1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
/*#******************************************************************************
** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
**
** By downloading, copying, installing or using the software you agree to this license.
** If you do not agree to this license, do not download, install,
** copy or use the software.
**
**
** HVStools : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab.
** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping.
**
** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications)
**
** Creation - enhancement process 2007-2011
** Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France
**
** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr).
** Refer to the following research paper for more information:
** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book:
** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
**
** The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author :
** _take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper:
** ====> B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007
** _take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions.
** ====> more informations in the above cited Jeanny Heraults's book.
**
** License Agreement
** For Open Source Computer Vision Library
**
** Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
**
** For Human Visual System tools (hvstools)
** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved.
**
** Third party copyrights are property of their respective owners.
**
** Redistribution and use in source and binary forms, with or without modification,
** are permitted provided that the following conditions are met:
**
** * Redistributions of source code must retain the above copyright notice,
** this list of conditions and the following disclaimer.
**
** * Redistributions in binary form must reproduce the above copyright notice,
** this list of conditions and the following disclaimer in the documentation
** and/or other materials provided with the distribution.
**
** * The name of the copyright holders may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** This software is provided by the copyright holders and contributors "as is" and
** any express or implied warranties, including, but not limited to, the implied
** warranties of merchantability and fitness for a particular purpose are disclaimed.
** In no event shall the Intel Corporation or contributors be liable for any direct,
** indirect, incidental, special, exemplary, or consequential damages
** (including, but not limited to, procurement of substitute goods or services;
** loss of use, data, or profits; or business interruption) however caused
** and on any theory of liability, whether in contract, strict liability,
** or tort (including negligence or otherwise) arising in any way out of
** the use of this software, even if advised of the possibility of such damage.
*******************************************************************************/
#ifndef BASICRETINAELEMENT_HPP_
#define BASICRETINAELEMENT_HPP_
#include <cstring>
/**
* @class BasicRetinaFilter
* @brief Brief overview, this class provides tools for low level image processing:
* --> this class is able to perform:
* -> first order Low pass optimized filtering
* -> local luminance adaptation (able to correct back light problems and contrast enhancement)
* -> progressive low pass filter filtering (higher filtering on the borders than on the center)
* -> image data between 0 and 255 resampling with different options, linear rescaling, sigmoide)
*
* NOTE : initially the retina model was based on double format scalar values but
* a good memory/precision compromise is float...
* also the double format precision does not make so much sense from a biological point of view (neurons value coding is not so precise)
*
* TYPICAL USE:
*
* // create object at a specified picture size
* BasicRetinaFilter *_photoreceptorsPrefilter;
