gpuarithm.hpp 19.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_GPUARITHM_HPP__
#define __OPENCV_GPUARITHM_HPP__

#ifndef __cplusplus
#  error gpuarithm.hpp header must be compiled as C++
#endif

#include "opencv2/core/gpu.hpp"

#if defined __GNUC__
    #define __OPENCV_GPUARITHM_DEPR_BEFORE__
    #define __OPENCV_GPUARITHM_DEPR_AFTER__ __attribute__ ((deprecated))
#elif (defined WIN32 || defined _WIN32)
    #define __OPENCV_GPUARITHM_DEPR_BEFORE__ __declspec(deprecated)
    #define __OPENCV_GPUARITHM_DEPR_AFTER__
#else
    #define __OPENCV_GPUARITHM_DEPR_BEFORE__
    #define __OPENCV_GPUARITHM_DEPR_AFTER__
#endif

namespace cv { namespace gpu {

//! adds one matrix to another (dst = src1 + src2)
CV_EXPORTS void add(InputArray src1, InputArray src2, OutputArray dst, InputArray mask = noArray(), int dtype = -1, Stream& stream = Stream::Null());

//! subtracts one matrix from another (dst = src1 - src2)
CV_EXPORTS void subtract(InputArray src1, InputArray src2, OutputArray dst, InputArray mask = noArray(), int dtype = -1, Stream& stream = Stream::Null());

//! computes element-wise weighted product of the two arrays (dst = scale * src1 * src2)
CV_EXPORTS void multiply(InputArray src1, InputArray src2, OutputArray dst, double scale = 1, int dtype = -1, Stream& stream = Stream::Null());

//! computes element-wise weighted quotient of the two arrays (dst = scale * (src1 / src2))
CV_EXPORTS void divide(InputArray src1, InputArray src2, OutputArray dst, double scale = 1, int dtype = -1, Stream& stream = Stream::Null());

//! computes element-wise weighted reciprocal of an array (dst = scale/src2)
static inline void divide(double src1, InputArray src2, OutputArray dst, int dtype = -1, Stream& stream = Stream::Null())
{
    divide(src1, src2, dst, 1.0, dtype, stream);
}

//! computes element-wise absolute difference of two arrays (dst = abs(src1 - src2))
CV_EXPORTS void absdiff(InputArray src1, InputArray src2, OutputArray dst, Stream& stream = Stream::Null());

//! computes absolute value of each matrix element
CV_EXPORTS void abs(InputArray src, OutputArray dst, Stream& stream = Stream::Null());

//! computes square of each pixel in an image
CV_EXPORTS void sqr(InputArray src, OutputArray dst, Stream& stream = Stream::Null());

//! computes square root of each pixel in an image
CV_EXPORTS void sqrt(InputArray src, OutputArray dst, Stream& stream = Stream::Null());

//! computes exponent of each matrix element
CV_EXPORTS void exp(InputArray src, OutputArray dst, Stream& stream = Stream::Null());

//! computes natural logarithm of absolute value of each matrix element
CV_EXPORTS void log(InputArray src, OutputArray dst, Stream& stream = Stream::Null());

//! computes power of each matrix element:
//!    (dst(i,j) = pow(     src(i,j) , power), if src.type() is integer
//!    (dst(i,j) = pow(fabs(src(i,j)), power), otherwise
CV_EXPORTS void pow(InputArray src, double power, OutputArray dst, Stream& stream = Stream::Null());

//! compares elements of two arrays (dst = src1 <cmpop> src2)
CV_EXPORTS void compare(InputArray src1, InputArray src2, OutputArray dst, int cmpop, Stream& stream = Stream::Null());

//! performs per-elements bit-wise inversion
CV_EXPORTS void bitwise_not(InputArray src, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null());

//! calculates per-element bit-wise disjunction of two arrays
CV_EXPORTS void bitwise_or(InputArray src1, InputArray src2, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null());

