test_backends.cpp 17.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2019, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.

#include "test_precomp.hpp"
#include "opencv2/core/ocl.hpp"

namespace opencv_test { namespace {

class DNNTestNetwork : public DNNTestLayer
{
public:
    void processNet(const std::string& weights, const std::string& proto,
                    Size inpSize, const std::string& outputLayer = "",
                    const std::string& halideScheduler = "",
                    double l1 = 0.0, double lInf = 0.0)
    {
        // Create a common input blob.
        int blobSize[] = {1, 3, inpSize.height, inpSize.width};
        Mat inp(4, blobSize, CV_32FC1);
        randu(inp, 0.0f, 1.0f);

        processNet(weights, proto, inp, outputLayer, halideScheduler, l1, lInf);
    }

    void processNet(std::string weights, std::string proto,
                    Mat inp, const std::string& outputLayer = "",
                    std::string halideScheduler = "",
                    double l1 = 0.0, double lInf = 0.0, double detectionConfThresh = 0.2)
    {
        checkBackend();
        l1 = l1 ? l1 : default_l1;
        lInf = lInf ? lInf : default_lInf;

        weights = findDataFile(weights, false);
        if (!proto.empty())
            proto = findDataFile(proto, false);

        // Create two networks - with default backend and target and a tested one.
        Net netDefault = readNet(weights, proto);
        netDefault.setPreferableBackend(DNN_BACKEND_OPENCV);
        netDefault.setInput(inp);
        Mat outDefault = netDefault.forward(outputLayer).clone();

        net = readNet(weights, proto);
        net.setInput(inp);
        net.setPreferableBackend(backend);
        net.setPreferableTarget(target);
        if (backend == DNN_BACKEND_HALIDE && !halideScheduler.empty())
        {
            halideScheduler = findDataFile(halideScheduler, false);
            net.setHalideScheduler(halideScheduler);
        }
        Mat out = net.forward(outputLayer).clone();

        check(outDefault, out, outputLayer, l1, lInf, detectionConfThresh, "First run");

        // Test 2: change input.
        float* inpData = (float*)inp.data;
        for (int i = 0; i < inp.size[0] * inp.size[1]; ++i)
        {
            Mat slice(inp.size[2], inp.size[3], CV_32F, inpData);
            cv::flip(slice, slice, 1);
            inpData += slice.total();
        }
        netDefault.setInput(inp);
        net.setInput(inp);
        outDefault = netDefault.forward(outputLayer).clone();
        out = net.forward(outputLayer).clone();
        check(outDefault, out, outputLayer, l1, lInf, detectionConfThresh, "Second run");
    }

    void check(Mat& ref, Mat& out, const std::string& outputLayer, double l1, double lInf,
               double detectionConfThresh, const char* msg)
    {
        if (outputLayer == "detection_out")
        {
            if (backend == DNN_BACKEND_INFERENCE_ENGINE)
            {
                // Inference Engine produces detections terminated by a row which starts from -1.
                out = out.reshape(1, out.total() / 7);
                int numDetections = 0;
                while (numDetections < out.rows && out.at<float>(numDetections, 0) != -1)
                {
                    numDetections += 1;
                }
                out = out.rowRange(0, numDetections);
            }
            normAssertDetections(ref, out, msg, detectionConfThresh, l1, lInf);
        }
        else
            normAssert(ref, out, msg, l1, lInf);
    }

    Net net;
};

TEST_P(DNNTestNetwork, AlexNet)
{
    applyTestTag(CV_TEST_TAG_MEMORY_1GB);
    processNet("dnn/bvlc_alexnet.caffemodel", "dnn/bvlc_alexnet.prototxt",
               Size(227, 227), "prob",
               target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_alexnet.yml" :
                                             "dnn/halide_scheduler_alexnet.yml");
    expectNoFallbacksFromIE(net);
}

TEST_P(DNNTestNetwork, ResNet_50)
{
    applyTestTag(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB);
    processNet("dnn/ResNet-50-model.caffemodel", "dnn/ResNet-50-deploy.prototxt",
               Size(224, 224), "prob",
               target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_resnet_50.yml" :
                                             "dnn/halide_scheduler_resnet_50.yml");
    expectNoFallbacksFromIE(net);
}

TEST_P(DNNTestNetwork, SqueezeNet_v1_1)
{
    processNet("dnn/squeezenet_v1.1.caffemodel", "dnn/squeezenet_v1.1.prototxt",
               Size(227, 227), "prob",
               target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_squeezenet_v1_1.yml" :
                                             "dnn/halide_scheduler_squeezenet_v1_1.yml");
    expectNoFallbacksFromIE(net);
}

