1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <algorithm>
#include <cmath>
#include <functional>
#include <fstream>
#include <limits>
#include <set>
using namespace cv;
using namespace std;
/********************************* local utility *********************************/
namespace cv
{
using std::log;
using std::max;
using std::min;
using std::sqrt;
}
namespace
{
const static Scalar colors[] =
{
CV_RGB(255, 0, 0),
CV_RGB( 0, 255, 0),
CV_RGB( 0, 0, 255),
CV_RGB(255, 255, 0),
CV_RGB(255, 0, 255),
CV_RGB( 0, 255, 255),
CV_RGB(255, 127, 127),
CV_RGB(127, 127, 255),
CV_RGB(127, 255, 127),
CV_RGB(255, 255, 127),
CV_RGB(127, 255, 255),
CV_RGB(255, 127, 255),
CV_RGB(127, 0, 0),
CV_RGB( 0, 127, 0),
CV_RGB( 0, 0, 127),
CV_RGB(127, 127, 0),
CV_RGB(127, 0, 127),
CV_RGB( 0, 127, 127)
};
size_t colors_mum = sizeof(colors)/sizeof(colors[0]);
template<class FwIt, class T> void iota(FwIt first, FwIt last, T value) { while(first != last) *first++ = value++; }
void computeNormals( const Octree& Octree, const vector<Point3f>& centers, vector<Point3f>& normals,
vector<uchar>& mask, float normalRadius, int minNeighbors = 20)
{
size_t normals_size = centers.size();
normals.resize(normals_size);
if (mask.size() != normals_size)
{
size_t m = mask.size();
mask.resize(normals_size);
if (normals_size > m)
for(; m < normals_size; ++m)
mask[m] = 1;
}
vector<Point3f> buffer;
buffer.reserve(128);
SVD svd;
const static Point3f zero(0.f, 0.f, 0.f);
for(size_t n = 0; n < normals_size; ++n)
{
if (mask[n] == 0)
continue;
const Point3f& center = centers[n];
Octree.getPointsWithinSphere(center, normalRadius, buffer);
int buf_size = (int)buffer.size();
if (buf_size < minNeighbors)
{
normals[n] = Mesh3D::allzero;
mask[n] = 0;
continue;
}
//find the mean point for normalization
Point3f mean(Mesh3D::allzero);
for(int i = 0; i < buf_size; ++i)
mean += buffer[i];
mean.x /= buf_size;
mean.y /= buf_size;
mean.z /= buf_size;
double pxpx = 0;
double pypy = 0;
double pzpz = 0;
double pxpy = 0;
double pxpz = 0;
double pypz = 0;
for(int i = 0; i < buf_size; ++i)
{
const Point3f& p = buffer[i];
pxpx += (p.x - mean.x) * (p.x - mean.x);
pypy += (p.y - mean.y) * (p.y - mean.y);
pzpz += (p.z - mean.z) * (p.z - mean.z);
pxpy += (p.x - mean.x) * (p.y - mean.y);
pxpz += (p.x - mean.x) * (p.z - mean.z);
pypz += (p.y - mean.y) * (p.z - mean.z);
}
//create and populate matrix with normalized nbrs
double M_data[] = { pxpx, pxpy, pxpz, /**/ pxpy, pypy, pypz, /**/ pxpz, pypz, pzpz };
Mat M(3, 3, CV_64F, M_data);
svd(M, SVD::MODIFY_A);
/*normals[n] = Point3f( (float)((double*)svd.vt.data)[6],
(float)((double*)svd.vt.data)[7],
(float)((double*)svd.vt.data)[8] );*/
normals[n] = reinterpret_cast<Point3d*>(svd.vt.data)[2];
mask[n] = 1;
}
}
void initRotationMat(const Point3f& n, float out[9])
{
double pitch = atan2(n.x, n.z);
double pmat[] = { cos(pitch), 0, -sin(pitch) ,
0 , 1, 0 ,
sin(pitch), 0, cos(pitch) };
double roll = atan2((double)n.y, n.x * pmat[3*2+0] + n.z * pmat[3*2+2]);
double rmat[] = { 1, 0, 0,
0, cos(roll), -sin(roll) ,
0, sin(roll), cos(roll) };
for(int i = 0; i < 3; ++i)
for(int j = 0; j < 3; ++j)
out[3*i+j] = (float)(rmat[3*i+0]*pmat[3*0+j] +
rmat[3*i+1]*pmat[3*1+j] + rmat[3*i+2]*pmat[3*2+j]);
}
void transform(const Point3f& in, float matrix[9], Point3f& out)
{
out.x = in.x * matrix[3*0+0] + in.y * matrix[3*0+1] + in.z * matrix[3*0+2];
out.y = in.x * matrix[3*1+0] + in.y * matrix[3*1+1] + in.z * matrix[3*1+2];
