hmm1d.cpp 35.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/


#include "precomp.hpp"

#if 0

#define LN2PI 1.837877f
#define BIG_FLT 1.e+10f


#define _CV_ERGODIC 1
#define _CV_CAUSAL 2

#define _CV_LAST_STATE 1
#define _CV_BEST_STATE 2

//*F///////////////////////////////////////////////////////////////////////////////////////
//    Name: icvForward1DHMM
//    Purpose: The function performs baum-welsh algorithm
//    Context:
//    Parameters: obs_info - addres of pointer to CvImgObsInfo structure
//                num_hor_obs - number of horizontal observation vectors
//                num_ver_obs - number of horizontal observation vectors
//                obs_size - length of observation vector
//
//    Returns: error status
//
//    Notes:
//F*/
#if 0
CvStatus icvForward1DHMM( int num_states, int num_obs, CvMatr64d A,
                          CvMatr64d B,
                          double* scales)
{
    // assume that observation and transition
    // probabilities already computed
    int m_HMMType  = _CV_CAUSAL;
    double* m_pi = icvAlloc( num_states* sizeof( double) );

    /* alpha is matrix
       rows throuhg states
       columns through time
    */
    double* alpha = icvAlloc( num_states*num_obs * sizeof( double ) );

    /* All calculations will be in non-logarithmic domain */

    /* Initialization */
    /* set initial state probabilities */
    m_pi[0] = 1;
    for (i = 1; i < num_states; i++)
    {
        m_pi[i] = 0.0;
    }

    for  (i = 0; i < num_states; i++)
    {
        alpha[i] = m_pi[i] * m_b[ i];
    }

    /******************************************************************/
    /*   Induction                                                    */

    if ( m_HMMType == _CV_ERGODIC )
    {
        int t;
        for (t = 1 ; t < num_obs; t++)
        {
            for (j = 0; j < num_states; j++)
            {
               double sum = 0.0;
               int i;

                for (i = 0; i < num_states; i++)
                {
                     sum += alpha[(t - 1) * num_states + i] * A[i * num_states + j];
                }

                alpha[(t - 1) * num_states + j] = sum * B[t * num_states + j];

                /* add computed alpha to scale factor */
                sum_alpha += alpha[(t - 1) * num_states + j];
            }

            double scale = 1/sum_alpha;

            /* scale alpha */
            for (j = 0; j < num_states; j++)
            {
                alpha[(t - 1) * num_states + j] *= scale;
            }

            scales[t] = scale;

        }
    }

#endif



//*F///////////////////////////////////////////////////////////////////////////////////////
//    Name: icvCreateObsInfo
//    Purpose: The function allocates memory for CvImgObsInfo structure
//             and its inner stuff
//    Context:
//    Parameters: obs_info - addres of pointer to CvImgObsInfo structure
//                num_hor_obs - number of horizontal observation vectors
//                num_ver_obs - number of horizontal observation vectors
//                obs_size - length of observation vector
//
//    Returns: error status
//
//    Notes:
//F*/
/*CvStatus icvCreateObsInfo( CvImgObsInfo** obs_info,
                              CvSize num_obs, int obs_size )
{
    int total = num_obs.height * num_obs.width;

    CvImgObsInfo* obs = (CvImgObsInfo*)icvAlloc( sizeof( CvImgObsInfo) );

    obs->obs_x = num_obs.width;
    obs->obs_y = num_obs.height;

    obs->obs = (float*)icvAlloc( total * obs_size * sizeof(float) );

    obs->state = (int*)icvAlloc( 2 * total * sizeof(int) );
    obs->mix = (int*)icvAlloc( total * sizeof(int) );

    obs->obs_size = obs_size;

    obs_info[0] = obs;

    return CV_NO_ERR;
}*/

/*CvStatus icvReleaseObsInfo( CvImgObsInfo** p_obs_info )
{
    CvImgObsInfo* obs_info = p_obs_info[0];

    icvFree( &(obs_info->obs) );
    icvFree( &(obs_info->mix) );
    icvFree( &(obs_info->state) );
    icvFree( &(obs_info) );

    p_obs_info[0] = NULL;

    return CV_NO_ERR;
} */


//*F///////////////////////////////////////////////////////////////////////////////////////
//    Name: icvCreate1DHMM
//    Purpose: The function allocates memory for 1-dimensional HMM
//             and its inner stuff
//    Context:
//    Parameters: hmm - addres of pointer to CvEHMM structure
//                state_number - number of states in HMM
//                num_mix - number of gaussian mixtures in HMM states
//                          size of array is defined by previous parameter
//                obs_size - length of observation vectors
//
//    Returns: error status
//    Notes:
//F*/
CvStatus icvCreate1DHMM( CvEHMM** this_hmm,
                         int state_number, int* num_mix, int obs_size )
{
    int i;
    int real_states = state_number;

