1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include <iostream>
#include <limits>
#include "test_precomp.hpp"
#define CHECK(pred, err) if (!(pred)) { \
ts->printf(cvtest::TS::CONSOLE, "Fail: \"%s\" at line: %d\n", #pred, __LINE__); \
ts->set_failed_test_info(err); \
return; }
using namespace cv;
using namespace std;
struct CV_GpuBitwiseTest: public cvtest::BaseTest
{
CV_GpuBitwiseTest() {}
void run(int)
{
int rows, cols;
bool double_ok = gpu::TargetArchs::builtWith(gpu::NATIVE_DOUBLE) &&
gpu::DeviceInfo().supports(gpu::NATIVE_DOUBLE);
int depth_end = double_ok ? CV_64F : CV_32F;
for (int depth = CV_8U; depth <= depth_end; ++depth)
for (int cn = 1; cn <= 4; ++cn)
for (int attempt = 0; attempt < 3; ++attempt)
{
rows = 1 + rand() % 100;
cols = 1 + rand() % 100;
test_bitwise_not(rows, cols, CV_MAKETYPE(depth, cn));
test_bitwise_or(rows, cols, CV_MAKETYPE(depth, cn));
test_bitwise_and(rows, cols, CV_MAKETYPE(depth, cn));
test_bitwise_xor(rows, cols, CV_MAKETYPE(depth, cn));
}
}
void test_bitwise_not(int rows, int cols, int type)
{
Mat src(rows, cols, type);
RNG rng;
for (int i = 0; i < src.rows; ++i)
{
Mat row(1, src.cols * src.elemSize(), CV_8U, src.ptr(i));
rng.fill(row, RNG::UNIFORM, Scalar(0), Scalar(255));
}
Mat dst_gold = ~src;
gpu::GpuMat mask(src.size(), CV_8U);
mask.setTo(Scalar(1));
gpu::GpuMat dst;
gpu::bitwise_not(gpu::GpuMat(src), dst);
CHECK(dst_gold.size() == dst.size(), cvtest::TS::FAIL_INVALID_OUTPUT);
CHECK(dst_gold.type() == dst.type(), cvtest::TS::FAIL_INVALID_OUTPUT);
Mat dsth(dst);
for (int i = 0; i < dst_gold.rows; ++i)
CHECK(memcmp(dst_gold.ptr(i), dsth.ptr(i), dst_gold.cols * dst_gold.elemSize()) == 0, cvtest::TS::FAIL_INVALID_OUTPUT);
dst.setTo(Scalar::all(0));
gpu::bitwise_not(gpu::GpuMat(src), dst, mask);
CHECK(dst_gold.size() == dst.size(), cvtest::TS::FAIL_INVALID_OUTPUT);
CHECK(dst_gold.type() == dst.type(), cvtest::TS::FAIL_INVALID_OUTPUT);
dsth = dst;
for (int i = 0; i < dst_gold.rows; ++i)
CHECK(memcmp(dst_gold.ptr(i), dsth.ptr(i), dst_gold.cols * dst_gold.elemSize()) == 0, cvtest::TS::FAIL_INVALID_OUTPUT)
}
void test_bitwise_or(int rows, int cols, int type)
{
Mat src1(rows, cols, type);
Mat src2(rows, cols, type);
RNG rng;
for (int i = 0; i < src1.rows; ++i)
{
Mat row1(1, src1.cols * src1.elemSize(), CV_8U, src1.ptr(i));
rng.fill(row1, RNG::UNIFORM, Scalar(0), Scalar(255));
Mat row2(1, src2.cols * src2.elemSize(), CV_8U, src2.ptr(i));
rng.fill(row2, RNG::UNIFORM, Scalar(0), Scalar(255));
}
Mat dst_gold = src1 | src2;
gpu::GpuMat dst = gpu::GpuMat(src1) | gpu::GpuMat(src2);
CHECK(dst_gold.size() == dst.size(), cvtest::TS::FAIL_INVALID_OUTPUT);
CHECK(dst_gold.type() == dst.type(), cvtest::TS::FAIL_INVALID_OUTPUT);
Mat dsth(dst);
for (int i = 0; i < dst_gold.rows; ++i)
CHECK(memcmp(dst_gold.ptr(i), dsth.ptr(i), dst_gold.cols * dst_gold.elemSize()) == 0, cvtest::TS::FAIL_INVALID_OUTPUT)
Mat mask(src1.size(), CV_8U);
randu(mask, Scalar(0), Scalar(255));
Mat dst_gold2(dst_gold.size(), dst_gold.type()); dst_gold2.setTo(Scalar::all(0));
gpu::GpuMat dst2(dst.size(), dst.type()); dst2.setTo(Scalar::all(0));
bitwise_or(src1, src2, dst_gold2, mask);
gpu::bitwise_or(gpu::GpuMat(src1), gpu::GpuMat(src2), dst2, gpu::GpuMat(mask));
CHECK(dst_gold2.size() == dst2.size(), cvtest::TS::FAIL_INVALID_OUTPUT);