out.z = in.x * matrix[3*2+0] + in.y * matrix[3*2+1] + in.z * matrix[3*2+2];
}
#if CV_SSE2
void convertTransformMatrix(const float* matrix, float* sseMatrix)
{
sseMatrix[0] = matrix[0]; sseMatrix[1] = matrix[3]; sseMatrix[2] = matrix[6]; sseMatrix[3] = 0;
sseMatrix[4] = matrix[1]; sseMatrix[5] = matrix[4]; sseMatrix[6] = matrix[7]; sseMatrix[7] = 0;
sseMatrix[8] = matrix[2]; sseMatrix[9] = matrix[5]; sseMatrix[10] = matrix[8]; sseMatrix[11] = 0;
}
inline __m128 transformSSE(const __m128* matrix, const __m128& in)
{
assert(((size_t)matrix & 15) == 0);
__m128 a0 = _mm_mul_ps(_mm_load_ps((float*)(matrix+0)), _mm_shuffle_ps(in,in,_MM_SHUFFLE(0,0,0,0)));
__m128 a1 = _mm_mul_ps(_mm_load_ps((float*)(matrix+1)), _mm_shuffle_ps(in,in,_MM_SHUFFLE(1,1,1,1)));
__m128 a2 = _mm_mul_ps(_mm_load_ps((float*)(matrix+2)), _mm_shuffle_ps(in,in,_MM_SHUFFLE(2,2,2,2)));
return _mm_add_ps(_mm_add_ps(a0,a1),a2);
}
inline __m128i _mm_mullo_epi32_emul(const __m128i& a, __m128i& b)
{
__m128i pack = _mm_packs_epi32(a, a);
return _mm_unpacklo_epi16(_mm_mullo_epi16(pack, b), _mm_mulhi_epi16(pack, b));
}
#endif
void computeSpinImages( const Octree& Octree, const vector<Point3f>& points, const vector<Point3f>& normals,
vector<uchar>& mask, Mat& spinImages, int imageWidth, float binSize)
{
float pixelsPerMeter = 1.f / binSize;
float support = imageWidth * binSize;
assert(normals.size() == points.size());
assert(mask.size() == points.size());
size_t points_size = points.size();
mask.resize(points_size);
int height = imageWidth;
int width = imageWidth;
spinImages.create( (int)points_size, width*height, CV_32F );
int nthreads = getNumThreads();
int i;
vector< vector<Point3f> > pointsInSpherePool(nthreads);
for(i = 0; i < nthreads; i++)
pointsInSpherePool[i].reserve(2048);
float halfSuppport = support / 2;
float searchRad = support * sqrt(5.f) / 2; // sqrt(sup*sup + (sup/2) * (sup/2) )
#ifdef _OPENMP
#pragma omp parallel for num_threads(nthreads)
#endif
for(i = 0; i < (int)points_size; ++i)
{
if (mask[i] == 0)
continue;
int t = cvGetThreadNum();
vector<Point3f>& pointsInSphere = pointsInSpherePool[t];
const Point3f& center = points[i];
Octree.getPointsWithinSphere(center, searchRad, pointsInSphere);
size_t inSphere_size = pointsInSphere.size();
if (inSphere_size == 0)
{
mask[i] = 0;
continue;
}
const Point3f& normal = normals[i];
float rotmat[9];
initRotationMat(normal, rotmat);
Point3f new_center;
transform(center, rotmat, new_center);
Mat spinImage = spinImages.row(i).reshape(1, height);
float* spinImageData = (float*)spinImage.data;
int step = width;
spinImage = Scalar(0.);
float alpha, beta;
size_t j = 0;
#if CV_SSE2
if (inSphere_size > 4 && checkHardwareSupport(CV_CPU_SSE2))
{
__m128 rotmatSSE[3];
convertTransformMatrix(rotmat, (float*)rotmatSSE);
__m128 center_x4 = _mm_set1_ps(new_center.x);
__m128 center_y4 = _mm_set1_ps(new_center.y);
__m128 center_z4 = _mm_set1_ps(new_center.z + halfSuppport);
__m128 ppm4 = _mm_set1_ps(pixelsPerMeter);
__m128i height4m1 = _mm_set1_epi32(spinImage.rows-1);
__m128i width4m1 = _mm_set1_epi32(spinImage.cols-1);
assert( spinImage.step <= 0xffff );
__m128i step4 = _mm_set1_epi16((short)step);
__m128i zero4 = _mm_setzero_si128();
__m128i one4i = _mm_set1_epi32(1);
__m128 zero4f = _mm_setzero_ps();
__m128 one4f = _mm_set1_ps(1.f);
//__m128 two4f = _mm_set1_ps(2.f);
int CV_DECL_ALIGNED(16) o[4];
for (; j <= inSphere_size - 5; j += 4)
