btv_l1_cuda.cpp 21.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

// S. Farsiu , D. Robinson, M. Elad, P. Milanfar. Fast and robust multiframe super resolution.
// Dennis Mitzel, Thomas Pock, Thomas Schoenemann, Daniel Cremers. Video Super Resolution using Duality Based TV-L1 Optical Flow.

#include "precomp.hpp"

using namespace cv;
using namespace cv::cuda;
using namespace cv::superres;
using namespace cv::superres::detail;

#if !defined(HAVE_CUDA) || !defined(HAVE_OPENCV_CUDAARITHM) || !defined(HAVE_OPENCV_CUDAWARPING) || !defined(HAVE_OPENCV_CUDAFILTERS)

Ptr<SuperResolution> cv::superres::createSuperResolution_BTVL1_CUDA()
{
    CV_Error(Error::StsNotImplemented, "The called functionality is disabled for current build or platform");
    return Ptr<SuperResolution>();
}

#else // HAVE_CUDA

namespace btv_l1_cudev
{
    void buildMotionMaps(PtrStepSzf forwardMotionX, PtrStepSzf forwardMotionY,
                         PtrStepSzf backwardMotionX, PtrStepSzf bacwardMotionY,
                         PtrStepSzf forwardMapX, PtrStepSzf forwardMapY,
                         PtrStepSzf backwardMapX, PtrStepSzf backwardMapY);

    template <int cn>
    void upscale(const PtrStepSzb src, PtrStepSzb dst, int scale, cudaStream_t stream);

    void diffSign(PtrStepSzf src1, PtrStepSzf src2, PtrStepSzf dst, cudaStream_t stream);

    void loadBtvWeights(const float* weights, size_t count);
    template <int cn> void calcBtvRegularization(PtrStepSzb src, PtrStepSzb dst, int ksize);
}

namespace
{
    void calcRelativeMotions(const std::vector<std::pair<GpuMat, GpuMat> >& forwardMotions, const std::vector<std::pair<GpuMat, GpuMat> >& backwardMotions,
                             std::vector<std::pair<GpuMat, GpuMat> >& relForwardMotions, std::vector<std::pair<GpuMat, GpuMat> >& relBackwardMotions,
                             int baseIdx, Size size)
    {
        const int count = static_cast<int>(forwardMotions.size());

        relForwardMotions.resize(count);
        relForwardMotions[baseIdx].first.create(size, CV_32FC1);
        relForwardMotions[baseIdx].first.setTo(Scalar::all(0));
        relForwardMotions[baseIdx].second.create(size, CV_32FC1);
        relForwardMotions[baseIdx].second.setTo(Scalar::all(0));

        relBackwardMotions.resize(count);
        relBackwardMotions[baseIdx].first.create(size, CV_32FC1);
        relBackwardMotions[baseIdx].first.setTo(Scalar::all(0));
        relBackwardMotions[baseIdx].second.create(size, CV_32FC1);
        relBackwardMotions[baseIdx].second.setTo(Scalar::all(0));

        for (int i = baseIdx - 1; i >= 0; --i)
        {
            cuda::add(relForwardMotions[i + 1].first, forwardMotions[i].first, relForwardMotions[i].first);
            cuda::add(relForwardMotions[i + 1].second, forwardMotions[i].second, relForwardMotions[i].second);

            cuda::add(relBackwardMotions[i + 1].first, backwardMotions[i + 1].first, relBackwardMotions[i].first);
            cuda::add(relBackwardMotions[i + 1].second, backwardMotions[i + 1].second, relBackwardMotions[i].second);
        }

        for (int i = baseIdx + 1; i < count; ++i)
        {
            cuda::add(relForwardMotions[i - 1].first, backwardMotions[i].first, relForwardMotions[i].first);
            cuda::add(relForwardMotions[i - 1].second, backwardMotions[i].second, relForwardMotions[i].second);

            cuda::add(relBackwardMotions[i - 1].first, forwardMotions[i - 1].first, relBackwardMotions[i].first);
            cuda::add(relBackwardMotions[i - 1].second, forwardMotions[i - 1].second, relBackwardMotions[i].second);
        }
    }

    void upscaleMotions(const std::vector<std::pair<GpuMat, GpuMat> >& lowResMotions, std::vector<std::pair<GpuMat, GpuMat> >& highResMotions, int scale)
    {
        highResMotions.resize(lowResMotions.size());