//! calculates per-element bit-wise conjunction of two arrays
CV_EXPORTS void bitwise_and(InputArray src1, InputArray src2, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null());

//! calculates per-element bit-wise "exclusive or" operation
CV_EXPORTS void bitwise_xor(InputArray src1, InputArray src2, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null());

//! pixel by pixel right shift of an image by a constant value
//! supports 1, 3 and 4 channels images with integers elements
CV_EXPORTS void rshift(InputArray src, Scalar_<int> val, OutputArray dst, Stream& stream = Stream::Null());

//! pixel by pixel left shift of an image by a constant value
//! supports 1, 3 and 4 channels images with CV_8U, CV_16U or CV_32S depth
CV_EXPORTS void lshift(InputArray src, Scalar_<int> val, OutputArray dst, Stream& stream = Stream::Null());

//! computes per-element minimum of two arrays (dst = min(src1, src2))
CV_EXPORTS void min(InputArray src1, InputArray src2, OutputArray dst, Stream& stream = Stream::Null());

//! computes per-element maximum of two arrays (dst = max(src1, src2))
CV_EXPORTS void max(InputArray src1, InputArray src2, OutputArray dst, Stream& stream = Stream::Null());

//! computes the weighted sum of two arrays (dst = alpha*src1 + beta*src2 + gamma)
CV_EXPORTS void addWeighted(InputArray src1, double alpha, InputArray src2, double beta, double gamma, OutputArray dst,
                            int dtype = -1, Stream& stream = Stream::Null());

//! adds scaled array to another one (dst = alpha*src1 + src2)
static inline void scaleAdd(InputArray src1, double alpha, InputArray src2, OutputArray dst, Stream& stream = Stream::Null())
{
    addWeighted(src1, alpha, src2, 1.0, 0.0, dst, -1, stream);
}

//! applies fixed threshold to the image
CV_EXPORTS double threshold(InputArray src, OutputArray dst, double thresh, double maxval, int type, Stream& stream = Stream::Null());

//! computes magnitude of complex (x(i).re, x(i).im) vector
//! supports only CV_32FC2 type
CV_EXPORTS void magnitude(InputArray xy, OutputArray magnitude, Stream& stream = Stream::Null());

//! computes squared magnitude of complex (x(i).re, x(i).im) vector
//! supports only CV_32FC2 type
CV_EXPORTS void magnitudeSqr(InputArray xy, OutputArray magnitude, Stream& stream = Stream::Null());

//! computes magnitude of each (x(i), y(i)) vector
//! supports only floating-point source
CV_EXPORTS void magnitude(InputArray x, InputArray y, OutputArray magnitude, Stream& stream = Stream::Null());

//! computes squared magnitude of each (x(i), y(i)) vector
//! supports only floating-point source
CV_EXPORTS void magnitudeSqr(InputArray x, InputArray y, OutputArray magnitude, Stream& stream = Stream::Null());

//! computes angle of each (x(i), y(i)) vector
//! supports only floating-point source
CV_EXPORTS void phase(InputArray x, InputArray y, OutputArray angle, bool angleInDegrees = false, Stream& stream = Stream::Null());

//! converts Cartesian coordinates to polar
//! supports only floating-point source
CV_EXPORTS void cartToPolar(InputArray x, InputArray y, OutputArray magnitude, OutputArray angle, bool angleInDegrees = false, Stream& stream = Stream::Null());

//! converts polar coordinates to Cartesian
//! supports only floating-point source
CV_EXPORTS void polarToCart(InputArray magnitude, InputArray angle, OutputArray x, OutputArray y, bool angleInDegrees = false, Stream& stream = Stream::Null());

//! makes multi-channel array out of several single-channel arrays
CV_EXPORTS void merge(const GpuMat* src, size_t n, OutputArray dst, Stream& stream = Stream::Null());
CV_EXPORTS void merge(const std::vector<GpuMat>& src, OutputArray dst, Stream& stream = Stream::Null());