{
__m128 pt0 = transformSSE(rotmatSSE, _mm_loadu_ps((float*)&pointsInSphere[j+0])); // x0 y0 z0 .
__m128 pt1 = transformSSE(rotmatSSE, _mm_loadu_ps((float*)&pointsInSphere[j+1])); // x1 y1 z1 .
__m128 pt2 = transformSSE(rotmatSSE, _mm_loadu_ps((float*)&pointsInSphere[j+2])); // x2 y2 z2 .
__m128 pt3 = transformSSE(rotmatSSE, _mm_loadu_ps((float*)&pointsInSphere[j+3])); // x3 y3 z3 .
__m128 z0 = _mm_unpackhi_ps(pt0, pt1); // z0 z1 . .
__m128 z1 = _mm_unpackhi_ps(pt2, pt3); // z2 z3 . .
__m128 beta4 = _mm_sub_ps(center_z4, _mm_movelh_ps(z0, z1)); // b0 b1 b2 b3
__m128 xy0 = _mm_unpacklo_ps(pt0, pt1); // x0 x1 y0 y1
__m128 xy1 = _mm_unpacklo_ps(pt2, pt3); // x2 x3 y2 y3
__m128 x4 = _mm_movelh_ps(xy0, xy1); // x0 x1 x2 x3
__m128 y4 = _mm_movehl_ps(xy1, xy0); // y0 y1 y2 y3
x4 = _mm_sub_ps(x4, center_x4);
y4 = _mm_sub_ps(y4, center_y4);
__m128 alpha4 = _mm_sqrt_ps(_mm_add_ps(_mm_mul_ps(x4,x4),_mm_mul_ps(y4,y4)));
__m128 n1f4 = _mm_mul_ps( beta4, ppm4); /* beta4 float */
__m128 n2f4 = _mm_mul_ps(alpha4, ppm4); /* alpha4 float */
/* floor */
__m128i n1 = _mm_sub_epi32(_mm_cvttps_epi32( _mm_add_ps( n1f4, one4f ) ), one4i);
__m128i n2 = _mm_sub_epi32(_mm_cvttps_epi32( _mm_add_ps( n2f4, one4f ) ), one4i);
__m128 f1 = _mm_sub_ps( n1f4, _mm_cvtepi32_ps(n1) ); /* { beta4 } */
__m128 f2 = _mm_sub_ps( n2f4, _mm_cvtepi32_ps(n2) ); /* { alpha4 } */
__m128 f1f2 = _mm_mul_ps(f1, f2); // f1 * f2
__m128 omf1omf2 = _mm_add_ps(_mm_sub_ps(_mm_sub_ps(one4f, f2), f1), f1f2); // (1-f1) * (1-f2)
__m128i _mask = _mm_and_si128(
_mm_andnot_si128(_mm_cmpgt_epi32(zero4, n1), _mm_cmpgt_epi32(height4m1, n1)),
_mm_andnot_si128(_mm_cmpgt_epi32(zero4, n2), _mm_cmpgt_epi32(width4m1, n2)));
__m128 maskf = _mm_cmpneq_ps(_mm_cvtepi32_ps(_mask), zero4f);
__m128 v00 = _mm_and_ps( omf1omf2 , maskf); // a00 b00 c00 d00
__m128 v01 = _mm_and_ps( _mm_sub_ps( f2, f1f2 ), maskf); // a01 b01 c01 d01
__m128 v10 = _mm_and_ps( _mm_sub_ps( f1, f1f2 ), maskf); // a10 b10 c10 d10
__m128 v11 = _mm_and_ps( f1f2 , maskf); // a11 b11 c11 d11
__m128i ofs4 = _mm_and_si128(_mm_add_epi32(_mm_mullo_epi32_emul(n1, step4), n2), _mask);
_mm_store_si128((__m128i*)o, ofs4);
__m128 t0 = _mm_unpacklo_ps(v00, v01); // a00 a01 b00 b01
__m128 t1 = _mm_unpacklo_ps(v10, v11); // a10 a11 b10 b11
__m128 u0 = _mm_movelh_ps(t0, t1); // a00 a01 a10 a11
__m128 u1 = _mm_movehl_ps(t1, t0); // b00 b01 b10 b11
__m128 x0 = _mm_loadl_pi(u0, (__m64*)(spinImageData+o[0])); // x00 x01
x0 = _mm_loadh_pi(x0, (__m64*)(spinImageData+o[0]+step)); // x00 x01 x10 x11
x0 = _mm_add_ps(x0, u0);
_mm_storel_pi((__m64*)(spinImageData+o[0]), x0);
_mm_storeh_pi((__m64*)(spinImageData+o[0]+step), x0);
x0 = _mm_loadl_pi(x0, (__m64*)(spinImageData+o[1])); // y00 y01
x0 = _mm_loadh_pi(x0, (__m64*)(spinImageData+o[1]+step)); // y00 y01 y10 y11
x0 = _mm_add_ps(x0, u1);
_mm_storel_pi((__m64*)(spinImageData+o[1]), x0);
_mm_storeh_pi((__m64*)(spinImageData+o[1]+step), x0);
t0 = _mm_unpackhi_ps(v00, v01); // c00 c01 d00 d01
t1 = _mm_unpackhi_ps(v10, v11); // c10 c11 d10 d11
u0 = _mm_movelh_ps(t0, t1); // c00 c01 c10 c11
u1 = _mm_movehl_ps(t1, t0); // d00 d01 d10 d11
x0 = _mm_loadl_pi(x0, (__m64*)(spinImageData+o[2])); // z00 z01
x0 = _mm_loadh_pi(x0, (__m64*)(spinImageData+o[2]+step)); // z00 z01 z10 z11
x0 = _mm_add_ps(x0, u0);
_mm_storel_pi((__m64*)(spinImageData+o[2]), x0);
_mm_storeh_pi((__m64*)(spinImageData+o[2]+step), x0);
x0 = _mm_loadl_pi(x0, (__m64*)(spinImageData+o[3])); // w00 w01
x0 = _mm_loadh_pi(x0, (__m64*)(spinImageData+o[3]+step)); // w00 w01 w10 w11
x0 = _mm_add_ps(x0, u1);
_mm_storel_pi((__m64*)(spinImageData+o[3]), x0);
_mm_storeh_pi((__m64*)(spinImageData+o[3]+step), x0);
}
}
#endif
for (; j < inSphere_size; ++j)
{
Point3f pt;
transform(pointsInSphere[j], rotmat, pt);
beta = halfSuppport - (pt.z - new_center.z);
if (beta >= support || beta < 0)
continue;
alpha = sqrt( (new_center.x - pt.x) * (new_center.x - pt.x) +
(new_center.y - pt.y) * (new_center.y - pt.y) );
float n1f = beta * pixelsPerMeter;
float n2f = alpha * pixelsPerMeter;
int n1 = cvFloor(n1f);
int n2 = cvFloor(n2f);
float f1 = n1f - n1;
float f2 = n2f - n2;
if ((unsigned)n1 >= (unsigned)(spinImage.rows-1) ||
(unsigned)n2 >= (unsigned)(spinImage.cols-1))
continue;
float *cellptr = spinImageData + step * n1 + n2;
float f1f2 = f1*f2;
cellptr[0] += 1 - f1 - f2 + f1f2;