CHECK(dst_gold2.type() == dst2.type(), cvtest::TS::FAIL_INVALID_OUTPUT);
dsth = dst2;
for (int i = 0; i < dst_gold.rows; ++i)
CHECK(memcmp(dst_gold2.ptr(i), dsth.ptr(i), dst_gold2.cols * dst_gold2.elemSize()) == 0, cvtest::TS::FAIL_INVALID_OUTPUT)
}
void test_bitwise_and(int rows, int cols, int type)
{
Mat src1(rows, cols, type);
Mat src2(rows, cols, type);
RNG rng;
for (int i = 0; i < src1.rows; ++i)
{
Mat row1(1, src1.cols * src1.elemSize(), CV_8U, src1.ptr(i));
rng.fill(row1, RNG::UNIFORM, Scalar(0), Scalar(255));
Mat row2(1, src2.cols * src2.elemSize(), CV_8U, src2.ptr(i));
rng.fill(row2, RNG::UNIFORM, Scalar(0), Scalar(255));
}
Mat dst_gold = src1 & src2;
gpu::GpuMat dst = gpu::GpuMat(src1) & gpu::GpuMat(src2);
CHECK(dst_gold.size() == dst.size(), cvtest::TS::FAIL_INVALID_OUTPUT);
CHECK(dst_gold.type() == dst.type(), cvtest::TS::FAIL_INVALID_OUTPUT);
Mat dsth(dst);
for (int i = 0; i < dst_gold.rows; ++i)
CHECK(memcmp(dst_gold.ptr(i), dsth.ptr(i), dst_gold.cols * dst_gold.elemSize()) == 0, cvtest::TS::FAIL_INVALID_OUTPUT)
Mat mask(src1.size(), CV_8U);
randu(mask, Scalar(0), Scalar(255));
Mat dst_gold2(dst_gold.size(), dst_gold.type()); dst_gold2.setTo(Scalar::all(0));
gpu::GpuMat dst2(dst.size(), dst.type()); dst2.setTo(Scalar::all(0));
bitwise_and(src1, src2, dst_gold2, mask);
gpu::bitwise_and(gpu::GpuMat(src1), gpu::GpuMat(src2), dst2, gpu::GpuMat(mask));
CHECK(dst_gold2.size() == dst2.size(), cvtest::TS::FAIL_INVALID_OUTPUT);
CHECK(dst_gold2.type() == dst2.type(), cvtest::TS::FAIL_INVALID_OUTPUT);
dsth = dst2;
for (int i = 0; i < dst_gold.rows; ++i)
CHECK(memcmp(dst_gold2.ptr(i), dsth.ptr(i), dst_gold2.cols * dst_gold2.elemSize()) == 0, cvtest::TS::FAIL_INVALID_OUTPUT)
}
void test_bitwise_xor(int rows, int cols, int type)
{
Mat src1(rows, cols, type);
Mat src2(rows, cols, type);
RNG rng;
for (int i = 0; i < src1.rows; ++i)
{
Mat row1(1, src1.cols * src1.elemSize(), CV_8U, src1.ptr(i));
rng.fill(row1, RNG::UNIFORM, Scalar(0), Scalar(255));
Mat row2(1, src2.cols * src2.elemSize(), CV_8U, src2.ptr(i));
rng.fill(row2, RNG::UNIFORM, Scalar(0), Scalar(255));
}
Mat dst_gold = src1 ^ src2;
gpu::GpuMat dst = gpu::GpuMat(src1) ^ gpu::GpuMat(src2);
CHECK(dst_gold.size() == dst.size(), cvtest::TS::FAIL_INVALID_OUTPUT);
CHECK(dst_gold.type() == dst.type(), cvtest::TS::FAIL_INVALID_OUTPUT);
Mat dsth(dst);
for (int i = 0; i < dst_gold.rows; ++i)
CHECK(memcmp(dst_gold.ptr(i), dsth.ptr(i), dst_gold.cols * dst_gold.elemSize()) == 0, cvtest::TS::FAIL_INVALID_OUTPUT)
Mat mask(src1.size(), CV_8U);
randu(mask, Scalar(0), Scalar(255));
Mat dst_gold2(dst_gold.size(), dst_gold.type()); dst_gold2.setTo(Scalar::all(0));
gpu::GpuMat dst2(dst.size(), dst.type()); dst2.setTo(Scalar::all(0));
bitwise_xor(src1, src2, dst_gold2, mask);
gpu::bitwise_xor(gpu::GpuMat(src1), gpu::GpuMat(src2), dst2, gpu::GpuMat(mask));
CHECK(dst_gold2.size() == dst2.size(), cvtest::TS::FAIL_INVALID_OUTPUT);
CHECK(dst_gold2.type() == dst2.type(), cvtest::TS::FAIL_INVALID_OUTPUT);
dsth = dst2;
for (int i = 0; i < dst_gold.rows; ++i)
CHECK(memcmp(dst_gold2.ptr(i), dsth.ptr(i), dst_gold2.cols * dst_gold2.elemSize()) == 0, cvtest::TS::FAIL_INVALID_OUTPUT)
}
};
TEST(BitwiseOperations, accuracy) { CV_GpuBitwiseTest test; test.safe_run(); }