* _photoreceptorsPrefilter =new BasicRetinaFilter(sizeRows, sizeWindows);
*
* // init gain, spatial and temporal parameters:
* _photoreceptorsPrefilter->setCoefficientsTable(gain,temporalConstant, spatialConstant);
*
* // during program execution, call the filter for local luminance correction or low pass filtering for an input picture called "FrameBuffer":
* _photoreceptorsPrefilter->runFilter_LocalAdapdation(FrameBuffer);
* // or (Low pass first order filter)
* _photoreceptorsPrefilter->runFilter_LPfilter(FrameBuffer);
* // get output frame and its size:
* const unsigned int output_nbRows=_photoreceptorsPrefilter->getNBrows();
* const unsigned int output_nbColumns=_photoreceptorsPrefilter->getNBcolumns();
* const double *outputFrame=_photoreceptorsPrefilter->getOutput();
*
* // at the end of the program, destroy object:
* delete _photoreceptorsPrefilter;
* @author Alexandre BENOIT, benoit.alexandre.vision@gmail.com, LISTIC : www.listic.univ-savoie.fr, Gipsa-Lab, France: www.gipsa-lab.inpg.fr/
* Creation date 2007
* synthesis of the work described in Alexandre BENOIT thesis: "Le systeme visuel humain au secours de la vision par ordinateur"
*/
#include <iostream>
#include "templatebuffer.hpp"
//#define __BASIC_RETINA_ELEMENT_DEBUG
namespace cv
{
class BasicRetinaFilter
{
public:
/**
* constructor of the base bio-inspired toolbox, parameters are only linked to imae input size and number of filtering capabilities of the object
* @param NBrows: number of rows of the input image
* @param NBcolumns: number of columns of the input image
* @param parametersListSize: specifies the number of parameters set (each parameters set represents a specific low pass spatio-temporal filter)
* @param useProgressiveFilter: specifies if the filter has irreguar (progressive) filtering capabilities (this can be activated later using setProgressiveFilterConstants_xxx methods)
*/
BasicRetinaFilter(const unsigned int NBrows, const unsigned int NBcolumns, const unsigned int parametersListSize=1, const bool useProgressiveFilter=false);
/**
* standrad destructore
*/
~BasicRetinaFilter();
/**
* function which clears the output buffer of the object
*/
inline void clearOutputBuffer(){_filterOutput=0;};
/**
* function which clears the secondary buffer of the object
*/
inline void clearSecondaryBuffer(){_localBuffer=0;};
/**
* function which clears the output and the secondary buffer of the object
*/
inline void clearAllBuffers(){clearOutputBuffer();clearSecondaryBuffer();};
/**
* resize basic retina filter object (resize all allocated buffers
* @param NBrows: the new height size
* @param NBcolumns: the new width size
*/
void resize(const unsigned int NBrows, const unsigned int NBcolumns);
/**
* forbiden method inherited from parent std::valarray
* prefer not to use this method since the filter matrix become vectors
*/
void resize(const unsigned int){std::cerr<<"error, not accessible method"<<std::endl;};
/**
* low pass filter call and run (models the homogeneous cells network at the retina level, for example horizontal cells or photoreceptors)
* @param inputFrame: the input image to be processed
* @param filterIndex: the offset which specifies the parameter set that should be used for the filtering
* @return the processed image, the output is reachable later by using function getOutput()
*/
const std::valarray<float> &runFilter_LPfilter(const std::valarray<float> &inputFrame, const unsigned int filterIndex=0); // run the LP filter for a new frame input and save result in _filterOutput
/**
* low pass filter call and run (models the homogeneous cells network at the retina level, for example horizontal cells or photoreceptors)
* @param inputFrame: the input image to be processed
* @param outputFrame: the output buffer in which the result is writed
* @param filterIndex: the offset which specifies the parameter set that should be used for the filtering
*/
void runFilter_LPfilter(const std::valarray<float> &inputFrame, std::valarray<float> &outputFrame, const unsigned int filterIndex=0); // run LP filter on a specific output adress
