1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "opencv2/core/hal/intrin.hpp"
namespace cv {
namespace dnn {
CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN
void fastConv( const float* weights, size_t wstep, const float* bias,
const float* rowbuf, float* output, const int* outShape,
int blockSize, int vecsize, int vecsize_aligned,
const float* relu, bool initOutput );
void fastGEMM1T( const float* vec, const float* weights,
size_t wstep, const float* bias,
float* dst, int nvecs, int vecsize );
void fastGEMM( const float* aptr, size_t astep, const float* bptr,
size_t bstep, float* cptr, size_t cstep,
int ma, int na, int nb );
#if !defined(CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY) && CV_AVX
#if !CV_FMA3 // AVX workaround
#undef _mm256_fmadd_ps
#define _mm256_fmadd_ps(a, b, c) _mm256_add_ps(c, _mm256_mul_ps(a, b))
#endif
void fastConv( const float* weights, size_t wstep, const float* bias,
const float* rowbuf, float* output, const int* outShape,
int blockSize, int vecsize, int vecsize_aligned,
const float* relu, bool initOutput )
{
int outCn = outShape[1];
size_t outPlaneSize = outShape[2]*outShape[3];
float r0 = 1.f, r1 = 1.f, r2 = 1.f;
__m128 vr0 = _mm_set1_ps(1.f), vr1 = vr0, vr2 = vr0, z = _mm_setzero_ps();
// now compute dot product of the weights
// and im2row-transformed part of the tensor
for( int i = 0; i < outCn; i += 3 )
{
const float* wptr0 = weights + i*wstep;
const float* wptr1 = wptr0 + wstep;
const float* wptr2 = wptr1 + wstep;
float* outptr0 = output + i*outPlaneSize;
float* outptr1 = outptr0 + outPlaneSize;
float* outptr2 = outptr1 + outPlaneSize;
float bias0 = bias[i], bias1 = bias[i+1], bias2 = bias[i+2];
if( i+2 >= outCn )
{
wptr2 = wptr1;
outptr2 = outptr1;
bias2 = bias1;
if( i+1 >= outCn )
{
wptr2 = wptr1 = wptr0;
outptr2 = outptr1 = outptr0;
bias2 = bias1 = bias0;
}
}
if( relu )
{
r0 = relu[i];
r1 = relu[i+1];
r2 = relu[i+2];
vr0 = _mm_set1_ps(r0);
vr1 = _mm_set1_ps(r1);
vr2 = _mm_set1_ps(r2);
}
int j = 0;
for( ; j <= blockSize - 4; j += 4 )
{
const float* rptr = rowbuf + j*vecsize_aligned;
__m256 vs00 = _mm256_setzero_ps(), vs01 = _mm256_setzero_ps(),
vs02 = _mm256_setzero_ps(), vs03 = _mm256_setzero_ps(),
vs10 = _mm256_setzero_ps(), vs11 = _mm256_setzero_ps(),
vs12 = _mm256_setzero_ps(), vs13 = _mm256_setzero_ps(),
vs20 = _mm256_setzero_ps(), vs21 = _mm256_setzero_ps(),
vs22 = _mm256_setzero_ps(), vs23 = _mm256_setzero_ps();
for( int k = 0; k < vecsize; k += 8, rptr += 8 )
{
__m256 w0 = _mm256_load_ps(wptr0 + k);
__m256 w1 = _mm256_load_ps(wptr1 + k);
__m256 w2 = _mm256_load_ps(wptr2 + k);
__m256 r0 = _mm256_load_ps(rptr);
vs00 = _mm256_fmadd_ps(w0, r0, vs00);
vs10 = _mm256_fmadd_ps(w1, r0, vs10);