        for (size_t i = 0; i < lowResMotions.size(); ++i)
        {
            cuda::resize(lowResMotions[i].first, highResMotions[i].first, Size(), scale, scale, INTER_CUBIC);
            cuda::resize(lowResMotions[i].second, highResMotions[i].second, Size(), scale, scale, INTER_CUBIC);

            cuda::multiply(highResMotions[i].first, Scalar::all(scale), highResMotions[i].first);
            cuda::multiply(highResMotions[i].second, Scalar::all(scale), highResMotions[i].second);
        }
    }

    void buildMotionMaps(const std::pair<GpuMat, GpuMat>& forwardMotion, const std::pair<GpuMat, GpuMat>& backwardMotion,
                         std::pair<GpuMat, GpuMat>& forwardMap, std::pair<GpuMat, GpuMat>& backwardMap)
    {
        forwardMap.first.create(forwardMotion.first.size(), CV_32FC1);
        forwardMap.second.create(forwardMotion.first.size(), CV_32FC1);

        backwardMap.first.create(forwardMotion.first.size(), CV_32FC1);
        backwardMap.second.create(forwardMotion.first.size(), CV_32FC1);

        btv_l1_cudev::buildMotionMaps(forwardMotion.first, forwardMotion.second,
                                       backwardMotion.first, backwardMotion.second,
                                       forwardMap.first, forwardMap.second,
                                       backwardMap.first, backwardMap.second);
    }

    void upscale(const GpuMat& src, GpuMat& dst, int scale, Stream& stream)
    {
        typedef void (*func_t)(const PtrStepSzb src, PtrStepSzb dst, int scale, cudaStream_t stream);
        static const func_t funcs[] =
        {
            0, btv_l1_cudev::upscale<1>, 0, btv_l1_cudev::upscale<3>, btv_l1_cudev::upscale<4>
        };

        CV_Assert( src.channels() == 1 || src.channels() == 3 || src.channels() == 4 );

        dst.create(src.rows * scale, src.cols * scale, src.type());
        dst.setTo(Scalar::all(0));

        const func_t func = funcs[src.channels()];

        func(src, dst, scale, StreamAccessor::getStream(stream));
    }

    void diffSign(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream)
    {
        dst.create(src1.size(), src1.type());

        btv_l1_cudev::diffSign(src1.reshape(1), src2.reshape(1), dst.reshape(1), StreamAccessor::getStream(stream));
    }

    void calcBtvWeights(int btvKernelSize, double alpha, std::vector<float>& btvWeights)
    {
        const size_t size = btvKernelSize * btvKernelSize;

        btvWeights.resize(size);

        const int ksize = (btvKernelSize - 1) / 2;
        const float alpha_f = static_cast<float>(alpha);

        for (int m = 0, ind = 0; m <= ksize; ++m)
        {
            for (int l = ksize; l + m >= 0; --l, ++ind)
                btvWeights[ind] = pow(alpha_f, std::abs(m) + std::abs(l));
        }

        btv_l1_cudev::loadBtvWeights(&btvWeights[0], size);
    }

    void calcBtvRegularization(const GpuMat& src, GpuMat& dst, int btvKernelSize)
    {
        typedef void (*func_t)(PtrStepSzb src, PtrStepSzb dst, int ksize);
        static const func_t funcs[] =
        {
            0,
            btv_l1_cudev::calcBtvRegularization<1>,
            0,
            btv_l1_cudev::calcBtvRegularization<3>,
            btv_l1_cudev::calcBtvRegularization<4>
        };

        dst.create(src.size(), src.type());
        dst.setTo(Scalar::all(0));

        const int ksize = (btvKernelSize - 1) / 2;

        funcs[src.channels()](src, dst, ksize);
    }

    class BTVL1_CUDA_Base : public cv::superres::SuperResolution
    {
    public:
        BTVL1_CUDA_Base();

        void process(const std::vector<GpuMat>& src, GpuMat& dst,
                     const std::vector<std::pair<GpuMat, GpuMat> >& forwardMotions, const std::vector<std::pair<GpuMat, GpuMat> >& backwardMotions,
                     int baseIdx);

        void collectGarbage();