/**
* low pass filter call and run (models the homogeneous cells network at the retina level, for example horizontal cells or photoreceptors)
* @param inputOutputFrame: the input image to be processed on which the result is rewrited
* @param filterIndex: the offset which specifies the parameter set that should be used for the filtering
*/
void runFilter_LPfilter_Autonomous(std::valarray<float> &inputOutputFrame, const unsigned int filterIndex=0);// run LP filter on the input data and rewrite it
/**
* local luminance adaptation call and run (contrast enhancement property of the photoreceptors)
* @param inputOutputFrame: the input image to be processed
* @param localLuminance: an image which represents the local luminance of the inputFrame parameter, in general, it is its low pass spatial filtering
* @return the processed image, the output is reachable later by using function getOutput()
*/
const std::valarray<float> &runFilter_LocalAdapdation(const std::valarray<float> &inputOutputFrame, const std::valarray<float> &localLuminance);// run local adaptation filter and save result in _filterOutput
/**
* local luminance adaptation call and run (contrast enhancement property of the photoreceptors)
* @param inputFrame: the input image to be processed
* @param localLuminance: an image which represents the local luminance of the inputFrame parameter, in general, it is its low pass spatial filtering
* @param outputFrame: the output buffer in which the result is writed
*/
void runFilter_LocalAdapdation(const std::valarray<float> &inputFrame, const std::valarray<float> &localLuminance, std::valarray<float> &outputFrame); // run local adaptation filter on a specific output adress
/**
* local luminance adaptation call and run (contrast enhancement property of the photoreceptors)
* @param inputFrame: the input image to be processed
* @return the processed image, the output is reachable later by using function getOutput()
*/
const std::valarray<float> &runFilter_LocalAdapdation_autonomous(const std::valarray<float> &inputFrame);// run local adaptation filter and save result in _filterOutput
/**
* local luminance adaptation call and run (contrast enhancement property of the photoreceptors)
* @param inputFrame: the input image to be processed
* @param outputFrame: the output buffer in which the result is writen
*/
void runFilter_LocalAdapdation_autonomous(const std::valarray<float> &inputFrame, std::valarray<float> &outputFrame); // run local adaptation filter on a specific output adress
/**
* run low pass filtering with progressive parameters (models the retina log sampling of the photoreceptors and its low pass filtering effect consequence: more powerfull low pass filtering effect on the corners)
* @param inputFrame: the input image to be processed
* @param filterIndex: the index which specifies the parameter set that should be used for the filtering
* @return the processed image, the output is reachable later by using function getOutput() if outputFrame is NULL
*/
inline void runProgressiveFilter(std::valarray<float> &inputFrame, const unsigned int filterIndex=0){_spatiotemporalLPfilter_Irregular(&inputFrame[0], filterIndex);};
/**
* run low pass filtering with progressive parameters (models the retina log sampling of the photoreceptors and its low pass filtering effect consequence: more powerfull low pass filtering effect on the corners)
* @param inputFrame: the input image to be processed
* @param outputFrame: the output buffer in which the result is writen
* @param filterIndex: the index which specifies the parameter set that should be used for the filtering
*/
inline void runProgressiveFilter(const std::valarray<float> &inputFrame,
std::valarray<float> &outputFrame,
const unsigned int filterIndex=0)
{_spatiotemporalLPfilter_Irregular(get_data(inputFrame), &outputFrame[0], filterIndex);};
/**
* first order spatio-temporal low pass filter setup function
* @param beta: gain of the filter (generally set to zero)
