1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
CV_IMPL CvRect
cvMaxRect( const CvRect* rect1, const CvRect* rect2 )
{
if( rect1 && rect2 )
{
CvRect max_rect;
int a, b;
max_rect.x = a = rect1->x;
b = rect2->x;
if( max_rect.x > b )
max_rect.x = b;
max_rect.width = a += rect1->width;
b += rect2->width;
if( max_rect.width < b )
max_rect.width = b;
max_rect.width -= max_rect.x;
max_rect.y = a = rect1->y;
b = rect2->y;
if( max_rect.y > b )
max_rect.y = b;
max_rect.height = a += rect1->height;
b += rect2->height;
if( max_rect.height < b )
max_rect.height = b;
max_rect.height -= max_rect.y;
return max_rect;
}
else if( rect1 )
return *rect1;
else if( rect2 )
return *rect2;
else
return cvRect(0,0,0,0);
}
CV_IMPL void
cvBoxPoints( CvBox2D box, CvPoint2D32f pt[4] )
{
if( !pt )
CV_Error( CV_StsNullPtr, "NULL vertex array pointer" );
cv::RotatedRect(box).points((cv::Point2f*)pt);
}
double cv::pointPolygonTest( InputArray _contour, Point2f pt, bool measureDist )
{
CV_INSTRUMENT_REGION()
double result = 0;
Mat contour = _contour.getMat();
int i, total = contour.checkVector(2), counter = 0;
int depth = contour.depth();
CV_Assert( total >= 0 && (depth == CV_32S || depth == CV_32F));
bool is_float = depth == CV_32F;
double min_dist_num = FLT_MAX, min_dist_denom = 1;
Point ip(cvRound(pt.x), cvRound(pt.y));
if( total == 0 )
return measureDist ? -DBL_MAX : -1;
const Point* cnt = contour.ptr<Point>();
const Point2f* cntf = (const Point2f*)cnt;
if( !is_float && !measureDist && ip.x == pt.x && ip.y == pt.y )
{
// the fastest "purely integer" branch
Point v0, v = cnt[total-1];
for( i = 0; i < total; i++ )
{
int dist;
v0 = v;
v = cnt[i];
if( (v0.y <= ip.y && v.y <= ip.y) ||
(v0.y > ip.y && v.y > ip.y) ||
(v0.x < ip.x && v.x < ip.x) )
{
if( ip.y == v.y && (ip.x == v.x || (ip.y == v0.y &&
((v0.x <= ip.x && ip.x <= v.x) || (v.x <= ip.x && ip.x <= v0.x)))) )
return 0;
continue;
}
dist = (ip.y - v0.y)*(v.x - v0.x) - (ip.x - v0.x)*(v.y - v0.y);
if( dist == 0 )
return 0;
if( v.y < v0.y )
dist = -dist;
counter += dist > 0;
}
result = counter % 2 == 0 ? -1 : 1;
}
else
{
Point2f v0, v;
Point iv;
if( is_float )
{
v = cntf[total-1];
}
else
{
v = cnt[total-1];
}
if( !measureDist )
{
for( i = 0; i < total; i++ )
{
double dist;
v0 = v;
if( is_float )
v = cntf[i];
else
v = cnt[i];
if( (v0.y <= pt.y && v.y <= pt.y) ||
(v0.y > pt.y && v.y > pt.y) ||
(v0.x < pt.x && v.x < pt.x) )
{
if( pt.y == v.y && (pt.x == v.x || (pt.y == v0.y &&
((v0.x <= pt.x && pt.x <= v.x) || (v.x <= pt.x && pt.x <= v0.x)))) )
return 0;
continue;
}
dist = (double)(pt.y - v0.y)*(v.x - v0.x) - (double)(pt.x - v0.x)*(v.y - v0.y);
if( dist == 0 )
return 0;
if( v.y < v0.y )
dist = -dist;
counter += dist > 0;
}
result = counter % 2 == 0 ? -1 : 1;
}
else
{
for( i = 0; i < total; i++ )
{
double dx, dy, dx1, dy1, dx2, dy2, dist_num, dist_denom = 1;
v0 = v;
if( is_float )
v = cntf[i];
else
v = cnt[i];
dx = v.x - v0.x; dy = v.y - v0.y;
dx1 = pt.x - v0.x; dy1 = pt.y - v0.y;
dx2 = pt.x - v.x; dy2 = pt.y - v.y;
if( dx1*dx + dy1*dy <= 0 )
dist_num = dx1*dx1 + dy1*dy1;
else if( dx2*dx + dy2*dy >= 0 )
dist_num = dx2*dx2 + dy2*dy2;
else
{
dist_num = (dy1*dx - dx1*dy);
dist_num *= dist_num;