vs20 = _mm256_fmadd_ps(w2, r0, vs20);
r0 = _mm256_load_ps(rptr + vecsize_aligned);
vs01 = _mm256_fmadd_ps(w0, r0, vs01);
vs11 = _mm256_fmadd_ps(w1, r0, vs11);
vs21 = _mm256_fmadd_ps(w2, r0, vs21);
r0 = _mm256_load_ps(rptr + vecsize_aligned*2);
vs02 = _mm256_fmadd_ps(w0, r0, vs02);
vs12 = _mm256_fmadd_ps(w1, r0, vs12);
vs22 = _mm256_fmadd_ps(w2, r0, vs22);
r0 = _mm256_load_ps(rptr + vecsize_aligned*3);
vs03 = _mm256_fmadd_ps(w0, r0, vs03);
vs13 = _mm256_fmadd_ps(w1, r0, vs13);
vs23 = _mm256_fmadd_ps(w2, r0, vs23);
}
__m256 t0 = _mm256_hadd_ps(_mm256_hadd_ps(vs00, vs01), _mm256_hadd_ps(vs02, vs03));
__m256 t1 = _mm256_hadd_ps(_mm256_hadd_ps(vs10, vs11), _mm256_hadd_ps(vs12, vs13));
__m256 t2 = _mm256_hadd_ps(_mm256_hadd_ps(vs20, vs21), _mm256_hadd_ps(vs22, vs23));
t0 = _mm256_add_ps(t0, _mm256_permute2f128_ps(t0, t0, 1));
t1 = _mm256_add_ps(t1, _mm256_permute2f128_ps(t1, t1, 1));
t2 = _mm256_add_ps(t2, _mm256_permute2f128_ps(t2, t2, 1));
__m128 s0, s1, s2;
if( initOutput )
{
s0 = _mm_set1_ps(bias0);
s1 = _mm_set1_ps(bias1);
s2 = _mm_set1_ps(bias2);
}
else
{
s0 = _mm_loadu_ps(outptr0 + j);
s1 = _mm_loadu_ps(outptr1 + j);
s2 = _mm_loadu_ps(outptr2 + j);
}
s0 = _mm_add_ps(s0, _mm256_castps256_ps128(t0));
s1 = _mm_add_ps(s1, _mm256_castps256_ps128(t1));
s2 = _mm_add_ps(s2, _mm256_castps256_ps128(t2));
if( relu )
{
__m128 m0 = _mm_cmp_ps(s0, z, _CMP_GT_OS);
__m128 m1 = _mm_cmp_ps(s1, z, _CMP_GT_OS);
__m128 m2 = _mm_cmp_ps(s2, z, _CMP_GT_OS);
s0 = _mm_xor_ps(s0, _mm_andnot_ps(m0, _mm_xor_ps(_mm_mul_ps(s0, vr0), s0)));
s1 = _mm_xor_ps(s1, _mm_andnot_ps(m1, _mm_xor_ps(_mm_mul_ps(s1, vr1), s1)));
s2 = _mm_xor_ps(s2, _mm_andnot_ps(m2, _mm_xor_ps(_mm_mul_ps(s2, vr2), s2)));
}
_mm_storeu_ps(outptr0 + j, s0);
_mm_storeu_ps(outptr1 + j, s1);
_mm_storeu_ps(outptr2 + j, s2);
}
for( ; j < blockSize; j++ )
{
const float* rptr = rowbuf + j*vecsize_aligned;
float s00, s10, s20;
if( initOutput )
{
s00 = bias0;
s10 = bias1;
s20 = bias2;
}
else
{
s00 = outptr0[j];
s10 = outptr1[j];
s20 = outptr2[j];
}
for( int k = 0; k < vecsize; k++ )
{
float r0 = rptr[k];
s00 += wptr0[k]*r0;
s10 += wptr1[k]*r0;
s20 += wptr2[k]*r0;
}
if( relu )
{
s00 = s00 > 0.f ? s00 : s00*r0;
s10 = s10 > 0.f ? s10 : s10*r1;
s20 = s20 > 0.f ? s20 : s20*r2;
}
outptr0[j] = s00;
outptr1[j] = s10;
outptr2[j] = s20;
}
}
_mm256_zeroupper();
}
// dst = vec * weights^t + bias
void fastGEMM1T( const float* vec, const float* weights,
size_t wstep, const float* bias,
float* dst, int nvecs, int vecsize )
{
int i = 0;
for( ; i <= nvecs - 8; i += 8 )
{
const float* wptr = weights + i*wstep;
__m256 vs0 = _mm256_setzero_ps(), vs1 = _mm256_setzero_ps(),
vs2 = _mm256_setzero_ps(), vs3 = _mm256_setzero_ps(),