* @param tau: time constant of the filter (unit is frame for video processing)
* @param k: spatial constant of the filter (unit is pixels)
* @param filterIndex: the index which specifies the parameter set that should be used for the filtering
*/
void setLPfilterParameters(const float beta, const float tau, const float k, const unsigned int filterIndex=0); // change the parameters of the filter
/**
* first order spatio-temporal low pass filter setup function
* @param beta: gain of the filter (generally set to zero)
* @param tau: time constant of the filter (unit is frame for video processing)
* @param alpha0: spatial constant of the filter (unit is pixels) on the border of the image
* @param filterIndex: the index which specifies the parameter set that should be used for the filtering
*/
void setProgressiveFilterConstants_CentredAccuracy(const float beta, const float tau, const float alpha0, const unsigned int filterIndex=0);
/**
* first order spatio-temporal low pass filter setup function
* @param beta: gain of the filter (generally set to zero)
* @param tau: time constant of the filter (unit is frame for video processing)
* @param alpha0: spatial constant of the filter (unit is pixels) on the border of the image
* @param accuracyMap an image (float format) which values range is between 0 and 1, where 0 means, apply no filtering and 1 means apply the filtering as specified in the parameters set, intermediate values allow to smooth variations of the filtering strenght
* @param filterIndex: the index which specifies the parameter set that should be used for the filtering
*/
void setProgressiveFilterConstants_CustomAccuracy(const float beta, const float tau, const float alpha0, const std::valarray<float> &accuracyMap, const unsigned int filterIndex=0);
/**
* local luminance adaptation setup, this function should be applied for normal local adaptation (not for tone mapping operation)
* @param v0: compression effect for the local luminance adaptation processing, set a value between 0.6 and 0.9 for best results, a high value yields to a high compression effect
* @param maxInputValue: the maximum amplitude value measured after local adaptation processing (c.f. function runFilter_LocalAdapdation & runFilter_LocalAdapdation_autonomous)
* @param meanLuminance: the a priori meann luminance of the input data (should be 128 for 8bits images but can vary greatly in case of High Dynamic Range Images (HDRI)
*/
void setV0CompressionParameter(const float v0, const float maxInputValue, const float){ _v0=v0*maxInputValue; _localLuminanceFactor=v0; _localLuminanceAddon=maxInputValue*(1.0f-v0); _maxInputValue=maxInputValue;};
/**
* update local luminance adaptation setup, initial maxInputValue is kept. This function should be applied for normal local adaptation (not for tone mapping operation)
* @param v0: compression effect for the local luminance adaptation processing, set a value between 0.6 and 0.9 for best results, a high value yields to a high compression effect
* @param meanLuminance: the a priori meann luminance of the input data (should be 128 for 8bits images but can vary greatly in case of High Dynamic Range Images (HDRI)
*/
void setV0CompressionParameter(const float v0, const float meanLuminance){ this->setV0CompressionParameter(v0, _maxInputValue, meanLuminance);};
/**
* local luminance adaptation setup, this function should be applied for normal local adaptation (not for tone mapping operation)
* @param v0: compression effect for the local luminance adaptation processing, set a value between 0.6 and 0.9 for best results, a high value yields to a high compression effect
*/
void setV0CompressionParameter(const float v0){ _v0=v0*_maxInputValue; _localLuminanceFactor=v0; _localLuminanceAddon=_maxInputValue*(1.0f-v0);};
/**
* local luminance adaptation setup, this function should be applied for local adaptation applied to tone mapping operation
* @param v0: compression effect for the local luminance adaptation processing, set a value between 0.6 and 0.9 for best results, a high value yields to a high compression effect