dist_denom = dx*dx + dy*dy;
}
if( dist_num*min_dist_denom < min_dist_num*dist_denom )
{
min_dist_num = dist_num;
min_dist_denom = dist_denom;
if( min_dist_num == 0 )
break;
}
if( (v0.y <= pt.y && v.y <= pt.y) ||
(v0.y > pt.y && v.y > pt.y) ||
(v0.x < pt.x && v.x < pt.x) )
continue;
dist_num = dy1*dx - dx1*dy;
if( dy < 0 )
dist_num = -dist_num;
counter += dist_num > 0;
}
result = std::sqrt(min_dist_num/min_dist_denom);
if( counter % 2 == 0 )
result = -result;
}
}
return result;
}
CV_IMPL double
cvPointPolygonTest( const CvArr* _contour, CvPoint2D32f pt, int measure_dist )
{
cv::AutoBuffer<double> abuf;
cv::Mat contour = cv::cvarrToMat(_contour, false, false, 0, &abuf);
return cv::pointPolygonTest(contour, pt, measure_dist != 0);
}
/*
This code is described in "Computational Geometry in C" (Second Edition),
Chapter 7. It is not written to be comprehensible without the
explanation in that book.
Written by Joseph O'Rourke.
Last modified: December 1997
Questions to orourke@cs.smith.edu.
--------------------------------------------------------------------
This code is Copyright 1997 by Joseph O'Rourke. It may be freely
redistributed in its entirety provided that this copyright notice is
not removed.
--------------------------------------------------------------------
*/
namespace cv
{
typedef enum { Pin, Qin, Unknown } tInFlag;
static int areaSign( Point2f a, Point2f b, Point2f c )
{
static const double eps = 1e-5;
double area2 = (b.x - a.x) * (double)(c.y - a.y) - (c.x - a.x ) * (double)(b.y - a.y);
return area2 > eps ? 1 : area2 < -eps ? -1 : 0;
}
//---------------------------------------------------------------------
// Returns true iff point c lies on the closed segement ab.
// Assumes it is already known that abc are collinear.
//---------------------------------------------------------------------
static bool between( Point2f a, Point2f b, Point2f c )
{
Point2f ba, ca;
// If ab not vertical, check betweenness on x; else on y.
if ( a.x != b.x )
return ((a.x <= c.x) && (c.x <= b.x)) ||
((a.x >= c.x) && (c.x >= b.x));
else
return ((a.y <= c.y) && (c.y <= b.y)) ||
((a.y >= c.y) && (c.y >= b.y));
}
static char parallelInt( Point2f a, Point2f b, Point2f c, Point2f d, Point2f& p, Point2f& q )
{
char code = 'e';
if( areaSign(a, b, c) != 0 )
code = '0';
else if( between(a, b, c) && between(a, b, d))
p = c, q = d;
else if( between(c, d, a) && between(c, d, b))
p = a, q = b;
else if( between(a, b, c) && between(c, d, b))
p = c, q = b;
else if( between(a, b, c) && between(c, d, a))
p = c, q = a;
else if( between(a, b, d) && between(c, d, b))
p = d, q = b;
else if( between(a, b, d) && between(c, d, a))
p = d, q = a;
else
code = '0';
return code;
}
//---------------------------------------------------------------------
// segSegInt: Finds the point of intersection p between two closed
// segments ab and cd. Returns p and a char with the following meaning:
// 'e': The segments collinearly overlap, sharing a point.
// 'v': An endpoint (vertex) of one segment is on the other segment,
// but 'e' doesn't hold.
// '1': The segments intersect properly (i.e., they share a point and
// neither 'v' nor 'e' holds).
