CV_Error_(Error::StsError, ("Unknown blob_share_mode: %d", (int)v1_layer_param.blob_share_mode(i)));
}
layer_param->mutable_param(i)->set_share_mode(mode);
}
for (int i = 0; i < v1_layer_param.blobs_lr_size(); ++i) {
while (layer_param->param_size() <= i) { layer_param->add_param(); }
layer_param->mutable_param(i)->set_lr_mult(v1_layer_param.blobs_lr(i));
}
for (int i = 0; i < v1_layer_param.weight_decay_size(); ++i) {
while (layer_param->param_size() <= i) { layer_param->add_param(); }
layer_param->mutable_param(i)->set_decay_mult(
v1_layer_param.weight_decay(i));
}
for (int i = 0; i < v1_layer_param.loss_weight_size(); ++i) {
layer_param->add_loss_weight(v1_layer_param.loss_weight(i));
}
if (v1_layer_param.has_accuracy_param()) {
layer_param->mutable_accuracy_param()->CopyFrom(
v1_layer_param.accuracy_param());
}
if (v1_layer_param.has_argmax_param()) {
layer_param->mutable_argmax_param()->CopyFrom(
v1_layer_param.argmax_param());
}
if (v1_layer_param.has_concat_param()) {
layer_param->mutable_concat_param()->CopyFrom(
v1_layer_param.concat_param());
}
if (v1_layer_param.has_contrastive_loss_param()) {
layer_param->mutable_contrastive_loss_param()->CopyFrom(
v1_layer_param.contrastive_loss_param());
}
if (v1_layer_param.has_convolution_param()) {
layer_param->mutable_convolution_param()->CopyFrom(
v1_layer_param.convolution_param());
}
if (v1_layer_param.has_data_param()) {
layer_param->mutable_data_param()->CopyFrom(
v1_layer_param.data_param());
}
if (v1_layer_param.has_dropout_param()) {
layer_param->mutable_dropout_param()->CopyFrom(
v1_layer_param.dropout_param());
}
if (v1_layer_param.has_dummy_data_param()) {
layer_param->mutable_dummy_data_param()->CopyFrom(
v1_layer_param.dummy_data_param());
}
if (v1_layer_param.has_eltwise_param()) {
layer_param->mutable_eltwise_param()->CopyFrom(
v1_layer_param.eltwise_param());
}
if (v1_layer_param.has_exp_param()) {
layer_param->mutable_exp_param()->CopyFrom(
v1_layer_param.exp_param());
}
if (v1_layer_param.has_hdf5_data_param()) {
layer_param->mutable_hdf5_data_param()->CopyFrom(
v1_layer_param.hdf5_data_param());
}
if (v1_layer_param.has_hdf5_output_param()) {
layer_param->mutable_hdf5_output_param()->CopyFrom(
v1_layer_param.hdf5_output_param());
}
if (v1_layer_param.has_hinge_loss_param()) {
layer_param->mutable_hinge_loss_param()->CopyFrom(
v1_layer_param.hinge_loss_param());
}
if (v1_layer_param.has_image_data_param()) {
layer_param->mutable_image_data_param()->CopyFrom(
v1_layer_param.image_data_param());
}
if (v1_layer_param.has_infogain_loss_param()) {
layer_param->mutable_infogain_loss_param()->CopyFrom(
v1_layer_param.infogain_loss_param());
}
if (v1_layer_param.has_inner_product_param()) {
layer_param->mutable_inner_product_param()->CopyFrom(
v1_layer_param.inner_product_param());
}
if (v1_layer_param.has_lrn_param()) {
layer_param->mutable_lrn_param()->CopyFrom(
v1_layer_param.lrn_param());
}
if (v1_layer_param.has_memory_data_param()) {
layer_param->mutable_memory_data_param()->CopyFrom(
v1_layer_param.memory_data_param());
}
if (v1_layer_param.has_mvn_param()) {
layer_param->mutable_mvn_param()->CopyFrom(
v1_layer_param.mvn_param());
}
if (v1_layer_param.has_pooling_param()) {
layer_param->mutable_pooling_param()->CopyFrom(