cellptr[1] += f2 - f1f2;
cellptr[step] += f1 - f1f2;
cellptr[step+1] += f1f2;
}
mask[i] = 1;
}
}
}
/********************************* Mesh3D *********************************/
const Point3f cv::Mesh3D::allzero(0.f, 0.f, 0.f);
cv::Mesh3D::Mesh3D() { resolution = -1; }
cv::Mesh3D::Mesh3D(const vector<Point3f>& _vtx)
{
resolution = -1;
vtx.resize(_vtx.size());
std::copy(_vtx.begin(), _vtx.end(), vtx.begin());
}
cv::Mesh3D::~Mesh3D() {}
void cv::Mesh3D::buildOctree() { if (octree.getNodes().empty()) octree.buildTree(vtx); }
void cv::Mesh3D::clearOctree(){ octree = Octree(); }
float cv::Mesh3D::estimateResolution(float /*tryRatio*/)
{
#if 0
const int neighbors = 3;
const int minReasonable = 10;
int tryNum = static_cast<int>(tryRatio * vtx.size());
tryNum = min(max(tryNum, minReasonable), (int)vtx.size());
CvMat desc = cvMat((int)vtx.size(), 3, CV_32F, &vtx[0]);
CvFeatureTree* tr = cvCreateKDTree(&desc);
vector<double> dist(tryNum * neighbors);
vector<int> inds(tryNum * neighbors);
vector<Point3f> query;
RNG& rng = theRNG();
for(int i = 0; i < tryNum; ++i)
query.push_back(vtx[rng.next() % vtx.size()]);
CvMat cvinds = cvMat( (int)tryNum, neighbors, CV_32S, &inds[0] );
CvMat cvdist = cvMat( (int)tryNum, neighbors, CV_64F, &dist[0] );
CvMat cvquery = cvMat( (int)tryNum, 3, CV_32F, &query[0] );
cvFindFeatures(tr, &cvquery, &cvinds, &cvdist, neighbors, 50);
cvReleaseFeatureTree(tr);
const int invalid_dist = -2;
for(int i = 0; i < tryNum; ++i)
if (inds[i] == -1)
dist[i] = invalid_dist;
dist.resize(remove(dist.begin(), dist.end(), invalid_dist) - dist.begin());
sort(dist, less<double>());
return resolution = (float)dist[ dist.size() / 2 ];
#else
CV_Error(CV_StsNotImplemented, "");
return 1.f;
#endif
}
void cv::Mesh3D::computeNormals(float normalRadius, int minNeighbors)
{
buildOctree();
vector<uchar> mask;
::computeNormals(octree, vtx, normals, mask, normalRadius, minNeighbors);
}
void cv::Mesh3D::computeNormals(const vector<int>& subset, float normalRadius, int minNeighbors)
{
buildOctree();
vector<uchar> mask(vtx.size(), 0);
for(size_t i = 0; i < subset.size(); ++i)
mask[subset[i]] = 1;
::computeNormals(octree, vtx, normals, mask, normalRadius, minNeighbors);
}
void cv::Mesh3D::writeAsVrml(const String& file, const vector<Scalar>& _colors) const
{
ofstream ofs(file.c_str());
ofs << "#VRML V2.0 utf8" << endl;
ofs << "Shape" << std::endl << "{" << endl;
ofs << "geometry PointSet" << endl << "{" << endl;
ofs << "coord Coordinate" << endl << "{" << endl;
ofs << "point[" << endl;
for(size_t i = 0; i < vtx.size(); ++i)
ofs << vtx[i].x << " " << vtx[i].y << " " << vtx[i].z << endl;
ofs << "]" << endl; //point[
ofs << "}" << endl; //Coordinate{
if (vtx.size() == _colors.size())
{
ofs << "color Color" << endl << "{" << endl;
ofs << "color[" << endl;
for(size_t i = 0; i < _colors.size(); ++i)
ofs << (float)_colors[i][2] << " " << (float)_colors[i][1] << " " << (float)_colors[i][0] << endl;
ofs << "]" << endl; //color[
ofs << "}" << endl; //color Color{
}
ofs << "}" << endl; //PointSet{
ofs << "}" << endl; //Shape{
}
/********************************* SpinImageModel *********************************/
bool cv::SpinImageModel::spinCorrelation(const Mat& spin1, const Mat& spin2, float lambda, float& result)
{
struct Math { static double atanh(double x) { return 0.5 * std::log( (1 + x) / (1 - x) ); } };
const float* s1 = spin1.ptr<float>();
const float* s2 = spin2.ptr<float>();
int spin_sz = spin1.cols * spin1.rows;
double sum1 = 0.0, sum2 = 0.0, sum12 = 0.0, sum11 = 0.0, sum22 = 0.0;
int N = 0;
int i = 0;
#if CV_SSE2//____________TEMPORARY_DISABLED_____________
float CV_DECL_ALIGNED(16) su1[4], su2[4], su11[4], su22[4], su12[4], n[4];
__m128 zerof4 = _mm_setzero_ps();
__m128 onef4 = _mm_set1_ps(1.f);
__m128 Nf4 = zerof4;
__m128 sum1f4 = zerof4;
__m128 sum2f4 = zerof4;
__m128 sum11f4 = zerof4;
__m128 sum22f4 = zerof4;
__m128 sum12f4 = zerof4;
for(; i < spin_sz - 5; i += 4)
{
__m128 v1f4 = _mm_loadu_ps(s1 + i);
__m128 v2f4 = _mm_loadu_ps(s2 + i);
__m128 mskf4 = _mm_and_ps(_mm_cmpneq_ps(v1f4, zerof4), _mm_cmpneq_ps(v2f4, zerof4));
if( !_mm_movemask_ps(mskf4) )
continue;
Nf4 = _mm_add_ps(Nf4, _mm_and_ps(onef4, mskf4));
v1f4 = _mm_and_ps(v1f4, mskf4);
v2f4 = _mm_and_ps(v2f4, mskf4);
sum1f4 = _mm_add_ps(sum1f4, v1f4);
sum2f4 = _mm_add_ps(sum2f4, v2f4);