* @param maxInputValue: the maximum amplitude value measured after local adaptation processing (c.f. function runFilter_LocalAdapdation & runFilter_LocalAdapdation_autonomous)
* @param meanLuminance: the a priori meann luminance of the input data (should be 128 for 8bits images but can vary greatly in case of High Dynamic Range Images (HDRI)
*/
void setV0CompressionParameterToneMapping(const float v0, const float maxInputValue, const float meanLuminance=128.0f){ _v0=v0*maxInputValue; _localLuminanceFactor=1.0f; _localLuminanceAddon=meanLuminance*_v0; _maxInputValue=maxInputValue;};
/**
* update compression parameters while keeping v0 parameter value
* @param meanLuminance the input frame mean luminance
*/
inline void updateCompressionParameter(const float meanLuminance){_localLuminanceFactor=1; _localLuminanceAddon=meanLuminance*_v0;};
/**
* @return the v0 compression parameter used to compute the local adaptation
*/
float getV0CompressionParameter(){ return _v0/_maxInputValue;};
/**
* @return the output result of the object
*/
inline const std::valarray<float> &getOutput() const {return _filterOutput;};
/**
* @return number of rows of the filter
*/
inline unsigned int getNBrows(){return _filterOutput.getNBrows();};
/**
* @return number of columns of the filter
*/
inline unsigned int getNBcolumns(){return _filterOutput.getNBcolumns();};
/**
* @return number of pixels of the filter
*/
inline unsigned int getNBpixels(){return _filterOutput.getNBpixels();};
/**
* force filter output to be normalized between 0 and maxValue
* @param maxValue: the maximum output value that is required
*/
inline void normalizeGrayOutput_0_maxOutputValue(const float maxValue){_filterOutput.normalizeGrayOutput_0_maxOutputValue(maxValue);};
/**
* force filter output to be normalized around 0 and rescaled with a sigmoide effect (extrem values saturation)
* @param maxValue: the maximum output value that is required
*/
inline void normalizeGrayOutputCentredSigmoide(){_filterOutput.normalizeGrayOutputCentredSigmoide();};
/**
* force filter output to be normalized : data centering and std normalisation
* @param maxValue: the maximum output value that is required
*/
inline void centerReductImageLuminance(){_filterOutput.centerReductImageLuminance();};
/**
* @return the maximum input buffer value
*/
inline float getMaxInputValue(){return this->_maxInputValue;};
/**
* @return the maximum input buffer value
*/
inline void setMaxInputValue(const float newMaxInputValue){this->_maxInputValue=newMaxInputValue;};
protected:
/////////////////////////
// data buffers
TemplateBuffer<float> _filterOutput; // primary buffer (contains processing outputs)
std::valarray<float> _localBuffer; // local secondary buffer
/////////////////////////
// PARAMETERS
unsigned int _halfNBrows;
unsigned int _halfNBcolumns;
// parameters buffers
std::valarray <float>_filteringCoeficientsTable;
std::valarray <float>_progressiveSpatialConstant;// pointer to a local table containing local spatial constant (allocated with the object)
std::valarray <float>_progressiveGain;// pointer to a local table containing local spatial constant (allocated with the object)
// local adaptation filtering parameters
float _v0; //value used for local luminance adaptation function
float _maxInputValue;
float _meanInputValue;
float _localLuminanceFactor;
float _localLuminanceAddon;
// protected data related to standard low pass filters parameters
float _a;
float _tau;
float _gain;
/////////////////////////
// FILTERS METHODS
// Basic low pass spation temporal low pass filter used by each retina filters
void _spatiotemporalLPfilter(const float *inputFrame, float *LPfilterOutput, const unsigned int coefTableOffset=0);
float _squaringSpatiotemporalLPfilter(const float *inputFrame, float *outputFrame, const unsigned int filterIndex=0);
// LP filter with an irregular spatial filtering
// -> rewrites the input buffer
void _spatiotemporalLPfilter_Irregular(float *inputOutputFrame, const unsigned int filterIndex=0);