v1_layer_param.pooling_param());
}
if (v1_layer_param.has_power_param()) {
layer_param->mutable_power_param()->CopyFrom(
v1_layer_param.power_param());
}
if (v1_layer_param.has_relu_param()) {
layer_param->mutable_relu_param()->CopyFrom(
v1_layer_param.relu_param());
}
if (v1_layer_param.has_sigmoid_param()) {
layer_param->mutable_sigmoid_param()->CopyFrom(
v1_layer_param.sigmoid_param());
}
if (v1_layer_param.has_softmax_param()) {
layer_param->mutable_softmax_param()->CopyFrom(
v1_layer_param.softmax_param());
}
if (v1_layer_param.has_slice_param()) {
layer_param->mutable_slice_param()->CopyFrom(
v1_layer_param.slice_param());
}
if (v1_layer_param.has_tanh_param()) {
layer_param->mutable_tanh_param()->CopyFrom(
v1_layer_param.tanh_param());
}
if (v1_layer_param.has_threshold_param()) {
layer_param->mutable_threshold_param()->CopyFrom(
v1_layer_param.threshold_param());
}
if (v1_layer_param.has_window_data_param()) {
layer_param->mutable_window_data_param()->CopyFrom(
v1_layer_param.window_data_param());
}
if (v1_layer_param.has_transform_param()) {
layer_param->mutable_transform_param()->CopyFrom(
v1_layer_param.transform_param());
}
if (v1_layer_param.has_loss_param()) {
layer_param->mutable_loss_param()->CopyFrom(
v1_layer_param.loss_param());
}
if (v1_layer_param.has_layer()) {
LOG(ERROR) << "Input NetParameter has V0 layer -- ignoring.";
is_fully_compatible = false;
}
return is_fully_compatible;
}
const char* UpgradeV1LayerType(const V1LayerParameter_LayerType type) {
switch (type) {
case V1LayerParameter_LayerType_NONE:
return "";
case V1LayerParameter_LayerType_ABSVAL:
return "AbsVal";
case V1LayerParameter_LayerType_ACCURACY:
return "Accuracy";
case V1LayerParameter_LayerType_ARGMAX:
return "ArgMax";
case V1LayerParameter_LayerType_BNLL:
return "BNLL";
case V1LayerParameter_LayerType_CONCAT:
return "Concat";
case V1LayerParameter_LayerType_CONTRASTIVE_LOSS:
return "ContrastiveLoss";
case V1LayerParameter_LayerType_CONVOLUTION:
return "Convolution";
case V1LayerParameter_LayerType_DECONVOLUTION:
return "Deconvolution";
case V1LayerParameter_LayerType_DATA:
return "Data";
case V1LayerParameter_LayerType_DROPOUT:
return "Dropout";
case V1LayerParameter_LayerType_DUMMY_DATA:
return "DummyData";
case V1LayerParameter_LayerType_EUCLIDEAN_LOSS:
return "EuclideanLoss";
case V1LayerParameter_LayerType_ELTWISE:
return "Eltwise";
case V1LayerParameter_LayerType_EXP:
return "Exp";
case V1LayerParameter_LayerType_FLATTEN:
return "Flatten";
case V1LayerParameter_LayerType_HDF5_DATA:
return "HDF5Data";
case V1LayerParameter_LayerType_HDF5_OUTPUT:
return "HDF5Output";
case V1LayerParameter_LayerType_HINGE_LOSS:
return "HingeLoss";
case V1LayerParameter_LayerType_IM2COL:
return "Im2col";
case V1LayerParameter_LayerType_IMAGE_DATA:
return "ImageData";
case V1LayerParameter_LayerType_INFOGAIN_LOSS:
return "InfogainLoss";
case V1LayerParameter_LayerType_INNER_PRODUCT:
return "InnerProduct";
case V1LayerParameter_LayerType_LRN:
return "LRN";
case V1LayerParameter_LayerType_MEMORY_DATA:
return "MemoryData";
case V1LayerParameter_LayerType_MULTINOMIAL_LOGISTIC_LOSS:
return "MultinomialLogisticLoss";
case V1LayerParameter_LayerType_MVN:
return "MVN";
case V1LayerParameter_LayerType_POOLING:
return "Pooling";
case V1LayerParameter_LayerType_POWER:
return "Power";
case V1LayerParameter_LayerType_RELU:
return "ReLU";
case V1LayerParameter_LayerType_SIGMOID:
return "Sigmoid";
case V1LayerParameter_LayerType_SIGMOID_CROSS_ENTROPY_LOSS:
return "SigmoidCrossEntropyLoss";
case V1LayerParameter_LayerType_SILENCE:
return "Silence";
case V1LayerParameter_LayerType_SOFTMAX:
return "Softmax";
case V1LayerParameter_LayerType_SOFTMAX_LOSS:
return "SoftmaxWithLoss";
case V1LayerParameter_LayerType_SPLIT:
return "Split";
case V1LayerParameter_LayerType_SLICE:
return "Slice";
case V1LayerParameter_LayerType_TANH:
return "TanH";
case V1LayerParameter_LayerType_WINDOW_DATA:
return "WindowData";
case V1LayerParameter_LayerType_THRESHOLD:
return "Threshold";
default:
LOG(FATAL) << "Unknown V1LayerParameter layer type: " << (int)type;
return "";
}
}
static const int kProtoReadBytesLimit = INT_MAX; // Max size of 2 GB minus 1 byte.
bool ReadProtoFromBinary(ZeroCopyInputStream* input, Message *proto) {
CodedInputStream coded_input(input);
coded_input.SetTotalBytesLimit(kProtoReadBytesLimit, 536870912);
return proto->ParseFromCodedStream(&coded_input);
}
bool ReadProtoFromTextFile(const char* filename, Message* proto) {
std::ifstream fs(filename, std::ifstream::in);
CHECK(fs.is_open()) << "Can't open \"" << filename << "\"";
IstreamInputStream input(&fs);
#ifndef OPENCV_DNN_EXTERNAL_PROTOBUF
return google::protobuf::TextFormat::Parser(true).Parse(&input, proto);
#else
return google::protobuf::TextFormat::Parser().Parse(&input, proto);
#endif
}
bool ReadProtoFromBinaryFile(const char* filename, Message* proto) {
std::ifstream fs(filename, std::ifstream::in | std::ifstream::binary);
CHECK(fs.is_open()) << "Can't open \"" << filename << "\"";
IstreamInputStream raw_input(&fs);
return ReadProtoFromBinary(&raw_input, proto);
}
bool ReadProtoFromTextBuffer(const char* data, size_t len, Message* proto) {
ArrayInputStream input(data, len);
#ifndef OPENCV_DNN_EXTERNAL_PROTOBUF
return google::protobuf::TextFormat::Parser(true).Parse(&input, proto);
#else
return google::protobuf::TextFormat::Parser().Parse(&input, proto);
#endif
}
bool ReadProtoFromBinaryBuffer(const char* data, size_t len, Message* proto) {
ArrayInputStream raw_input(data, len);
return ReadProtoFromBinary(&raw_input, proto);
}
void ReadNetParamsFromTextFileOrDie(const char* param_file,
NetParameter* param) {
CHECK(ReadProtoFromTextFile(param_file, param))
<< "Failed to parse NetParameter file: " << param_file;
UpgradeNetAsNeeded(param_file, param);
}
void ReadNetParamsFromTextBufferOrDie(const char* data, size_t len,
NetParameter* param) {
CHECK(ReadProtoFromTextBuffer(data, len, param))
<< "Failed to parse NetParameter buffer";
UpgradeNetAsNeeded("memory buffer", param);
}
void ReadNetParamsFromBinaryFileOrDie(const char* param_file,
NetParameter* param) {
CHECK(ReadProtoFromBinaryFile(param_file, param))
<< "Failed to parse NetParameter file: " << param_file;
UpgradeNetAsNeeded(param_file, param);
}
void ReadNetParamsFromBinaryBufferOrDie(const char* data, size_t len,
NetParameter* param) {
CHECK(ReadProtoFromBinaryBuffer(data, len, param))
<< "Failed to parse NetParameter buffer";
UpgradeNetAsNeeded("memory buffer", param);
}
}
}
#endif