// '0': The segments do not intersect (i.e., they share no points).
// Note that two collinear segments that share just one point, an endpoint
// of each, returns 'e' rather than 'v' as one might expect.
//---------------------------------------------------------------------
static char segSegInt( Point2f a, Point2f b, Point2f c, Point2f d, Point2f& p, Point2f& q )
{
double s, t; // The two parameters of the parametric eqns.
double num, denom; // Numerator and denoninator of equations.
char code = '?'; // Return char characterizing intersection.
denom = a.x * (double)( d.y - c.y ) +
b.x * (double)( c.y - d.y ) +
d.x * (double)( b.y - a.y ) +
c.x * (double)( a.y - b.y );
// If denom is zero, then segments are parallel: handle separately.
if (denom == 0.0)
return parallelInt(a, b, c, d, p, q);
num = a.x * (double)( d.y - c.y ) +
c.x * (double)( a.y - d.y ) +
d.x * (double)( c.y - a.y );
if ( (num == 0.0) || (num == denom) ) code = 'v';
s = num / denom;
num = -( a.x * (double)( c.y - b.y ) +
b.x * (double)( a.y - c.y ) +
c.x * (double)( b.y - a.y ) );
if ( (num == 0.0) || (num == denom) ) code = 'v';
t = num / denom;
if ( (0.0 < s) && (s < 1.0) &&
(0.0 < t) && (t < 1.0) )
code = '1';
else if ( (0.0 > s) || (s > 1.0) ||
(0.0 > t) || (t > 1.0) )
code = '0';
p.x = (float)(a.x + s*(b.x - a.x));
p.y = (float)(a.y + s*(b.y - a.y));
return code;
}
static tInFlag inOut( Point2f p, tInFlag inflag, int aHB, int bHA, Point2f*& result )
{
if( p != result[-1] )
*result++ = p;
// Update inflag.
return aHB > 0 ? Pin : bHA > 0 ? Qin : inflag;
}
//---------------------------------------------------------------------
// Advances and prints out an inside vertex if appropriate.
//---------------------------------------------------------------------
static int advance( int a, int *aa, int n, bool inside, Point2f v, Point2f*& result )
{
if( inside && v != result[-1] )
*result++ = v;
(*aa)++;
return (a+1) % n;
}
static void addSharedSeg( Point2f p, Point2f q, Point2f*& result )
{
if( p != result[-1] )
*result++ = p;
if( q != result[-1] )
*result++ = q;
}
static int intersectConvexConvex_( const Point2f* P, int n, const Point2f* Q, int m,
Point2f* result, float* _area )
{
Point2f* result0 = result;
// P has n vertices, Q has m vertices.
int a=0, b=0; // indices on P and Q (resp.)
Point2f Origin(0,0);
tInFlag inflag=Unknown; // {Pin, Qin, Unknown}: which inside
int aa=0, ba=0; // # advances on a & b indices (after 1st inter.)
bool FirstPoint=true;// Is this the first point? (used to initialize).
Point2f p0; // The first point.
*result++ = Point2f(FLT_MAX, FLT_MAX);
do
{
// Computations of key variables.
int a1 = (a + n - 1) % n; // a-1, b-1 (resp.)
int b1 = (b + m - 1) % m;
Point2f A = P[a] - P[a1], B = Q[b] - Q[b1]; // directed edges on P and Q (resp.)
int cross = areaSign( Origin, A, B ); // sign of z-component of A x B
int aHB = areaSign( Q[b1], Q[b], P[a] ); // a in H(b).
int bHA = areaSign( P[a1], P[a], Q[b] ); // b in H(A);
// If A & B intersect, update inflag.