    CvEHMMState* all_states;
    CvEHMM* hmm;
    int total_mix = 0;
    float* pointers;

    /* allocate memory for hmm */
    hmm = (CvEHMM*)icvAlloc( sizeof(CvEHMM) );

    /* set number of superstates */
    hmm->num_states = state_number;
    hmm->level = 0;

    /* allocate memory for all states */
    all_states = (CvEHMMState *)icvAlloc( real_states * sizeof( CvEHMMState ) );

    /* assign number of mixtures */
    for( i = 0; i < real_states; i++ )
    {
        all_states[i].num_mix = num_mix[i];
    }

    /* compute size of inner of all real states */
    for( i = 0; i < real_states; i++ )
    {
        total_mix += num_mix[i];
    }
    /* allocate memory for states stuff */
    pointers = (float*)icvAlloc( total_mix * (2/*for mu invvar */ * obs_size +
                                 2/*for weight and log_var_val*/ ) * sizeof( float) );

    /* organize memory */
    for( i = 0; i < real_states; i++ )
    {
        all_states[i].mu      = pointers; pointers += num_mix[i] * obs_size;
        all_states[i].inv_var = pointers; pointers += num_mix[i] * obs_size;

        all_states[i].log_var_val = pointers; pointers += num_mix[i];
        all_states[i].weight      = pointers; pointers += num_mix[i];
    }
    hmm->u.state = all_states;

    hmm->transP = icvCreateMatrix_32f( hmm->num_states, hmm->num_states );
    hmm->obsProb = NULL;

    /* if all ok - return pointer */
    *this_hmm = hmm;
    return CV_NO_ERR;
}

CvStatus icvRelease1DHMM( CvEHMM** phmm )
{
    CvEHMM* hmm = phmm[0];
    icvDeleteMatrix( hmm->transP );

    if (hmm->obsProb != NULL)
    {
        int* tmp = ((int*)(hmm->obsProb)) - 3;
        icvFree( &(tmp)  );
    }

    icvFree( &(hmm->u.state->mu) );
    icvFree( &(hmm->u.state) );

    phmm[0] = NULL;

    return CV_NO_ERR;
}

/*can be used in CHMM & DHMM */
CvStatus icvUniform1DSegm( Cv1DObsInfo* obs_info, CvEHMM* hmm )
{
    /* implementation is very bad */
    int  i;
    CvEHMMState* first_state;

    /* check arguments */
    if ( !obs_info || !hmm ) return CV_NULLPTR_ERR;

    first_state = hmm->u.state;

    for (i = 0; i < obs_info->obs_x; i++)
    {
        //bad line (division )
        int state = (i * hmm->num_states)/obs_info->obs_x;
        obs_info->state[i] = state;
    }
    return CV_NO_ERR;
}



/*F///////////////////////////////////////////////////////////////////////////////////////
//    Name: InitMixSegm
//    Purpose: The function implements the mixture segmentation of the states of the embedded HMM
//    Context: used with the Viterbi training of the embedded HMM
//             Function uses K-Means algorithm for clustering
//
//    Parameters:  obs_info_array - array of pointers to image observations
//                 num_img - length of above array
//                 hmm - pointer to HMM structure
//
//    Returns: error status
//
//    Notes:
//F*/
CvStatus icvInit1DMixSegm(Cv1DObsInfo** obs_info_array, int num_img, CvEHMM* hmm)
{
    int  k, i, j;
    int* num_samples; /* number of observations in every state */
    int* counter;     /* array of counters for every state */

    int**  a_class;   /* for every state - characteristic array */

    CvVect32f** samples; /* for every state - pointer to observation vectors */
    int***  samples_mix;   /* for every state - array of pointers to vectors mixtures */

    CvTermCriteria criteria = cvTermCriteria( CV_TERMCRIT_EPS|CV_TERMCRIT_ITER,
                                              1000,    /* iter */
                                              0.01f ); /* eps  */

    int total = hmm->num_states;
    CvEHMMState* first_state = hmm->u.state;

    /* for every state integer is allocated - number of vectors in state */
    num_samples = (int*)icvAlloc( total * sizeof(int) );