// writes the output on another buffer
void _spatiotemporalLPfilter_Irregular(const float *inputFrame, float *outputFrame, const unsigned int filterIndex=0);
// LP filter that squares the input and computes the output ONLY on the areas where the integrationAreas map are TRUE
void _localSquaringSpatioTemporalLPfilter(const float *inputFrame, float *LPfilterOutput, const unsigned int *integrationAreas, const unsigned int filterIndex=0);
// local luminance adaptation of the input in regard of localLuminance buffer
void _localLuminanceAdaptation(const float *inputFrame, const float *localLuminance, float *outputFrame, const bool updateLuminanceMean=true);
// local luminance adaptation of the input in regard of localLuminance buffer, the input is rewrited and becomes the output
void _localLuminanceAdaptation(float *inputOutputFrame, const float *localLuminance);
// local adaptation applied on a range of values which can be positive and negative
void _localLuminanceAdaptationPosNegValues(const float *inputFrame, const float *localLuminance, float *outputFrame);
//////////////////////////////////////////////////////////////
// 1D directional filters used for the 2D low pass filtering
// 1D filters with image input
void _horizontalCausalFilter_addInput(const float *inputFrame, float *outputFrame, unsigned int IDrowStart, unsigned int IDrowEnd);
// 1D filters with image input that is squared in the function // parallelized with TBB
void _squaringHorizontalCausalFilter(const float *inputFrame, float *outputFrame, unsigned int IDrowStart, unsigned int IDrowEnd);
// vertical anticausal filter that returns the mean value of its result
float _verticalAnticausalFilter_returnMeanValue(float *outputFrame, unsigned int IDcolumnStart, unsigned int IDcolumnEnd);
// most simple functions: only perform 1D filtering with output=input (no add on)
void _horizontalCausalFilter(float *outputFrame, unsigned int IDrowStart, unsigned int IDrowEnd);
void _horizontalAnticausalFilter(float *outputFrame, unsigned int IDrowStart, unsigned int IDrowEnd); // parallelized with TBB
void _verticalCausalFilter(float *outputFrame, unsigned int IDcolumnStart, unsigned int IDcolumnEnd); // parallelized with TBB
void _verticalAnticausalFilter(float *outputFrame, unsigned int IDcolumnStart, unsigned int IDcolumnEnd);
// perform 1D filtering with output with varrying spatial coefficient
void _horizontalCausalFilter_Irregular(float *outputFrame, unsigned int IDrowStart, unsigned int IDrowEnd);
void _horizontalCausalFilter_Irregular_addInput(const float *inputFrame, float *outputFrame, unsigned int IDrowStart, unsigned int IDrowEnd);
void _horizontalAnticausalFilter_Irregular(float *outputFrame, unsigned int IDrowStart, unsigned int IDrowEnd, const float *spatialConstantBuffer); // parallelized with TBB
void _verticalCausalFilter_Irregular(float *outputFrame, unsigned int IDcolumnStart, unsigned int IDcolumnEnd, const float *spatialConstantBuffer); // parallelized with TBB
void _verticalAnticausalFilter_Irregular_multGain(float *outputFrame, unsigned int IDcolumnStart, unsigned int IDcolumnEnd);
// 1D filters in which the output is multiplied by _gain
void _verticalAnticausalFilter_multGain(float *outputFrame, unsigned int IDcolumnStart, unsigned int IDcolumnEnd); // this functions affects _gain at the output // parallelized with TBB
void _horizontalAnticausalFilter_multGain(float *outputFrame, unsigned int IDcolumnStart, unsigned int IDcolumnEnd); // this functions affects _gain at the output
// LP filter on specific parts of the picture instead of all the image
// same functions (some of them) but take a binary flag to allow integration, false flag means, 0 at the output...
void _local_squaringHorizontalCausalFilter(const float *inputFrame, float *outputFrame, unsigned int IDrowStart, unsigned int IDrowEnd, const unsigned int *integrationAreas);
void _local_horizontalAnticausalFilter(float *outputFrame, unsigned int IDrowStart, unsigned int IDrowEnd, const unsigned int *integrationAreas);