TEST_P(DNNTestNetwork, GoogLeNet)
{
    applyTestTag(target == DNN_TARGET_CPU ? "" : CV_TEST_TAG_MEMORY_512MB);
    processNet("dnn/bvlc_googlenet.caffemodel", "dnn/bvlc_googlenet.prototxt",
               Size(224, 224), "prob");
    expectNoFallbacksFromIE(net);
}

TEST_P(DNNTestNetwork, Inception_5h)
{
    applyTestTag(CV_TEST_TAG_MEMORY_512MB);
    double l1 = default_l1, lInf = default_lInf;
    if (backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_CPU || target == DNN_TARGET_OPENCL))
    {
        l1 = 1.72e-5;
        lInf = 8e-4;
    }
    processNet("dnn/tensorflow_inception_graph.pb", "", Size(224, 224), "softmax2",
               target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_inception_5h.yml" :
                                             "dnn/halide_scheduler_inception_5h.yml",
               l1, lInf);
    expectNoFallbacksFromIE(net);
}

TEST_P(DNNTestNetwork, ENet)
{
    applyTestTag(target == DNN_TARGET_CPU ? "" : CV_TEST_TAG_MEMORY_512MB);
    if ((backend == DNN_BACKEND_INFERENCE_ENGINE) ||
        (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16))
        throw SkipTestException("");
    processNet("dnn/Enet-model-best.net", "", Size(512, 512), "l367_Deconvolution",
               target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_enet.yml" :
                                             "dnn/halide_scheduler_enet.yml",
               2e-5, 0.15);
}

TEST_P(DNNTestNetwork, MobileNet_SSD_Caffe)
{
    applyTestTag(CV_TEST_TAG_MEMORY_512MB);
    if (backend == DNN_BACKEND_HALIDE)
        throw SkipTestException("");
    Mat sample = imread(findDataFile("dnn/street.png", false));
    Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false);
    float diffScores = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 1.5e-2 : 0.0;
    float diffSquares = (target == DNN_TARGET_MYRIAD) ? 0.063  : 0.0;
    float detectionConfThresh = (target == DNN_TARGET_MYRIAD) ? 0.252  : 0.0;
         processNet("dnn/MobileNetSSD_deploy.caffemodel", "dnn/MobileNetSSD_deploy.prototxt",
                    inp, "detection_out", "", diffScores, diffSquares, detectionConfThresh);
    expectNoFallbacksFromIE(net);
}

TEST_P(DNNTestNetwork, MobileNet_SSD_Caffe_Different_Width_Height)
{
    if (backend == DNN_BACKEND_HALIDE)
        throw SkipTestException("");
#if defined(INF_ENGINE_RELEASE)
    if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
            && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
        throw SkipTestException("Test is disabled for MyriadX");
#endif
    Mat sample = imread(findDataFile("dnn/street.png", false));
    Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 560), Scalar(127.5, 127.5, 127.5), false);
    float diffScores  = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.029 : 0.0;
    float diffSquares = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.09  : 0.0;
    processNet("dnn/MobileNetSSD_deploy.caffemodel", "dnn/MobileNetSSD_deploy.prototxt",
                inp, "detection_out", "", diffScores, diffSquares);
    expectNoFallbacksFromIE(net);
}

TEST_P(DNNTestNetwork, MobileNet_SSD_v1_TensorFlow)
{
    applyTestTag(target == DNN_TARGET_CPU ? "" : CV_TEST_TAG_MEMORY_512MB);
    if (backend == DNN_BACKEND_HALIDE)
        throw SkipTestException("");
    Mat sample = imread(findDataFile("dnn/street.png", false));
    Mat inp = blobFromImage(sample, 1.0f, Size(300, 300), Scalar(), false);
    float l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.095 : 0.0;
    float lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.09 : 0.0;
    float detectionConfThresh = (target == DNN_TARGET_MYRIAD) ? 0.216 : 0.2;
    processNet("dnn/ssd_mobilenet_v1_coco_2017_11_17.pb", "dnn/ssd_mobilenet_v1_coco_2017_11_17.pbtxt",
               inp, "detection_out", "", l1, lInf, detectionConfThresh);
    expectNoFallbacksFromIE(net);
}