    /* integer counter is allocated for every state */
    counter = (int*)icvAlloc( total * sizeof(int) );

    samples = (CvVect32f**)icvAlloc( total * sizeof(CvVect32f*) );
    samples_mix = (int***)icvAlloc( total * sizeof(int**) );

    /* clear */
    memset( num_samples, 0 , total*sizeof(int) );
    memset( counter, 0 , total*sizeof(int) );


    /* for every state the number of vectors which belong to it is computed (smth. like histogram) */
    for (k = 0; k < num_img; k++)
    {
        CvImgObsInfo* obs = obs_info_array[k];

        for (i = 0; i < obs->obs_x; i++)
        {
            int state = obs->state[ i ];
            num_samples[state] += 1;
        }
    }

    /* for every state int* is allocated */
    a_class = (int**)icvAlloc( total*sizeof(int*) );

    for (i = 0; i < total; i++)
    {
        a_class[i] = (int*)icvAlloc( num_samples[i] * sizeof(int) );
        samples[i] = (CvVect32f*)icvAlloc( num_samples[i] * sizeof(CvVect32f) );
        samples_mix[i] = (int**)icvAlloc( num_samples[i] * sizeof(int*) );
    }

    /* for every state vectors which belong to state are gathered */
    for (k = 0; k < num_img; k++)
    {
        CvImgObsInfo* obs = obs_info_array[k];
        int num_obs = obs->obs_x;
        float* vector = obs->obs;

        for (i = 0; i < num_obs; i++, vector+=obs->obs_size )
        {
            int state = obs->state[i];

            samples[state][counter[state]] = vector;
            samples_mix[state][counter[state]] = &(obs->mix[i]);
            counter[state]++;
        }
    }

    /* clear counters */
    memset( counter, 0, total*sizeof(int) );

    /* do the actual clustering using the K Means algorithm */
    for (i = 0; i < total; i++)
    {
        if ( first_state[i].num_mix == 1)
        {
            for (k = 0; k < num_samples[i]; k++)
            {
                /* all vectors belong to one mixture */
                a_class[i][k] = 0;
            }
        }
        else if( num_samples[i] )
        {
            /* clusterize vectors  */
            icvKMeans( first_state[i].num_mix, samples[i], num_samples[i],
                obs_info_array[0]->obs_size, criteria, a_class[i] );
        }
    }

    /* for every vector number of mixture is assigned */
    for( i = 0; i < total; i++ )
    {
        for (j = 0; j < num_samples[i]; j++)
        {
            samples_mix[i][j][0] = a_class[i][j];
        }
    }

   for (i = 0; i < total; i++)
    {
        icvFree( &(a_class[i]) );
        icvFree( &(samples[i]) );
        icvFree( &(samples_mix[i]) );
    }

    icvFree( &a_class );
    icvFree( &samples );
    icvFree( &samples_mix );
    icvFree( &counter );
    icvFree( &num_samples );


    return CV_NO_ERR;
}

/*F///////////////////////////////////////////////////////////////////////////////////////
//    Name: ComputeUniModeGauss
//    Purpose: The function computes the Gaussian pdf for a sample vector
//    Context:
//    Parameters:  obsVeq - pointer to the sample vector
//                 mu - pointer to the mean vector of the Gaussian pdf
//                 var - pointer to the variance vector of the Gaussian pdf
//                 VecSize - the size of sample vector
//
//    Returns: the pdf of the sample vector given the specified Gaussian
//
//    Notes:
//F*/
/*float icvComputeUniModeGauss(CvVect32f vect, CvVect32f mu,
                              CvVect32f inv_var, float log_var_val, int vect_size)
{
    int n;
    double tmp;
    double prob;

    prob = -log_var_val;

    for (n = 0; n < vect_size; n++)
    {
        tmp = (vect[n] - mu[n]) * inv_var[n];
        prob = prob - tmp * tmp;
   }
   //prob *= 0.5f;

   return (float)prob;
}*/

/*F///////////////////////////////////////////////////////////////////////////////////////
//    Name: ComputeGaussMixture
//    Purpose: The function computes the mixture Gaussian pdf of a sample vector.
//    Context:
//    Parameters:  obsVeq - pointer to the sample vector
//                 mu  - two-dimensional pointer to the mean vector of the Gaussian pdf;
//                       the first dimension is indexed over the number of mixtures and
//                       the second dimension is indexed along the size of the mean vector
//                 var - two-dimensional pointer to the variance vector of the Gaussian pdf;
//                       the first dimension is indexed over the number of mixtures and
//                       the second dimension is indexed along the size of the variance vector
//                 VecSize - the size of sample vector
//                 weight - pointer to the wights of the Gaussian mixture
//                 NumMix - the number of Gaussian mixtures
//
//    Returns: the pdf of the sample vector given the specified Gaussian mixture.
//
//    Notes:
//F*/
/* Calculate probability of observation at state in logarithmic scale*/
/*float icvComputeGaussMixture( CvVect32f vect, float* mu,
                                float* inv_var, float* log_var_val,
                                int vect_size, float* weight, int num_mix )
{
    double prob, l_prob;