sum11f4 = _mm_add_ps(sum11f4, _mm_mul_ps(v1f4, v1f4));
sum22f4 = _mm_add_ps(sum22f4, _mm_mul_ps(v2f4, v2f4));
sum12f4 = _mm_add_ps(sum12f4, _mm_mul_ps(v1f4, v2f4));
}
_mm_store_ps( su1, sum1f4 );
_mm_store_ps( su2, sum2f4 );
_mm_store_ps(su11, sum11f4 );
_mm_store_ps(su22, sum22f4 );
_mm_store_ps(su12, sum12f4 );
_mm_store_ps(n, Nf4 );
N = static_cast<int>(n[0] + n[1] + n[2] + n[3]);
sum1 = su1[0] + su1[1] + su1[2] + su1[3];
sum2 = su2[0] + su2[1] + su2[2] + su2[3];
sum11 = su11[0] + su11[1] + su11[2] + su11[3];
sum22 = su22[0] + su22[1] + su22[2] + su22[3];
sum12 = su12[0] + su12[1] + su12[2] + su12[3];
#endif
for(; i < spin_sz; ++i)
{
float v1 = s1[i];
float v2 = s2[i];
if( !v1 || !v2 )
continue;
N++;
sum1 += v1;
sum2 += v2;
sum11 += v1 * v1;
sum22 += v2 * v2;
sum12 += v1 * v2;
}
if( N < 4 )
return false;
double sum1sum1 = sum1 * sum1;
double sum2sum2 = sum2 * sum2;
double Nsum12 = N * sum12;
double Nsum11 = N * sum11;
double Nsum22 = N * sum22;
if (Nsum11 == sum1sum1 || Nsum22 == sum2sum2)
return false;
double corr = (Nsum12 - sum1 * sum2) / sqrt( (Nsum11 - sum1sum1) * (Nsum22 - sum2sum2) );
double atanh = Math::atanh(corr);
result = (float)( atanh * atanh - lambda * ( 1.0 / (N - 3) ) );
return true;
}
inline Point2f cv::SpinImageModel::calcSpinMapCoo(const Point3f& p, const Point3f& v, const Point3f& n)
{
/*Point3f PmV(p.x - v.x, p.y - v.y, p.z - v.z);
float normalNorm = (float)norm(n);
float beta = PmV.dot(n) / normalNorm;
float pmcNorm = (float)norm(PmV);
float alpha = sqrt( pmcNorm * pmcNorm - beta * beta);
return Point2f(alpha, beta);*/
float pmv_x = p.x - v.x, pmv_y = p.y - v.y, pmv_z = p.z - v.z;
float beta = (pmv_x * n.x + pmv_y + n.y + pmv_z * n.z) / sqrt(n.x * n.x + n.y * n.y + n.z * n.z);
float alpha = sqrt( pmv_x * pmv_x + pmv_y * pmv_y + pmv_z * pmv_z - beta * beta);
return Point2f(alpha, beta);
}
inline float cv::SpinImageModel::geometricConsistency(const Point3f& pointScene1, const Point3f& normalScene1,
const Point3f& pointModel1, const Point3f& normalModel1,
const Point3f& pointScene2, const Point3f& normalScene2,
const Point3f& pointModel2, const Point3f& normalModel2)
{
Point2f Sm2_to_m1, Ss2_to_s1;
Point2f Sm1_to_m2, Ss1_to_s2;
double n_Sm2_to_m1 = norm(Sm2_to_m1 = calcSpinMapCoo(pointModel2, pointModel1, normalModel1));
double n_Ss2_to_s1 = norm(Ss2_to_s1 = calcSpinMapCoo(pointScene2, pointScene1, normalScene1));
double gc21 = 2 * norm(Sm2_to_m1 - Ss2_to_s1) / (n_Sm2_to_m1 + n_Ss2_to_s1 ) ;
double n_Sm1_to_m2 = norm(Sm1_to_m2 = calcSpinMapCoo(pointModel1, pointModel2, normalModel2));
double n_Ss1_to_s2 = norm(Ss1_to_s2 = calcSpinMapCoo(pointScene1, pointScene2, normalScene2));
double gc12 = 2 * norm(Sm1_to_m2 - Ss1_to_s2) / (n_Sm1_to_m2 + n_Ss1_to_s2 ) ;
return (float)max(gc12, gc21);
}
inline float cv::SpinImageModel::groupingCreteria(const Point3f& pointScene1, const Point3f& normalScene1,
const Point3f& pointModel1, const Point3f& normalModel1,
const Point3f& pointScene2, const Point3f& normalScene2,
const Point3f& pointModel2, const Point3f& normalModel2,
float gamma)
{
Point2f Sm2_to_m1, Ss2_to_s1;
Point2f Sm1_to_m2, Ss1_to_s2;
float gamma05_inv = 0.5f/gamma;
double n_Sm2_to_m1 = norm(Sm2_to_m1 = calcSpinMapCoo(pointModel2, pointModel1, normalModel1));
double n_Ss2_to_s1 = norm(Ss2_to_s1 = calcSpinMapCoo(pointScene2, pointScene1, normalScene1));
double gc21 = 2 * norm(Sm2_to_m1 - Ss2_to_s1) / (n_Sm2_to_m1 + n_Ss2_to_s1 );
double wgc21 = gc21 / (1 - exp( -(n_Sm2_to_m1 + n_Ss2_to_s1) * gamma05_inv ) );
double n_Sm1_to_m2 = norm(Sm1_to_m2 = calcSpinMapCoo(pointModel1, pointModel2, normalModel2));
double n_Ss1_to_s2 = norm(Ss1_to_s2 = calcSpinMapCoo(pointScene1, pointScene2, normalScene2));
double gc12 = 2 * norm(Sm1_to_m2 - Ss1_to_s2) / (n_Sm1_to_m2 + n_Ss1_to_s2 );
double wgc12 = gc12 / (1 - exp( -(n_Sm1_to_m2 + n_Ss1_to_s2) * gamma05_inv ) );
return (float)max(wgc12, wgc21);
}
cv::SpinImageModel::SpinImageModel(const Mesh3D& _mesh) : mesh(_mesh) , out(0)
{
if (mesh.vtx.empty())
throw Mesh3D::EmptyMeshException();
defaultParams();
}
cv::SpinImageModel::SpinImageModel() : out(0) { defaultParams(); }
cv::SpinImageModel::~SpinImageModel() {}
void cv::SpinImageModel::setLogger(ostream* log) { out = log; }
void cv::SpinImageModel::defaultParams()
{
normalRadius = 0.f;
minNeighbors = 20;
binSize = 0.f; /* autodetect according to mesh resolution */