        inline int getScale() const CV_OVERRIDE { return scale_; }
        inline void setScale(int val) CV_OVERRIDE { scale_ = val; }
        inline int getIterations() const CV_OVERRIDE { return iterations_; }
        inline void setIterations(int val) CV_OVERRIDE { iterations_ = val; }
        inline double getTau() const CV_OVERRIDE { return tau_; }
        inline void setTau(double val) CV_OVERRIDE { tau_ = val; }
        inline double getLabmda() const CV_OVERRIDE { return lambda_; }
        inline void setLabmda(double val) CV_OVERRIDE { lambda_ = val; }
        inline double getAlpha() const CV_OVERRIDE { return alpha_; }
        inline void setAlpha(double val) CV_OVERRIDE { alpha_ = val; }
        inline int getKernelSize() const CV_OVERRIDE { return btvKernelSize_; }
        inline void setKernelSize(int val) CV_OVERRIDE { btvKernelSize_ = val; }
        inline int getBlurKernelSize() const CV_OVERRIDE { return blurKernelSize_; }
        inline void setBlurKernelSize(int val) CV_OVERRIDE { blurKernelSize_ = val; }
        inline double getBlurSigma() const CV_OVERRIDE { return blurSigma_; }
        inline void setBlurSigma(double val) CV_OVERRIDE { blurSigma_ = val; }
        inline int getTemporalAreaRadius() const CV_OVERRIDE { return temporalAreaRadius_; }
        inline void setTemporalAreaRadius(int val) CV_OVERRIDE { temporalAreaRadius_ = val; }
        inline Ptr<cv::superres::DenseOpticalFlowExt> getOpticalFlow() const CV_OVERRIDE { return opticalFlow_; }
        inline void setOpticalFlow(const Ptr<cv::superres::DenseOpticalFlowExt>& val) CV_OVERRIDE { opticalFlow_ = val; }

    protected:
        int scale_;
        int iterations_;
        double lambda_;
        double tau_;
        double alpha_;
        int btvKernelSize_;
        int blurKernelSize_;
        double blurSigma_;
        int temporalAreaRadius_;
        Ptr<cv::superres::DenseOpticalFlowExt> opticalFlow_;

    private:
        std::vector<Ptr<cuda::Filter> > filters_;
        int curBlurKernelSize_;
        double curBlurSigma_;
        int curSrcType_;

        std::vector<float> btvWeights_;
        int curBtvKernelSize_;
        double curAlpha_;

        std::vector<std::pair<GpuMat, GpuMat> > lowResForwardMotions_;
        std::vector<std::pair<GpuMat, GpuMat> > lowResBackwardMotions_;

        std::vector<std::pair<GpuMat, GpuMat> > highResForwardMotions_;
        std::vector<std::pair<GpuMat, GpuMat> > highResBackwardMotions_;

        std::vector<std::pair<GpuMat, GpuMat> > forwardMaps_;
        std::vector<std::pair<GpuMat, GpuMat> > backwardMaps_;

        GpuMat highRes_;

        std::vector<Stream> streams_;
        std::vector<GpuMat> diffTerms_;
        std::vector<GpuMat> a_, b_, c_;
        GpuMat regTerm_;
    };

    BTVL1_CUDA_Base::BTVL1_CUDA_Base()
    {
        scale_ = 4;
        iterations_ = 180;
        lambda_ = 0.03;
        tau_ = 1.3;
        alpha_ = 0.7;
        btvKernelSize_ = 7;
        blurKernelSize_ = 5;
        blurSigma_ = 0.0;

#ifdef HAVE_OPENCV_CUDAOPTFLOW
        opticalFlow_ = createOptFlow_Farneback_CUDA();
#else
        opticalFlow_ = createOptFlow_Farneback();
#endif
        temporalAreaRadius_ = 0;

        curBlurKernelSize_ = -1;
        curBlurSigma_ = -1.0;
        curSrcType_ = -1;

        curBtvKernelSize_ = -1;
        curAlpha_ = -1.0;
    }

    void BTVL1_CUDA_Base::process(const std::vector<GpuMat>& src, GpuMat& dst,
                                 const std::vector<std::pair<GpuMat, GpuMat> >& forwardMotions, const std::vector<std::pair<GpuMat, GpuMat> >& backwardMotions,
                                 int baseIdx)
    {
        CV_Assert( scale_ > 1 );
        CV_Assert( iterations_ > 0 );
        CV_Assert( tau_ > 0.0 );
        CV_Assert( alpha_ > 0.0 );
        CV_Assert( btvKernelSize_ > 0 && btvKernelSize_ <= 16 );
        CV_Assert( blurKernelSize_ > 0 );
        CV_Assert( blurSigma_ >= 0.0 );