void _local_verticalCausalFilter(float *outputFrame, unsigned int IDcolumnStart, unsigned int IDcolumnEnd, const unsigned int *integrationAreas);
void _local_verticalAnticausalFilter_multGain(float *outputFrame, unsigned int IDcolumnStart, unsigned int IDcolumnEnd, const unsigned int *integrationAreas); // this functions affects _gain at the output
#ifdef MAKE_PARALLEL
/******************************************************
** IF some parallelizing thread methods are available, then, main loops are parallelized using these functors
** ==> main idea paralellise main filters loops, then, only the most used methods are parallelized... TODO : increase the number of parallelised methods as necessary
** ==> functors names = Parallel_$$$ where $$$= the name of the serial method that is parallelised
** ==> functors constructors can differ from the parameters used with their related serial functions
*/
#define _DEBUG_TBB // define DEBUG_TBB in order to display additionnal data on stdout
class Parallel_horizontalAnticausalFilter: public cv::ParallelLoopBody
{
private:
float *outputFrame;
unsigned int IDrowEnd, nbColumns;
float filterParam_a;
public:
// constructor which takes the input image pointer reference reference and limits
Parallel_horizontalAnticausalFilter(float *bufferToProcess, const unsigned int idEnd, const unsigned int nbCols, const float a )
:outputFrame(bufferToProcess), IDrowEnd(idEnd), nbColumns(nbCols), filterParam_a(a)
{
#ifdef DEBUG_TBB
std::cout<<"Parallel_horizontalAnticausalFilter::Parallel_horizontalAnticausalFilter :"
<<"\n\t idEnd="<<IDrowEnd
<<"\n\t nbCols="<<nbColumns
<<"\n\t filterParam="<<filterParam_a
<<std::endl;
#endif
}
virtual void operator()( const Range& r ) const {
#ifdef DEBUG_TBB
std::cout<<"Parallel_horizontalAnticausalFilter::operator() :"
<<"\n\t range size="<<r.size()
<<"\n\t first index="<<r.start
//<<"\n\t last index="<<filterParam
<<std::endl;
#endif
for (int IDrow=r.start; IDrow!=r.end; ++IDrow)
{
register float* outputPTR=outputFrame+(IDrowEnd-IDrow)*(nbColumns)-1;
register float result=0;
for (unsigned int index=0; index<nbColumns; ++index)
{
result = *(outputPTR)+ filterParam_a* result;
*(outputPTR--) = result;
}
}
}
};
class Parallel_horizontalCausalFilter_addInput: public cv::ParallelLoopBody
{
private:
const float *inputFrame;
float *outputFrame;
unsigned int IDrowStart, nbColumns;
float filterParam_a, filterParam_tau;
public:
Parallel_horizontalCausalFilter_addInput(const float *bufferToAddAsInputProcess, float *bufferToProcess, const unsigned int idStart, const unsigned int nbCols, const float a, const float tau)
:inputFrame(bufferToAddAsInputProcess), outputFrame(bufferToProcess), IDrowStart(idStart), nbColumns(nbCols), filterParam_a(a), filterParam_tau(tau){}
virtual void operator()( const Range& r ) const {
for (int IDrow=r.start; IDrow!=r.end; ++IDrow)
{
register float* outputPTR=outputFrame+(IDrowStart+IDrow)*nbColumns;
register const float* inputPTR=inputFrame+(IDrowStart+IDrow)*nbColumns;
register float result=0;
for (unsigned int index=0; index<nbColumns; ++index)
{
result = *(inputPTR++) + filterParam_tau**(outputPTR)+ filterParam_a* result;
*(outputPTR++) = result;
}
}
}
};
class Parallel_verticalCausalFilter: public cv::ParallelLoopBody
{
private:
float *outputFrame;
unsigned int nbRows, nbColumns;
float filterParam_a;
public:
Parallel_verticalCausalFilter(float *bufferToProcess, const unsigned int nbRws, const unsigned int nbCols, const float a )
:outputFrame(bufferToProcess), nbRows(nbRws), nbColumns(nbCols), filterParam_a(a){}
virtual void operator()( const Range& r ) const {
for (int IDcolumn=r.start; IDcolumn!=r.end; ++IDcolumn)
{
register float result=0;
register float *outputPTR=outputFrame+IDcolumn;
for (unsigned int index=0; index<nbRows; ++index)
{
result = *(outputPTR) + filterParam_a * result;
*(outputPTR) = result;
outputPTR+=nbColumns;
}
}
}
};
class Parallel_verticalAnticausalFilter_multGain: public cv::ParallelLoopBody
{
private:
float *outputFrame;
unsigned int nbRows, nbColumns;