//! copies each plane of a multi-channel array to a dedicated array
CV_EXPORTS void split(InputArray src, GpuMat* dst, Stream& stream = Stream::Null());
CV_EXPORTS void split(InputArray src, std::vector<GpuMat>& dst, Stream& stream = Stream::Null());

//! transposes the matrix
//! supports matrix with element size = 1, 4 and 8 bytes (CV_8UC1, CV_8UC4, CV_16UC2, CV_32FC1, etc)
CV_EXPORTS void transpose(InputArray src1, OutputArray dst, Stream& stream = Stream::Null());

//! reverses the order of the rows, columns or both in a matrix
//! supports 1, 3 and 4 channels images with CV_8U, CV_16U, CV_32S or CV_32F depth
CV_EXPORTS void flip(InputArray src, OutputArray dst, int flipCode, Stream& stream = Stream::Null());

//! transforms 8-bit unsigned integers using lookup table: dst(i)=lut(src(i))
//! destination array will have the depth type as lut and the same channels number as source
//! supports CV_8UC1, CV_8UC3 types
class CV_EXPORTS LookUpTable : public Algorithm
{
public:
    virtual void transform(InputArray src, OutputArray dst, Stream& stream = Stream::Null()) = 0;
};
CV_EXPORTS Ptr<LookUpTable> createLookUpTable(InputArray lut);

__OPENCV_GPUARITHM_DEPR_BEFORE__ void LUT(InputArray src, InputArray lut, OutputArray dst, Stream& stream = Stream::Null()) __OPENCV_GPUARITHM_DEPR_AFTER__;
inline void LUT(InputArray src, InputArray lut, OutputArray dst, Stream& stream)
{
    createLookUpTable(lut)->transform(src, dst, stream);
}

//! copies 2D array to a larger destination array and pads borders with user-specifiable constant
CV_EXPORTS void copyMakeBorder(InputArray src, OutputArray dst, int top, int bottom, int left, int right, int borderType,
                               Scalar value = Scalar(), Stream& stream = Stream::Null());

//! computes norm of array
//! supports NORM_INF, NORM_L1, NORM_L2
//! supports all matrices except 64F
CV_EXPORTS double norm(InputArray src1, int normType, InputArray mask, GpuMat& buf);
static inline double norm(InputArray src, int normType)
{
    GpuMat buf;
    return norm(src, normType, GpuMat(), buf);
}
static inline double norm(InputArray src, int normType, GpuMat& buf)
{
    return norm(src, normType, GpuMat(), buf);
}

//! computes norm of the difference between two arrays
//! supports NORM_INF, NORM_L1, NORM_L2
//! supports only CV_8UC1 type
CV_EXPORTS double norm(InputArray src1, InputArray src2, GpuMat& buf, int normType=NORM_L2);
static inline double norm(InputArray src1, InputArray src2, int normType=NORM_L2)
{
    GpuMat buf;
    return norm(src1, src2, buf, normType);
}

//! computes sum of array elements
//! supports only single channel images
CV_EXPORTS Scalar sum(InputArray src, InputArray mask, GpuMat& buf);
static inline Scalar sum(InputArray src)
{
    GpuMat buf;
    return sum(src, GpuMat(), buf);
}
static inline Scalar sum(InputArray src, GpuMat& buf)
{
    return sum(src, GpuMat(), buf);
}

//! computes sum of array elements absolute values
//! supports only single channel images
CV_EXPORTS Scalar absSum(InputArray src, InputArray mask, GpuMat& buf);
static inline Scalar absSum(InputArray src)
{
    GpuMat buf;
    return absSum(src, GpuMat(), buf);
}
static inline Scalar absSum(InputArray src, GpuMat& buf)
{
    return absSum(src, GpuMat(), buf);
}