        // update blur filter and btv weights

        if (filters_.size() != src.size() || blurKernelSize_ != curBlurKernelSize_ || blurSigma_ != curBlurSigma_ || src[0].type() != curSrcType_)
        {
            filters_.resize(src.size());
            for (size_t i = 0; i < src.size(); ++i)
                filters_[i] = cuda::createGaussianFilter(src[0].type(), -1, Size(blurKernelSize_, blurKernelSize_), blurSigma_);
            curBlurKernelSize_ = blurKernelSize_;
            curBlurSigma_ = blurSigma_;
            curSrcType_ = src[0].type();
        }

        if (btvWeights_.empty() || btvKernelSize_ != curBtvKernelSize_ || alpha_ != curAlpha_)
        {
            calcBtvWeights(btvKernelSize_, alpha_, btvWeights_);
            curBtvKernelSize_ = btvKernelSize_;
            curAlpha_ = alpha_;
        }

        // calc motions between input frames

        calcRelativeMotions(forwardMotions, backwardMotions, lowResForwardMotions_, lowResBackwardMotions_, baseIdx, src[0].size());

        upscaleMotions(lowResForwardMotions_, highResForwardMotions_, scale_);
        upscaleMotions(lowResBackwardMotions_, highResBackwardMotions_, scale_);

        forwardMaps_.resize(highResForwardMotions_.size());
        backwardMaps_.resize(highResForwardMotions_.size());
        for (size_t i = 0; i < highResForwardMotions_.size(); ++i)
            buildMotionMaps(highResForwardMotions_[i], highResBackwardMotions_[i], forwardMaps_[i], backwardMaps_[i]);

        // initial estimation

        const Size lowResSize = src[0].size();
        const Size highResSize(lowResSize.width * scale_, lowResSize.height * scale_);

        cuda::resize(src[baseIdx], highRes_, highResSize, 0, 0, INTER_CUBIC);

        // iterations

        streams_.resize(src.size());
        diffTerms_.resize(src.size());
        a_.resize(src.size());
        b_.resize(src.size());
        c_.resize(src.size());

        for (int i = 0; i < iterations_; ++i)
        {
            for (size_t k = 0; k < src.size(); ++k)
            {
                // a = M * Ih
                cuda::remap(highRes_, a_[k], backwardMaps_[k].first, backwardMaps_[k].second, INTER_NEAREST, BORDER_REPLICATE, Scalar(), streams_[k]);
                // b = HM * Ih
                filters_[k]->apply(a_[k], b_[k], streams_[k]);
                // c = DHF * Ih
                cuda::resize(b_[k], c_[k], lowResSize, 0, 0, INTER_NEAREST, streams_[k]);

                diffSign(src[k], c_[k], c_[k], streams_[k]);

                // a = Dt * diff
                upscale(c_[k], a_[k], scale_, streams_[k]);
                // b = HtDt * diff
                filters_[k]->apply(a_[k], b_[k], streams_[k]);
                // diffTerm = MtHtDt * diff
                cuda::remap(b_[k], diffTerms_[k], forwardMaps_[k].first, forwardMaps_[k].second, INTER_NEAREST, BORDER_REPLICATE, Scalar(), streams_[k]);
            }

            if (lambda_ > 0)
            {
                calcBtvRegularization(highRes_, regTerm_, btvKernelSize_);
                cuda::addWeighted(highRes_, 1.0, regTerm_, -tau_ * lambda_, 0.0, highRes_);
            }

            for (size_t k = 0; k < src.size(); ++k)
            {
                streams_[k].waitForCompletion();
                cuda::addWeighted(highRes_, 1.0, diffTerms_[k], tau_, 0.0, highRes_);
            }
        }

        Rect inner(btvKernelSize_, btvKernelSize_, highRes_.cols - 2 * btvKernelSize_, highRes_.rows - 2 * btvKernelSize_);
        highRes_(inner).copyTo(dst);
    }

    void BTVL1_CUDA_Base::collectGarbage()
    {
        filters_.clear();

        lowResForwardMotions_.clear();
        lowResBackwardMotions_.clear();

        highResForwardMotions_.clear();
        highResBackwardMotions_.clear();

        forwardMaps_.clear();
        backwardMaps_.clear();

        highRes_.release();

        diffTerms_.clear();
        a_.clear();
        b_.clear();
        c_.clear();
        regTerm_.release();
    }

////////////////////////////////////////////////////////////

    class BTVL1_CUDA : public BTVL1_CUDA_Base
    {
    public:
        BTVL1_CUDA();

        void collectGarbage();

    protected:
        void initImpl(Ptr<FrameSource>& frameSource);
        void processImpl(Ptr<FrameSource>& frameSource, OutputArray output);

    private:
        void readNextFrame(Ptr<FrameSource>& frameSource);
        void processFrame(int idx);