vs4 = _mm256_setzero_ps(), vs5 = _mm256_setzero_ps(),
vs6 = _mm256_setzero_ps(), vs7 = _mm256_setzero_ps();
for( int k = 0; k < vecsize; k += 8, wptr += 8 )
{
__m256 v = _mm256_load_ps(vec + k);
vs0 = _mm256_fmadd_ps(_mm256_load_ps(wptr), v, vs0);
vs1 = _mm256_fmadd_ps(_mm256_load_ps(wptr + wstep), v, vs1);
vs2 = _mm256_fmadd_ps(_mm256_load_ps(wptr + wstep*2), v, vs2);
vs3 = _mm256_fmadd_ps(_mm256_load_ps(wptr + wstep*3), v, vs3);
vs4 = _mm256_fmadd_ps(_mm256_load_ps(wptr + wstep*4), v, vs4);
vs5 = _mm256_fmadd_ps(_mm256_load_ps(wptr + wstep*5), v, vs5);
vs6 = _mm256_fmadd_ps(_mm256_load_ps(wptr + wstep*6), v, vs6);
vs7 = _mm256_fmadd_ps(_mm256_load_ps(wptr + wstep*7), v, vs7);
}
__m256 s0 = _mm256_hadd_ps(_mm256_hadd_ps(vs0, vs1), _mm256_hadd_ps(vs2, vs3));
__m256 s1 = _mm256_hadd_ps(_mm256_hadd_ps(vs4, vs5), _mm256_hadd_ps(vs6, vs7));
s0 = _mm256_add_ps(s0, _mm256_permute2f128_ps(s0, s0, 1));
s1 = _mm256_add_ps(s1, _mm256_permute2f128_ps(s1, s1, 1));
s0 = _mm256_add_ps(s0, _mm256_castps128_ps256(_mm_loadu_ps(bias + i)));
s1 = _mm256_add_ps(s1, _mm256_castps128_ps256(_mm_loadu_ps(bias + i + 4)));
_mm_storeu_ps(dst + i, _mm256_castps256_ps128(s0));
_mm_storeu_ps(dst + i + 4, _mm256_castps256_ps128(s1));
}
float temp = 0.f;
for( ; i < nvecs; i++ )
{
const float* wptr = weights + i*wstep;
__m256 vs0 = _mm256_setzero_ps();
for( int k = 0; k < vecsize; k += 8, wptr += 8 )
{
__m256 v = _mm256_load_ps(vec + k);
vs0 = _mm256_fmadd_ps(_mm256_load_ps(wptr), v, vs0);
}
__m256 s0 = _mm256_hadd_ps(_mm256_hadd_ps(vs0, vs0), vs0);
s0 = _mm256_add_ps(s0, _mm256_permute2f128_ps(s0, s0, 1));
_mm_store_ss(&temp, _mm256_castps256_ps128(s0));
dst[i] = temp + bias[i];
}
_mm256_zeroupper();
}
void fastGEMM( const float* aptr, size_t astep, const float* bptr,
size_t bstep, float* cptr, size_t cstep,
int ma, int na, int nb )
{
int n = 0;
#if CV_AVX512_SKX // AVX512VL is necessary to avoid register spilling
for( ; n <= nb - 32; n += 32 )
{
for( int m = 0; m < ma; m += 4 )
{
const float* aptr0 = aptr + astep*m;
const float* aptr1 = aptr + astep*std::min(m+1, ma-1);
const float* aptr2 = aptr + astep*std::min(m+2, ma-1);
const float* aptr3 = aptr + astep*std::min(m+3, ma-1);
float* cptr0 = cptr + cstep*m;
float* cptr1 = cptr + cstep*std::min(m+1, ma-1);
float* cptr2 = cptr + cstep*std::min(m+2, ma-1);
float* cptr3 = cptr + cstep*std::min(m+3, ma-1);
__m512 d00 = _mm512_setzero_ps(), d01 = _mm512_setzero_ps();
__m512 d10 = _mm512_setzero_ps(), d11 = _mm512_setzero_ps();
__m512 d20 = _mm512_setzero_ps(), d21 = _mm512_setzero_ps();
__m512 d30 = _mm512_setzero_ps(), d31 = _mm512_setzero_ps();
for( int k = 0; k < na; k++ )
{