    prob = 0.0f;

    if (num_mix == 1)
    {
        return icvComputeUniModeGauss( vect, mu, inv_var, log_var_val[0], vect_size);
    }
    else
    {
        int m;
        for (m = 0; m < num_mix; m++)
        {
            if ( weight[m] > 0.0)
            {
                l_prob = icvComputeUniModeGauss(vect, mu + m*vect_size,
                                                        inv_var + m * vect_size,
                                                        log_var_val[m],
                                                        vect_size);

                prob = prob + weight[m]*exp((double)l_prob);
            }
        }
        prob = log(prob);
    }
    return (float)prob;
}
*/

/*F///////////////////////////////////////////////////////////////////////////////////////
//    Name: EstimateObsProb
//    Purpose: The function computes the probability of every observation in every state
//    Context:
//    Parameters:  obs_info - observations
//                 hmm      - hmm
//    Returns: error status
//
//    Notes:
//F*/
CvStatus icvEstimate1DObsProb(CvImgObsInfo* obs_info, CvEHMM* hmm )
{
    int j;
    int total_states = 0;

    /* check if matrix exist and check current size
       if not sufficient - realloc */
    int status = 0; /* 1 - not allocated, 2 - allocated but small size,
                       3 - size is enough, but distribution is bad, 0 - all ok */

    /*for( j = 0; j < hmm->num_states; j++ )
    {
       total_states += hmm->u.ehmm[j].num_states;
    }*/
    total_states = hmm->num_states;

    if ( hmm->obsProb == NULL )
    {
        /* allocare memory */
        int need_size = ( obs_info->obs_x /* * obs_info->obs_y*/ * total_states * sizeof(float) /* +
                          obs_info->obs_y * hmm->num_states * sizeof( CvMatr32f) */);

        int* buffer = (int*)icvAlloc( need_size + 3 * sizeof(int) );
        buffer[0] = need_size;
        buffer[1] = obs_info->obs_y;
        buffer[2] = obs_info->obs_x;
        hmm->obsProb = (float**) (buffer + 3);
        status = 3;

    }
    else
    {
        /* check current size */
        int* total= (int*)(((int*)(hmm->obsProb)) - 3);
        int need_size = ( obs_info->obs_x /* * obs_info->obs_y*/ * total_states * sizeof(float) /* +
                           obs_info->obs_y * hmm->num_states * sizeof( CvMatr32f(float*)  )*/ );

        assert( sizeof(float*) == sizeof(int) );

        if ( need_size > (*total) )
        {
            int* buffer = ((int*)(hmm->obsProb)) - 3;
            icvFree( &buffer);
            buffer = (int*)icvAlloc( need_size + 3);
            buffer[0] = need_size;
            buffer[1] = obs_info->obs_y;
            buffer[2] = obs_info->obs_x;

            hmm->obsProb = (float**)(buffer + 3);

            status = 3;
        }
    }
    if (!status)
    {
        int* obsx = ((int*)(hmm->obsProb)) - 1;
        //int* obsy = ((int*)(hmm->obsProb)) - 2;

        assert( /*(*obsy > 0) &&*/ (*obsx > 0) );

        /* is good distribution? */
        if ( (obs_info->obs_x > (*obsx) ) /* || (obs_info->obs_y > (*obsy) ) */ )
            status = 3;
    }

    assert( (status == 0) || (status == 3) );
    /* if bad status - do reallocation actions */
    if ( status )
    {
        float** tmp = hmm->obsProb;
        //float*  tmpf;

        /* distribute pointers of ehmm->obsProb */
/*        for( i = 0; i < hmm->num_states; i++ )
        {
            hmm->u.ehmm[i].obsProb = tmp;
            tmp += obs_info->obs_y;
        }
*/
        //tmpf = (float*)tmp;

        /* distribute pointers of ehmm->obsProb[j] */
/*      for( i = 0; i < hmm->num_states; i++ )
        {
            CvEHMM* ehmm = &( hmm->u.ehmm[i] );

            for( j = 0; j < obs_info->obs_y; j++ )
            {
                ehmm->obsProb[j] = tmpf;
                tmpf += ehmm->num_states * obs_info->obs_x;
            }
        }
*/
        hmm->obsProb = tmp;