TEST_P(DNNTestNetwork, MobileNet_SSD_v1_TensorFlow_Different_Width_Height)
{
    if (backend == DNN_BACKEND_HALIDE)
        throw SkipTestException("");
#if defined(INF_ENGINE_RELEASE)
    if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
            && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
        throw SkipTestException("Test is disabled for MyriadX");
#endif
    Mat sample = imread(findDataFile("dnn/street.png", false));
    Mat inp = blobFromImage(sample, 1.0f, Size(300, 560), Scalar(), false);
    float l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.012 : 0.0;
    float lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.06 : 0.0;
    processNet("dnn/ssd_mobilenet_v1_coco_2017_11_17.pb", "dnn/ssd_mobilenet_v1_coco_2017_11_17.pbtxt",
               inp, "detection_out", "", l1, lInf);
    expectNoFallbacksFromIE(net);
}

TEST_P(DNNTestNetwork, MobileNet_SSD_v2_TensorFlow)
{
    applyTestTag(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB);
    if (backend == DNN_BACKEND_HALIDE)
        throw SkipTestException("");
    Mat sample = imread(findDataFile("dnn/street.png", false));
    Mat inp = blobFromImage(sample, 1.0f, Size(300, 300), Scalar(), false);
    float l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.013 : 2e-5;
    float lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.062 : 0.0;
    processNet("dnn/ssd_mobilenet_v2_coco_2018_03_29.pb", "dnn/ssd_mobilenet_v2_coco_2018_03_29.pbtxt",
               inp, "detection_out", "", l1, lInf, 0.25);
    expectNoFallbacksFromIE(net);
}

TEST_P(DNNTestNetwork, SSD_VGG16)
{
    applyTestTag(CV_TEST_TAG_LONG, (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB),
                 CV_TEST_TAG_DEBUG_VERYLONG);
    if (backend == DNN_BACKEND_HALIDE && target == DNN_TARGET_CPU)
        throw SkipTestException("");
    double scoreThreshold = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.0325 : 0.0;
    const float lInf = (target == DNN_TARGET_MYRIAD) ? 0.032 : 0.0;
    Mat sample = imread(findDataFile("dnn/street.png", false));
    Mat inp = blobFromImage(sample, 1.0f, Size(300, 300), Scalar(), false);
    processNet("dnn/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel",
               "dnn/ssd_vgg16.prototxt", inp, "detection_out", "", scoreThreshold, lInf);
    expectNoFallbacksFromIE(net);
}

TEST_P(DNNTestNetwork, OpenPose_pose_coco)
{
    applyTestTag(CV_TEST_TAG_LONG, (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB),
                 CV_TEST_TAG_DEBUG_VERYLONG);
    if (backend == DNN_BACKEND_HALIDE)
        throw SkipTestException("");
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000)
    if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
            && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
        throw SkipTestException("Test is disabled for OpenVINO <= 2018R5 + MyriadX target");
#endif

    const float l1 = (target == DNN_TARGET_MYRIAD) ? 0.0056 : 0.0;
    const float lInf = (target == DNN_TARGET_MYRIAD) ? 0.072 : 0.0;
    processNet("dnn/openpose_pose_coco.caffemodel", "dnn/openpose_pose_coco.prototxt",
               Size(46, 46), "", "", l1, lInf);
    expectNoFallbacksFromIE(net);
}

TEST_P(DNNTestNetwork, OpenPose_pose_mpi)
{
    applyTestTag(CV_TEST_TAG_LONG, (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB),
                 CV_TEST_TAG_DEBUG_VERYLONG);
    if (backend == DNN_BACKEND_HALIDE)
        throw SkipTestException("");
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000)
    if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
            && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
        throw SkipTestException("Test is disabled for OpenVINO <= 2018R5 + MyriadX target");
#endif
    // output range: [-0.001, 0.97]
    const float l1 = (target == DNN_TARGET_MYRIAD) ? 0.012 : 0.0;
    const float lInf = (target == DNN_TARGET_MYRIAD || target == DNN_TARGET_OPENCL_FP16) ? 0.16 : 0.0;
    processNet("dnn/openpose_pose_mpi.caffemodel", "dnn/openpose_pose_mpi.prototxt",
               Size(46, 46), "", "", l1, lInf);
    expectNoFallbacksFromIE(net);
}