imageWidth = 32;
lambda = 0.f; /* autodetect according to medan non zero images bin */
gamma = 0.f; /* autodetect according to mesh resolution */
T_GeometriccConsistency = 0.25f;
T_GroupingCorespondances = 0.25f;
};
Mat cv::SpinImageModel::packRandomScaledSpins(bool separateScale, size_t xCount, size_t yCount) const
{
int spinNum = (int)getSpinCount();
int num = min(spinNum, (int)(xCount * yCount));
if (num == 0)
return Mat();
RNG& rng = theRNG();
vector<Mat> spins;
for(int i = 0; i < num; ++i)
spins.push_back(getSpinImage( rng.next() % spinNum ).reshape(1, imageWidth));
if (separateScale)
for(int i = 0; i < num; ++i)
{
double max;
Mat spin8u;
minMaxLoc(spins[i], 0, &max);
spins[i].convertTo(spin8u, CV_8U, -255.0/max, 255.0);
spins[i] = spin8u;
}
else
{
double totalMax = 0;
for(int i = 0; i < num; ++i)
{
double m;
minMaxLoc(spins[i], 0, &m);
totalMax = max(m, totalMax);
}
for(int i = 0; i < num; ++i)
{
Mat spin8u;
spins[i].convertTo(spin8u, CV_8U, -255.0/totalMax, 255.0);
spins[i] = spin8u;
}
}
int sz = spins.front().cols;
Mat result((int)(yCount * sz + (yCount - 1)), (int)(xCount * sz + (xCount - 1)), CV_8UC3);
result = colors[(static_cast<int64>(cvGetTickCount()/cvGetTickFrequency())/1000) % colors_mum];
int pos = 0;
for(int y = 0; y < (int)yCount; ++y)
for(int x = 0; x < (int)xCount; ++x)
if (pos < num)
{
int starty = (y + 0) * sz + y;
int endy = (y + 1) * sz + y;
int startx = (x + 0) * sz + x;
int endx = (x + 1) * sz + x;
Mat color;
cvtColor(spins[pos++], color, CV_GRAY2BGR);
Mat roi = result(Range(starty, endy), Range(startx, endx));
color.copyTo(roi);
}
return result;
}
void cv::SpinImageModel::selectRandomSubset(float ratio)
{
ratio = min(max(ratio, 0.f), 1.f);
size_t vtxSize = mesh.vtx.size();
size_t setSize = static_cast<size_t>(vtxSize * ratio);
if (setSize == 0)
{
subset.clear();
}
else if (setSize == vtxSize)
{
subset.resize(vtxSize);
iota(subset.begin(), subset.end(), 0);
}
else
{
RNG& rnd = theRNG();
vector<size_t> left(vtxSize);
iota(left.begin(), left.end(), (size_t)0);
subset.resize(setSize);
for(size_t i = 0; i < setSize; ++i)
{
int pos = rnd.next() % (int)left.size();
subset[i] = (int)left[pos];
left[pos] = left.back();
left.resize(left.size() - 1);
}
sort(subset, less<int>());
}
}
void cv::SpinImageModel::setSubset(const vector<int>& ss)
{
subset = ss;
}
void cv::SpinImageModel::repackSpinImages(const vector<uchar>& mask, Mat& _spinImages, bool reAlloc) const
{
if (reAlloc)
{
size_t spinCount = mask.size() - count(mask.begin(), mask.end(), (uchar)0);
Mat newImgs((int)spinCount, _spinImages.cols, _spinImages.type());
int pos = 0;
for(size_t t = 0; t < mask.size(); ++t)
if (mask[t])
{
Mat row = newImgs.row(pos++);
_spinImages.row((int)t).copyTo(row);
}
_spinImages = newImgs;
}
else
{
int last = (int)mask.size();
int dest = (int)(find(mask.begin(), mask.end(), (uchar)0) - mask.begin());
if (dest == last)
return;
int first = dest + 1;
for (; first != last; ++first)
if (mask[first] != 0)
{
Mat row = _spinImages.row(dest);
_spinImages.row(first).copyTo(row);
++dest;
}
_spinImages = _spinImages.rowRange(0, dest);
}
}
void cv::SpinImageModel::compute()
{
/* estimate binSize */
if (binSize == 0.f)
{
if (mesh.resolution == -1.f)
mesh.estimateResolution();
binSize = mesh.resolution;
}
/* estimate normalRadius */
normalRadius = normalRadius != 0.f ? normalRadius : binSize * imageWidth / 2;
mesh.buildOctree();
if (subset.empty())
{
mesh.computeNormals(normalRadius, minNeighbors);
subset.resize(mesh.vtx.size());
iota(subset.begin(), subset.end(), 0);
}
else
mesh.computeNormals(subset, normalRadius, minNeighbors);
vector<uchar> mask(mesh.vtx.size(), 0);
for(size_t i = 0; i < subset.size(); ++i)
if (mesh.normals[subset[i]] == Mesh3D::allzero)
subset[i] = -1;
else
mask[subset[i]] = 1;
subset.resize( remove(subset.begin(), subset.end(), -1) - subset.begin() );
vector<Point3f> vtx;
vector<Point3f> normals;
for(size_t i = 0; i < mask.size(); ++i)
if(mask[i])
{
vtx.push_back(mesh.vtx[i]);
normals.push_back(mesh.normals[i]);
}
vector<uchar> spinMask(vtx.size(), 1);
computeSpinImages( mesh.octree, vtx, normals, spinMask, spinImages, imageWidth, binSize);
repackSpinImages(spinMask, spinImages);
size_t mask_pos = 0;
for(size_t i = 0; i < mask.size(); ++i)
if(mask[i])
if (spinMask[mask_pos++] == 0)