float filterParam_a, filterParam_gain;
public:
Parallel_verticalAnticausalFilter_multGain(float *bufferToProcess, const unsigned int nbRws, const unsigned int nbCols, const float a, const float gain)
:outputFrame(bufferToProcess), nbRows(nbRws), nbColumns(nbCols), filterParam_a(a), filterParam_gain(gain){}
virtual void operator()( const Range& r ) const {
float* offset=outputFrame+nbColumns*nbRows-nbColumns;
for (int IDcolumn=r.start; IDcolumn!=r.end; ++IDcolumn)
{
register float result=0;
register float *outputPTR=offset+IDcolumn;
for (unsigned int index=0; index<nbRows; ++index)
{
result = *(outputPTR) + filterParam_a * result;
*(outputPTR) = filterParam_gain*result;
outputPTR-=nbColumns;
}
}
}
};
class Parallel_localAdaptation: public cv::ParallelLoopBody
{
private:
const float *localLuminance, *inputFrame;
float *outputFrame;
float localLuminanceFactor, localLuminanceAddon, maxInputValue;
public:
Parallel_localAdaptation(const float *localLum, const float *inputImg, float *bufferToProcess, const float localLuminanceFact, const float localLuminanceAdd, const float maxInputVal)
:localLuminance(localLum), inputFrame(inputImg),outputFrame(bufferToProcess), localLuminanceFactor(localLuminanceFact), localLuminanceAddon(localLuminanceAdd), maxInputValue(maxInputVal) {};
virtual void operator()( const Range& r ) const {
const float *localLuminancePTR=localLuminance+r.start;
const float *inputFramePTR=inputFrame+r.start;
float *outputFramePTR=outputFrame+r.start;
for (register int IDpixel=r.start ; IDpixel!=r.end ; ++IDpixel, ++inputFramePTR, ++outputFramePTR)
{
float X0=*(localLuminancePTR++)*localLuminanceFactor+localLuminanceAddon;
// TODO : the following line can lead to a divide by zero ! A small offset is added, take care if the offset is too large in case of High Dynamic Range images which can use very small values...
*(outputFramePTR) = (maxInputValue+X0)**inputFramePTR/(*inputFramePTR +X0+0.00000000001f);
//std::cout<<"BasicRetinaFilter::inputFrame[IDpixel]=%f, X0=%f, outputFrame[IDpixel]=%f\n", inputFrame[IDpixel], X0, outputFrame[IDpixel]);
}
}
};
//////////////////////////////////////////
/// Specific filtering methods which manage non const spatial filtering parameter (used By retinacolor and LogProjectors)
class Parallel_horizontalAnticausalFilter_Irregular: public cv::ParallelLoopBody
{
private:
float *outputFrame;
const float *spatialConstantBuffer;
unsigned int IDrowEnd, nbColumns;
public:
Parallel_horizontalAnticausalFilter_Irregular(float *bufferToProcess, const float *spatialConst, const unsigned int idEnd, const unsigned int nbCols)
:outputFrame(bufferToProcess), spatialConstantBuffer(spatialConst), IDrowEnd(idEnd), nbColumns(nbCols){}
virtual void operator()( const Range& r ) const {
for (int IDrow=r.start; IDrow!=r.end; ++IDrow)
{
register float* outputPTR=outputFrame+(IDrowEnd-IDrow)*(nbColumns)-1;
register const float* spatialConstantPTR=spatialConstantBuffer+(IDrowEnd-IDrow)*(nbColumns)-1;
register float result=0;
for (unsigned int index=0; index<nbColumns; ++index)
{
result = *(outputPTR)+ *(spatialConstantPTR--)* result;
*(outputPTR--) = result;
}
}
}
};
class Parallel_verticalCausalFilter_Irregular: public cv::ParallelLoopBody
{
private:
float *outputFrame;
const float *spatialConstantBuffer;
unsigned int nbRows, nbColumns;
public:
Parallel_verticalCausalFilter_Irregular(float *bufferToProcess, const float *spatialConst, const unsigned int nbRws, const unsigned int nbCols)
:outputFrame(bufferToProcess), spatialConstantBuffer(spatialConst), nbRows(nbRws), nbColumns(nbCols){}
virtual void operator()( const Range& r ) const {
for (int IDcolumn=r.start; IDcolumn!=r.end; ++IDcolumn)
{
register float result=0;
register float *outputPTR=outputFrame+IDcolumn;
register const float* spatialConstantPTR=spatialConstantBuffer+IDcolumn;
for (unsigned int index=0; index<nbRows; ++index)
{
result = *(outputPTR) + *(spatialConstantPTR) * result;
*(outputPTR) = result;
outputPTR+=nbColumns;
spatialConstantPTR+=nbColumns;
}
}
}
};
#endif
};
}
#endif