//! computes squared sum of array elements
//! supports only single channel images
CV_EXPORTS Scalar sqrSum(InputArray src, InputArray mask, GpuMat& buf);
static inline Scalar sqrSum(InputArray src)
{
    GpuMat buf;
    return sqrSum(src, GpuMat(), buf);
}
static inline Scalar sqrSum(InputArray src, GpuMat& buf)
{
    return sqrSum(src, GpuMat(), buf);
}

//! finds global minimum and maximum array elements and returns their values
CV_EXPORTS void minMax(InputArray src, double* minVal, double* maxVal, InputArray mask, GpuMat& buf);
static inline void minMax(InputArray src, double* minVal, double* maxVal=0, InputArray mask=noArray())
{
    GpuMat buf;
    minMax(src, minVal, maxVal, mask, buf);
}

//! finds global minimum and maximum array elements and returns their values with locations
CV_EXPORTS void minMaxLoc(InputArray src, double* minVal, double* maxVal, Point* minLoc, Point* maxLoc,
                          InputArray mask, GpuMat& valbuf, GpuMat& locbuf);
static inline void minMaxLoc(InputArray src, double* minVal, double* maxVal=0, Point* minLoc=0, Point* maxLoc=0,
                             InputArray mask=noArray())
{
    GpuMat valBuf, locBuf;
    minMaxLoc(src, minVal, maxVal, minLoc, maxLoc, mask, valBuf, locBuf);
}

//! counts non-zero array elements
CV_EXPORTS int countNonZero(InputArray src, GpuMat& buf);
static inline int countNonZero(const GpuMat& src)
{
    GpuMat buf;
    return countNonZero(src, buf);
}

//! reduces a matrix to a vector
CV_EXPORTS void reduce(InputArray mtx, OutputArray vec, int dim, int reduceOp, int dtype = -1, Stream& stream = Stream::Null());

//! computes mean value and standard deviation of all or selected array elements
//! supports only CV_8UC1 type
CV_EXPORTS void meanStdDev(InputArray mtx, Scalar& mean, Scalar& stddev, GpuMat& buf);
static inline void meanStdDev(InputArray src, Scalar& mean, Scalar& stddev)
{
    GpuMat buf;
    meanStdDev(src, mean, stddev, buf);
}

//! computes the standard deviation of integral images
//! supports only CV_32SC1 source type and CV_32FC1 sqr type
//! output will have CV_32FC1 type
CV_EXPORTS void rectStdDev(InputArray src, InputArray sqr, OutputArray dst, Rect rect, Stream& stream = Stream::Null());

//! scales and shifts array elements so that either the specified norm (alpha) or the minimum (alpha) and maximum (beta) array values get the specified values
CV_EXPORTS void normalize(InputArray src, OutputArray dst, double alpha, double beta,
                          int norm_type, int dtype, InputArray mask, GpuMat& norm_buf, GpuMat& cvt_buf);
static inline void normalize(InputArray src, OutputArray dst, double alpha = 1, double beta = 0,
                             int norm_type = NORM_L2, int dtype = -1, InputArray mask = noArray())
{
    GpuMat norm_buf;
    GpuMat cvt_buf;
    normalize(src, dst, alpha, beta, norm_type, dtype, mask, norm_buf, cvt_buf);
}

//! computes the integral image
//! sum will have CV_32S type, but will contain unsigned int values
//! supports only CV_8UC1 source type
CV_EXPORTS void integral(InputArray src, OutputArray sum, GpuMat& buffer, Stream& stream = Stream::Null());
static inline void integralBuffered(InputArray src, OutputArray sum, GpuMat& buffer, Stream& stream = Stream::Null())
{
    integral(src, sum, buffer, stream);
}
static inline void integral(InputArray src, OutputArray sum, Stream& stream = Stream::Null())
{
    GpuMat buffer;
    integral(src, sum, buffer, stream);
}