subset.resize( remove(subset.begin(), subset.end(), (int)i) - subset.begin() );
}
void cv::SpinImageModel::matchSpinToModel(const Mat& spin, vector<int>& indeces, vector<float>& corrCoeffs, bool useExtremeOutliers) const
{
const SpinImageModel& model = *this;
indeces.clear();
corrCoeffs.clear();
vector<float> corrs(model.spinImages.rows);
vector<uchar> masks(model.spinImages.rows);
vector<float> cleanCorrs;
cleanCorrs.reserve(model.spinImages.rows);
for(int i = 0; i < model.spinImages.rows; ++i)
{
masks[i] = spinCorrelation(spin, model.spinImages.row(i), model.lambda, corrs[i]);
if (masks[i])
cleanCorrs.push_back(corrs[i]);
}
/* Filtering by measure histogram */
size_t total = cleanCorrs.size();
if(total < 5)
return;
sort(cleanCorrs, less<float>());
float lower_fourth = cleanCorrs[(1 * total) / 4 - 1];
float upper_fourth = cleanCorrs[(3 * total) / 4 - 0];
float fourth_spread = upper_fourth - lower_fourth;
//extreme or moderate?
float coef = useExtremeOutliers ? 3.0f : 1.5f;
float histThresHi = upper_fourth + coef * fourth_spread;
//float histThresLo = lower_fourth - coef * fourth_spread;
for(size_t i = 0; i < corrs.size(); ++i)
if (masks[i])
if (/* corrs[i] < histThresLo || */ corrs[i] > histThresHi)
{
indeces.push_back((int)i);
corrCoeffs.push_back(corrs[i]);
}
}
namespace
{
struct Match
{
int sceneInd;
int modelInd;
float measure;
Match(){}
Match(int sceneIndex, int modelIndex, float coeff) : sceneInd(sceneIndex), modelInd(modelIndex), measure(coeff) {}
operator float() const { return measure; }
};
typedef set<size_t> group_t;
typedef group_t::iterator iter;
typedef group_t::const_iterator citer;
struct WgcHelper
{
const group_t& grp;
const Mat& mat;
WgcHelper(const group_t& group, const Mat& groupingMat) : grp(group), mat(groupingMat){}
float operator()(size_t leftInd) const { return Wgc(leftInd, grp); }
/* Wgc( correspondence_C, group_{C1..Cn} ) = max_i=1..n_( Wgc(C, Ci) ) */
float Wgc(const size_t corespInd, const group_t& group) const
{
const float* wgcLine = mat.ptr<float>((int)corespInd);
float maximum = numeric_limits<float>::min();
for(citer pos = group.begin(); pos != group.end(); ++pos)
maximum = max(wgcLine[*pos], maximum);
return maximum;
}
private:
WgcHelper& operator=(const WgcHelper& helper);
};
}
void cv::SpinImageModel::match(const SpinImageModel& scene, vector< vector<Vec2i> >& result)
{
if (mesh.vtx.empty())
throw Mesh3D::EmptyMeshException();
result.clear();
SpinImageModel& model = *this;
const float infinity = numeric_limits<float>::infinity();
const float float_max = numeric_limits<float>::max();
/* estimate gamma */
if (model.gamma == 0.f)
{
if (model.mesh.resolution == -1.f)
model.mesh.estimateResolution();
model.gamma = 4 * model.mesh.resolution;
}
/* estimate lambda */
if (model.lambda == 0.f)
{
vector<int> nonzero(model.spinImages.rows);
for(int i = 0; i < model.spinImages.rows; ++i)
nonzero[i] = countNonZero(model.spinImages.row(i));
sort(nonzero, less<int>());
model.lambda = static_cast<float>( nonzero[ nonzero.size()/2 ] ) / 2;
}
TickMeter corr_timer;
corr_timer.start();
vector<Match> allMatches;
for(int i = 0; i < scene.spinImages.rows; ++i)
{
vector<int> indeces;
vector<float> coeffs;
matchSpinToModel(scene.spinImages.row(i), indeces, coeffs);
for(size_t t = 0; t < indeces.size(); ++t)
allMatches.push_back(Match(i, indeces[t], coeffs[t]));
if (out) if (i % 100 == 0) *out << "Comparing scene spinimage " << i << " of " << scene.spinImages.rows << endl;
}
corr_timer.stop();
if (out) *out << "Spin correlation time = " << corr_timer << endl;
if (out) *out << "Matches number = " << allMatches.size() << endl;
if(allMatches.empty())
return;
/* filtering by similarity measure */
const float fraction = 0.5f;
float maxMeasure = max_element(allMatches.begin(), allMatches.end(), less<float>())->measure;
allMatches.erase(
remove_if(allMatches.begin(), allMatches.end(), bind2nd(less<float>(), maxMeasure * fraction)),
allMatches.end());
if (out) *out << "Matches number [filtered by similarity measure] = " << allMatches.size() << endl;
int matchesSize = (int)allMatches.size();
if(matchesSize == 0)
return;
/* filtering by geometric consistency */
for(int i = 0; i < matchesSize; ++i)
{
int consistNum = 1;
float gc = float_max;
for(int j = 0; j < matchesSize; ++j)
if (i != j)
{
const Match& mi = allMatches[i];
const Match& mj = allMatches[j];