TEST_P(DNNTestNetwork, OpenPose_pose_mpi_faster_4_stages)
{
    applyTestTag(CV_TEST_TAG_LONG, CV_TEST_TAG_MEMORY_1GB);
    if (backend == DNN_BACKEND_HALIDE)
        throw SkipTestException("");
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000)
    if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
            && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
        throw SkipTestException("Test is disabled for OpenVINO <= 2018R5 + MyriadX target");
#endif
    // The same .caffemodel but modified .prototxt
    // See https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/pose/poseParameters.cpp
    processNet("dnn/openpose_pose_mpi.caffemodel", "dnn/openpose_pose_mpi_faster_4_stages.prototxt",
               Size(46, 46));
    expectNoFallbacksFromIE(net);
}

TEST_P(DNNTestNetwork, OpenFace)
{
#if defined(INF_ENGINE_RELEASE)
#if INF_ENGINE_VER_MAJOR_EQ(2018050000)
    if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
        throw SkipTestException("Test is disabled for Myriad targets");
#elif INF_ENGINE_VER_MAJOR_EQ(2018030000)
    if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16)
        throw SkipTestException("Test has been fixed in OpenVINO 2018R4");
#endif
#endif
    if (backend == DNN_BACKEND_HALIDE)
        throw SkipTestException("");
    const float l1 = (target == DNN_TARGET_MYRIAD) ? 0.0024 : 0.0;
    const float lInf = (target == DNN_TARGET_MYRIAD) ? 0.0071 : 0.0;
    processNet("dnn/openface_nn4.small2.v1.t7", "", Size(96, 96), "", "", l1, lInf);
}

TEST_P(DNNTestNetwork, opencv_face_detector)
{
    if (backend == DNN_BACKEND_HALIDE)
        throw SkipTestException("");
    Mat img = imread(findDataFile("gpu/lbpcascade/er.png", false));
    Mat inp = blobFromImage(img, 1.0, Size(), Scalar(104.0, 177.0, 123.0), false, false);
    processNet("dnn/opencv_face_detector.caffemodel", "dnn/opencv_face_detector.prototxt",
               inp, "detection_out");
    expectNoFallbacksFromIE(net);
}

TEST_P(DNNTestNetwork, Inception_v2_SSD_TensorFlow)
{
    applyTestTag(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB);
#if defined(INF_ENGINE_RELEASE)
    if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
            && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
        throw SkipTestException("Test is disabled for MyriadX");
#endif
    if (backend == DNN_BACKEND_HALIDE)
        throw SkipTestException("");
    Mat sample = imread(findDataFile("dnn/street.png", false));
    Mat inp = blobFromImage(sample, 1.0f, Size(300, 300), Scalar(), false);
    float l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.015 : 0.0;
    float lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.0731 : 0.0;
    processNet("dnn/ssd_inception_v2_coco_2017_11_17.pb", "dnn/ssd_inception_v2_coco_2017_11_17.pbtxt",
               inp, "detection_out", "", l1, lInf);
    expectNoFallbacksFromIE(net);
}

TEST_P(DNNTestNetwork, DenseNet_121)
{
    applyTestTag(CV_TEST_TAG_MEMORY_512MB);
    if (backend == DNN_BACKEND_HALIDE)
        throw SkipTestException("");
    // Reference output values are in range [-3.807, 4.605]
    float l1 = 0.0, lInf = 0.0;
    if (target == DNN_TARGET_OPENCL_FP16)
    {
        l1 = 9e-3; lInf = 5e-2;
    }
    else if (target == DNN_TARGET_MYRIAD)
    {
        l1 = 0.1; lInf = 0.6;
    }
    processNet("dnn/DenseNet_121.caffemodel", "dnn/DenseNet_121.prototxt", Size(224, 224), "", "", l1, lInf);
    expectNoFallbacksFromIE(net);
}

TEST_P(DNNTestNetwork, FastNeuralStyle_eccv16)
{
    if (backend == DNN_BACKEND_HALIDE ||
        (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD))
        throw SkipTestException("");

#if defined(INF_ENGINE_RELEASE)
#if INF_ENGINE_RELEASE <= 2018050000
    if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL)
        throw SkipTestException("");
#endif
#endif

    Mat img = imread(findDataFile("dnn/googlenet_1.png", false));
    Mat inp = blobFromImage(img, 1.0, Size(320, 240), Scalar(103.939, 116.779, 123.68), false, false);
    // Output image has values in range [-143.526, 148.539].
    float l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.3 : 4e-5;
    float lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 7.28 : 2e-3;
    processNet("dnn/fast_neural_style_eccv16_starry_night.t7", "", inp, "", "", l1, lInf);
}

INSTANTIATE_TEST_CASE_P(/*nothing*/, DNNTestNetwork, dnnBackendsAndTargets(true, true, false));

}} // namespace