__m512 a0 = _mm512_set1_ps(aptr0[k]);
__m512 a1 = _mm512_set1_ps(aptr1[k]);
__m512 a2 = _mm512_set1_ps(aptr2[k]);
__m512 a3 = _mm512_set1_ps(aptr3[k]);
__m512 b0 = _mm512_loadu_ps(bptr + k*bstep + n);
__m512 b1 = _mm512_loadu_ps(bptr + k*bstep + n + 16);
d00 = _mm512_fmadd_ps(a0, b0, d00);
d01 = _mm512_fmadd_ps(a0, b1, d01);
d10 = _mm512_fmadd_ps(a1, b0, d10);
d11 = _mm512_fmadd_ps(a1, b1, d11);
d20 = _mm512_fmadd_ps(a2, b0, d20);
d21 = _mm512_fmadd_ps(a2, b1, d21);
d30 = _mm512_fmadd_ps(a3, b0, d30);
d31 = _mm512_fmadd_ps(a3, b1, d31);
}
_mm512_storeu_ps(cptr0 + n, d00);
_mm512_storeu_ps(cptr0 + n + 16, d01);
_mm512_storeu_ps(cptr1 + n, d10);
_mm512_storeu_ps(cptr1 + n + 16, d11);
_mm512_storeu_ps(cptr2 + n, d20);
_mm512_storeu_ps(cptr2 + n + 16, d21);
_mm512_storeu_ps(cptr3 + n, d30);
_mm512_storeu_ps(cptr3 + n + 16, d31);
}
}
#endif
for( ; n <= nb - 16; n += 16 )
{
for( int m = 0; m < ma; m += 4 )
{
const float* aptr0 = aptr + astep*m;
const float* aptr1 = aptr + astep*std::min(m+1, ma-1);
const float* aptr2 = aptr + astep*std::min(m+2, ma-1);
const float* aptr3 = aptr + astep*std::min(m+3, ma-1);
float* cptr0 = cptr + cstep*m;
float* cptr1 = cptr + cstep*std::min(m+1, ma-1);
float* cptr2 = cptr + cstep*std::min(m+2, ma-1);
float* cptr3 = cptr + cstep*std::min(m+3, ma-1);
__m256 d00 = _mm256_setzero_ps(), d01 = _mm256_setzero_ps();
__m256 d10 = _mm256_setzero_ps(), d11 = _mm256_setzero_ps();
__m256 d20 = _mm256_setzero_ps(), d21 = _mm256_setzero_ps();
__m256 d30 = _mm256_setzero_ps(), d31 = _mm256_setzero_ps();
for( int k = 0; k < na; k++ )
{
__m256 a0 = _mm256_set1_ps(aptr0[k]);
__m256 a1 = _mm256_set1_ps(aptr1[k]);
__m256 a2 = _mm256_set1_ps(aptr2[k]);
__m256 a3 = _mm256_set1_ps(aptr3[k]);
__m256 b0 = _mm256_loadu_ps(bptr + k*bstep + n);
__m256 b1 = _mm256_loadu_ps(bptr + k*bstep + n + 8);
d00 = _mm256_fmadd_ps(a0, b0, d00);
d01 = _mm256_fmadd_ps(a0, b1, d01);
d10 = _mm256_fmadd_ps(a1, b0, d10);
d11 = _mm256_fmadd_ps(a1, b1, d11);
d20 = _mm256_fmadd_ps(a2, b0, d20);
d21 = _mm256_fmadd_ps(a2, b1, d21);
d30 = _mm256_fmadd_ps(a3, b0, d30);
d31 = _mm256_fmadd_ps(a3, b1, d31);
}
_mm256_storeu_ps(cptr0 + n, d00);
_mm256_storeu_ps(cptr0 + n + 8, d01);
_mm256_storeu_ps(cptr1 + n, d10);
_mm256_storeu_ps(cptr1 + n + 8, d11);
_mm256_storeu_ps(cptr2 + n, d20);
_mm256_storeu_ps(cptr2 + n + 8, d21);
_mm256_storeu_ps(cptr3 + n, d30);
_mm256_storeu_ps(cptr3 + n + 8, d31);
}
}
for( ; n < nb; n++ )
{
for( int m = 0; m < ma; m++ )
{
const float* aptr0 = aptr + astep*m;
float* cptr0 = cptr + cstep*m;
float d0 = 0.f;
for( int k = 0; k < na; k++ )
d0 += aptr0[k]*bptr[k*bstep + n];
cptr0[n] = d0;
}
}
_mm256_zeroupper();
}
#endif // CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY
CV_CPU_OPTIMIZATION_NAMESPACE_END
}} // namespace