if (mi.sceneInd == mj.sceneInd || mi.modelInd == mj.modelInd)
gc = float_max;
else
{
const Point3f& pointSceneI = scene.getSpinVertex(mi.sceneInd);
const Point3f& normalSceneI = scene.getSpinNormal(mi.sceneInd);
const Point3f& pointModelI = model.getSpinVertex(mi.modelInd);
const Point3f& normalModelI = model.getSpinNormal(mi.modelInd);
const Point3f& pointSceneJ = scene.getSpinVertex(mj.sceneInd);
const Point3f& normalSceneJ = scene.getSpinNormal(mj.sceneInd);
const Point3f& pointModelJ = model.getSpinVertex(mj.modelInd);
const Point3f& normalModelJ = model.getSpinNormal(mj.modelInd);
gc = geometricConsistency(pointSceneI, normalSceneI, pointModelI, normalModelI,
pointSceneJ, normalSceneJ, pointModelJ, normalModelJ);
}
if (gc < model.T_GeometriccConsistency)
++consistNum;
}
if (consistNum < matchesSize / 4) /* failed consistensy test */
allMatches[i].measure = infinity;
}
allMatches.erase(
remove_if(allMatches.begin(), allMatches.end(), bind2nd(equal_to<float>(), infinity)),
allMatches.end());
if (out) *out << "Matches number [filtered by geometric consistency] = " << allMatches.size() << endl;
matchesSize = (int)allMatches.size();
if(matchesSize == 0)
return;
if (out) *out << "grouping ..." << endl;
Mat groupingMat((int)matchesSize, (int)matchesSize, CV_32F);
groupingMat = Scalar(0);
/* grouping */
for(int j = 0; j < matchesSize; ++j)
for(int i = j + 1; i < matchesSize; ++i)
{
const Match& mi = allMatches[i];
const Match& mj = allMatches[j];
if (mi.sceneInd == mj.sceneInd || mi.modelInd == mj.modelInd)
{
groupingMat.ptr<float>(i)[j] = float_max;
groupingMat.ptr<float>(j)[i] = float_max;
continue;
}
const Point3f& pointSceneI = scene.getSpinVertex(mi.sceneInd);
const Point3f& normalSceneI = scene.getSpinNormal(mi.sceneInd);
const Point3f& pointModelI = model.getSpinVertex(mi.modelInd);
const Point3f& normalModelI = model.getSpinNormal(mi.modelInd);
const Point3f& pointSceneJ = scene.getSpinVertex(mj.sceneInd);
const Point3f& normalSceneJ = scene.getSpinNormal(mj.sceneInd);
const Point3f& pointModelJ = model.getSpinVertex(mj.modelInd);
const Point3f& normalModelJ = model.getSpinNormal(mj.modelInd);
float wgc = groupingCreteria(pointSceneI, normalSceneI, pointModelI, normalModelI,
pointSceneJ, normalSceneJ, pointModelJ, normalModelJ,
model.gamma);
groupingMat.ptr<float>(i)[j] = wgc;
groupingMat.ptr<float>(j)[i] = wgc;
}
group_t allMatchesInds;
for(int i = 0; i < matchesSize; ++i)
allMatchesInds.insert(i);
vector<float> buf(matchesSize);
float *buf_beg = &buf[0];
vector<group_t> groups;
for(int g = 0; g < matchesSize; ++g)
{
if (out) if (g % 100 == 0) *out << "G = " << g << endl;
group_t left = allMatchesInds;
group_t group;
left.erase(g);
group.insert(g);
for(;;)
{
size_t left_size = left.size();
if (left_size == 0)
break;
std::transform(left.begin(), left.end(), buf_beg, WgcHelper(group, groupingMat));
size_t minInd = min_element(buf_beg, buf_beg + left_size) - buf_beg;
if (buf[minInd] < model.T_GroupingCorespondances) /* can add corespondance to group */
{
iter pos = left.begin();
advance(pos, minInd);
group.insert(*pos);
left.erase(pos);
}
else
break;
}
if (group.size() >= 4)
groups.push_back(group);
}
/* converting the data to final result */
for(size_t i = 0; i < groups.size(); ++i)
{
const group_t& group = groups[i];
vector< Vec2i > outgrp;
for(citer pos = group.begin(); pos != group.end(); ++pos)
{
const Match& m = allMatches[*pos];
outgrp.push_back(Vec2i(subset[m.modelInd], scene.subset[m.sceneInd]));
}
result.push_back(outgrp);
}
}
cv::TickMeter::TickMeter() { reset(); }
int64 cv::TickMeter::getTimeTicks() const { return sumTime; }
double cv::TickMeter::getTimeMicro() const { return (double)getTimeTicks()/cvGetTickFrequency(); }
double cv::TickMeter::getTimeMilli() const { return getTimeMicro()*1e-3; }
double cv::TickMeter::getTimeSec() const { return getTimeMilli()*1e-3; }
int64 cv::TickMeter::getCounter() const { return counter; }
void cv::TickMeter::reset() {startTime = 0; sumTime = 0; counter = 0; }
void cv::TickMeter::start(){ startTime = cvGetTickCount(); }
void cv::TickMeter::stop()
{
int64 time = cvGetTickCount();
if ( startTime == 0 )
return;
++counter;
sumTime += ( time - startTime );
startTime = 0;
}
std::ostream& cv::operator<<(std::ostream& out, const TickMeter& tm){ return out << tm.getTimeSec() << "sec"; }