//! computes squared integral image
//! result matrix will have 64F type, but will contain 64U values
//! supports source images of 8UC1 type only
CV_EXPORTS void sqrIntegral(InputArray src, OutputArray sqsum, GpuMat& buf, Stream& stream = Stream::Null());
static inline void sqrIntegral(InputArray src, OutputArray sqsum, Stream& stream = Stream::Null())
{
    GpuMat buffer;
    sqrIntegral(src, sqsum, buffer, stream);
}

CV_EXPORTS void gemm(InputArray src1, InputArray src2, double alpha,
                     InputArray src3, double beta, OutputArray dst, int flags = 0, Stream& stream = Stream::Null());

//! performs per-element multiplication of two full (not packed) Fourier spectrums
//! supports 32FC2 matrixes only (interleaved format)
CV_EXPORTS void mulSpectrums(InputArray src1, InputArray src2, OutputArray dst, int flags, bool conjB=false, Stream& stream = Stream::Null());

//! performs per-element multiplication of two full (not packed) Fourier spectrums
//! supports 32FC2 matrixes only (interleaved format)
CV_EXPORTS void mulAndScaleSpectrums(InputArray src1, InputArray src2, OutputArray dst, int flags, float scale, bool conjB=false, Stream& stream = Stream::Null());

//! Performs a forward or inverse discrete Fourier transform (1D or 2D) of floating point matrix.
//! Param dft_size is the size of DFT transform.
//!
//! If the source matrix is not continous, then additional copy will be done,
//! so to avoid copying ensure the source matrix is continous one. If you want to use
//! preallocated output ensure it is continuous too, otherwise it will be reallocated.
//!
//! Being implemented via CUFFT real-to-complex transform result contains only non-redundant values
//! in CUFFT's format. Result as full complex matrix for such kind of transform cannot be retrieved.
//!
//! For complex-to-real transform it is assumed that the source matrix is packed in CUFFT's format.
CV_EXPORTS void dft(InputArray src, OutputArray dst, Size dft_size, int flags=0, Stream& stream = Stream::Null());

//! computes convolution (or cross-correlation) of two images using discrete Fourier transform
//! supports source images of 32FC1 type only
//! result matrix will have 32FC1 type
class CV_EXPORTS Convolution : public Algorithm
{
public:
    virtual void convolve(InputArray image, InputArray templ, OutputArray result, bool ccorr = false, Stream& stream = Stream::Null()) = 0;
};
CV_EXPORTS Ptr<Convolution> createConvolution(Size user_block_size = Size());

__OPENCV_GPUARITHM_DEPR_BEFORE__ void convolve(InputArray image, InputArray templ, OutputArray result, bool ccorr = false, Stream& stream = Stream::Null()) __OPENCV_GPUARITHM_DEPR_AFTER__;
inline void convolve(InputArray image, InputArray templ, OutputArray result, bool ccorr , Stream& stream)
{
    createConvolution()->convolve(image, templ, result, ccorr, stream);
}

struct ConvolveBuf
{
    Size result_size;
    Size block_size;
    Size user_block_size;
    Size dft_size;
    int spect_len;

    GpuMat image_spect, templ_spect, result_spect;
    GpuMat image_block, templ_block, result_data;

    void create(Size, Size){}
    static Size estimateBlockSize(Size, Size){ return Size(); }
};

__OPENCV_GPUARITHM_DEPR_BEFORE__ void convolve(InputArray image, InputArray templ, OutputArray result, bool ccorr, ConvolveBuf& buf, Stream& stream = Stream::Null()) __OPENCV_GPUARITHM_DEPR_AFTER__;
inline void convolve(InputArray image, InputArray templ, OutputArray result, bool ccorr, ConvolveBuf& buf, Stream& stream)
{
    createConvolution(buf.user_block_size)->convolve(image, templ, result, ccorr, stream);
}

}} // namespace cv { namespace gpu {

#undef __OPENCV_GPUARITHM_DEPR_BEFORE__
#undef __OPENCV_GPUARITHM_DEPR_AFTER__

#endif /* __OPENCV_GPUARITHM_HPP__ */