        GpuMat curFrame_;
        GpuMat prevFrame_;

        std::vector<GpuMat> frames_;
        std::vector<std::pair<GpuMat, GpuMat> > forwardMotions_;
        std::vector<std::pair<GpuMat, GpuMat> > backwardMotions_;
        std::vector<GpuMat> outputs_;

        int storePos_;
        int procPos_;
        int outPos_;

        std::vector<GpuMat> srcFrames_;
        std::vector<std::pair<GpuMat, GpuMat> > srcForwardMotions_;
        std::vector<std::pair<GpuMat, GpuMat> > srcBackwardMotions_;
        GpuMat finalOutput_;
    };

    BTVL1_CUDA::BTVL1_CUDA()
    {
        temporalAreaRadius_ = 4;
    }

    void BTVL1_CUDA::collectGarbage()
    {
        curFrame_.release();
        prevFrame_.release();

        frames_.clear();
        forwardMotions_.clear();
        backwardMotions_.clear();
        outputs_.clear();

        srcFrames_.clear();
        srcForwardMotions_.clear();
        srcBackwardMotions_.clear();
        finalOutput_.release();

        SuperResolution::collectGarbage();
        BTVL1_CUDA_Base::collectGarbage();
    }

    void BTVL1_CUDA::initImpl(Ptr<FrameSource>& frameSource)
    {
        const int cacheSize = 2 * temporalAreaRadius_ + 1;

        frames_.resize(cacheSize);
        forwardMotions_.resize(cacheSize);
        backwardMotions_.resize(cacheSize);
        outputs_.resize(cacheSize);

        storePos_ = -1;

        for (int t = -temporalAreaRadius_; t <= temporalAreaRadius_; ++t)
            readNextFrame(frameSource);

        for (int i = 0; i <= temporalAreaRadius_; ++i)
            processFrame(i);

        procPos_ = temporalAreaRadius_;
        outPos_ = -1;
    }

    void BTVL1_CUDA::processImpl(Ptr<FrameSource>& frameSource, OutputArray _output)
    {
        if (outPos_ >= storePos_)
        {
            _output.release();
            return;
        }

        readNextFrame(frameSource);

        if (procPos_ < storePos_)
        {
            ++procPos_;
            processFrame(procPos_);
        }

        ++outPos_;
        const GpuMat& curOutput = at(outPos_, outputs_);

        if (_output.kind() == _InputArray::CUDA_GPU_MAT)
            curOutput.convertTo(_output.getGpuMatRef(), CV_8U);
        else
        {
            curOutput.convertTo(finalOutput_, CV_8U);
            arrCopy(finalOutput_, _output);
        }
    }

    void BTVL1_CUDA::readNextFrame(Ptr<FrameSource>& frameSource)
    {
        frameSource->nextFrame(curFrame_);

        if (curFrame_.empty())
            return;

        ++storePos_;
        curFrame_.convertTo(at(storePos_, frames_), CV_32F);

        if (storePos_ > 0)
        {
            std::pair<GpuMat, GpuMat>& forwardMotion = at(storePos_ - 1, forwardMotions_);
            std::pair<GpuMat, GpuMat>& backwardMotion = at(storePos_, backwardMotions_);

            opticalFlow_->calc(prevFrame_, curFrame_, forwardMotion.first, forwardMotion.second);
            opticalFlow_->calc(curFrame_, prevFrame_, backwardMotion.first, backwardMotion.second);
        }

        curFrame_.copyTo(prevFrame_);
    }

    void BTVL1_CUDA::processFrame(int idx)
    {
        const int startIdx = std::max(idx - temporalAreaRadius_, 0);
        const int procIdx = idx;
        const int endIdx = std::min(startIdx + 2 * temporalAreaRadius_, storePos_);

        const int count = endIdx - startIdx + 1;

        srcFrames_.resize(count);
        srcForwardMotions_.resize(count);
        srcBackwardMotions_.resize(count);

        int baseIdx = -1;

        for (int i = startIdx, k = 0; i <= endIdx; ++i, ++k)
        {
            if (i == procIdx)
                baseIdx = k;

            srcFrames_[k] = at(i, frames_);

            if (i < endIdx)
                srcForwardMotions_[k] = at(i, forwardMotions_);
            if (i > startIdx)
                srcBackwardMotions_[k] = at(i, backwardMotions_);
        }

        process(srcFrames_, at(idx, outputs_), srcForwardMotions_, srcBackwardMotions_, baseIdx);
    }
}

Ptr<SuperResolution> cv::superres::createSuperResolution_BTVL1_CUDA()
{
    return makePtr<BTVL1_CUDA>();
}

#endif // HAVE_CUDA