Point2f p, q;
int code = segSegInt( P[a1], P[a], Q[b1], Q[b], p, q );
if( code == '1' || code == 'v' )
{
if( inflag == Unknown && FirstPoint )
{
aa = ba = 0;
FirstPoint = false;
p0 = p;
*result++ = p;
}
inflag = inOut( p, inflag, aHB, bHA, result );
}
//-----Advance rules-----
// Special case: A & B overlap and oppositely oriented.
if( code == 'e' && A.ddot(B) < 0 )
{
addSharedSeg( p, q, result );
return (int)(result - result0);
}
// Special case: A & B parallel and separated.
if( cross == 0 && aHB < 0 && bHA < 0 )
return (int)(result - result0);
// Special case: A & B collinear.
else if ( cross == 0 && aHB == 0 && bHA == 0 ) {
// Advance but do not output point.
if ( inflag == Pin )
b = advance( b, &ba, m, inflag == Qin, Q[b], result );
else
a = advance( a, &aa, n, inflag == Pin, P[a], result );
}
// Generic cases.
else if( cross >= 0 )
{
if( bHA > 0)
a = advance( a, &aa, n, inflag == Pin, P[a], result );
else
b = advance( b, &ba, m, inflag == Qin, Q[b], result );
}
else
{
if( aHB > 0)
b = advance( b, &ba, m, inflag == Qin, Q[b], result );
else
a = advance( a, &aa, n, inflag == Pin, P[a], result );
}
// Quit when both adv. indices have cycled, or one has cycled twice.
}
while ( ((aa < n) || (ba < m)) && (aa < 2*n) && (ba < 2*m) );
// Deal with special cases: not implemented.
if( inflag == Unknown )
{
// The boundaries of P and Q do not cross.
// ...
}
int i, nr = (int)(result - result0);
double area = 0;
Point2f prev = result0[nr-1];
for( i = 1; i < nr; i++ )
{
result0[i-1] = result0[i];
area += (double)prev.x*result0[i].y - (double)prev.y*result0[i].x;
prev = result0[i];
}
*_area = (float)(area*0.5);
if( result0[nr-2] == result0[0] && nr > 1 )
nr--;
return nr-1;
}
}
float cv::intersectConvexConvex( InputArray _p1, InputArray _p2, OutputArray _p12, bool handleNested )
{
CV_INSTRUMENT_REGION()
Mat p1 = _p1.getMat(), p2 = _p2.getMat();
CV_Assert( p1.depth() == CV_32S || p1.depth() == CV_32F );
CV_Assert( p2.depth() == CV_32S || p2.depth() == CV_32F );
int n = p1.checkVector(2, p1.depth(), true);
int m = p2.checkVector(2, p2.depth(), true);
CV_Assert( n >= 0 && m >= 0 );
if( n < 2 || m < 2 )
{
_p12.release();
return 0.f;
}
AutoBuffer<Point2f> _result(n*2 + m*2 + 1);
Point2f *fp1 = _result, *fp2 = fp1 + n;
Point2f* result = fp2 + m;
int orientation = 0;
for( int k = 1; k <= 2; k++ )
{
Mat& p = k == 1 ? p1 : p2;
int len = k == 1 ? n : m;
Point2f* dst = k == 1 ? fp1 : fp2;
Mat temp(p.size(), CV_MAKETYPE(CV_32F, p.channels()), dst);
p.convertTo(temp, CV_32F);
CV_Assert( temp.ptr<Point2f>() == dst );
Point2f diff0 = dst[0] - dst[len-1];
for( int i = 1; i < len; i++ )
{
double s = diff0.cross(dst[i] - dst[i-1]);
if( s != 0 )
{
if( s < 0 )
{
orientation++;
flip( temp, temp, temp.rows > 1 ? 0 : 1 );
}
break;
}
}
}
float area = 0.f;
int nr = intersectConvexConvex_(fp1, n, fp2, m, result, &area);
if( nr == 0 )
{
if( !handleNested )
{
_p12.release();
return 0.f;
}
if( pointPolygonTest(_InputArray(fp1, n), fp2[0], false) >= 0 )
{
result = fp2;
nr = m;
}
else if( pointPolygonTest(_InputArray(fp2, m), fp1[0], false) >= 0 )
{
result = fp1;
nr = n;
}
else
{
_p12.release();
return 0.f;
}
area = (float)contourArea(_InputArray(result, nr), false);
}
if( _p12.needed() )
{
Mat temp(nr, 1, CV_32FC2, result);
// if both input contours were reflected,
// let's orient the result as the input vectors
if( orientation == 2 )
flip(temp, temp, 0);
temp.copyTo(_p12);
}
return (float)fabs(area);
}