    }/* end of pointer distribution */

#if 1
    {
#define MAX_BUF_SIZE  1200
        float  local_log_mix_prob[MAX_BUF_SIZE];
        double local_mix_prob[MAX_BUF_SIZE];
        int    vect_size = obs_info->obs_size;
        CvStatus res = CV_NO_ERR;

        float*  log_mix_prob = local_log_mix_prob;
        double* mix_prob = local_mix_prob;

        int  max_size = 0;
        int  obs_x = obs_info->obs_x;

        /* calculate temporary buffer size */
        //for( i = 0; i < hmm->num_states; i++ )
        //{
        //    CvEHMM* ehmm = &(hmm->u.ehmm[i]);
            CvEHMMState* state = hmm->u.state;

            int max_mix = 0;
            for( j = 0; j < hmm->num_states; j++ )
            {
                int t = state[j].num_mix;
                if( max_mix < t ) max_mix = t;
            }
            max_mix *= hmm->num_states;
            /*if( max_size < max_mix )*/ max_size = max_mix;
        //}

        max_size *= obs_x * vect_size;

        /* allocate buffer */
        if( max_size > MAX_BUF_SIZE )
        {
            log_mix_prob = (float*)icvAlloc( max_size*(sizeof(float) + sizeof(double)));
            if( !log_mix_prob ) return CV_OUTOFMEM_ERR;
            mix_prob = (double*)(log_mix_prob + max_size);
        }

        memset( log_mix_prob, 0, max_size*sizeof(float));

        /*****************computing probabilities***********************/

        /* loop through external states */
        //for( i = 0; i < hmm->num_states; i++ )
        {
        //    CvEHMM* ehmm = &(hmm->u.ehmm[i]);
            CvEHMMState* state = hmm->u.state;

            int max_mix = 0;
            int n_states = hmm->num_states;

            /* determine maximal number of mixtures (again) */
            for( j = 0; j < hmm->num_states; j++ )
            {
                int t = state[j].num_mix;
                if( max_mix < t ) max_mix = t;
            }

            /* loop through rows of the observation matrix */
            //for( j = 0; j < obs_info->obs_y; j++ )
            {
                int  m, n;

                float* obs = obs_info->obs;/* + j * obs_x * vect_size; */
                float* log_mp = max_mix > 1 ? log_mix_prob : (float*)(hmm->obsProb);
                double* mp = mix_prob;

                /* several passes are done below */

                /* 1. calculate logarithms of probabilities for each mixture */

                /* loop through mixtures */
    /*  !!!! */     for( m = 0; m < max_mix; m++ )
                {
                    /* set pointer to first observation in the line */
                    float* vect = obs;

                    /* cycles through obseravtions in the line */
                    for( n = 0; n < obs_x; n++, vect += vect_size, log_mp += n_states )
                    {
                        int k, l;
                        for( l = 0; l < n_states; l++ )
                        {
                            if( state[l].num_mix > m )
                            {
                                float* mu = state[l].mu + m*vect_size;
                                float* inv_var = state[l].inv_var + m*vect_size;
                                double prob = -state[l].log_var_val[m];
                                for( k = 0; k < vect_size; k++ )
                                {
                                    double t = (vect[k] - mu[k])*inv_var[k];
                                    prob -= t*t;
                                }
                                log_mp[l] = MAX( (float)prob, -500 );
                            }
                        }
                    }
                }

                /* skip the rest if there is a single mixture */
                if( max_mix != 1 )
                {
                    /* 2. calculate exponent of log_mix_prob
                          (i.e. probability for each mixture) */
                    res = icvbExp_32f64f( log_mix_prob, mix_prob,
                                            max_mix * obs_x * n_states );
                    if( res < 0 ) goto processing_exit;

                    /* 3. sum all mixtures with weights */
                    /* 3a. first mixture - simply scale by weight */
                    for( n = 0; n < obs_x; n++, mp += n_states )
                    {
                        int l;
                        for( l = 0; l < n_states; l++ )
                        {
                            mp[l] *= state[l].weight[0];
                        }
                    }

                    /* 3b. add other mixtures */
                    for( m = 1; m < max_mix; m++ )
                    {
                        int ofs = -m*obs_x*n_states;
                        for( n = 0; n < obs_x; n++, mp += n_states )
                        {
                            int l;
                            for( l = 0; l < n_states; l++ )
                            {
                                if( m < state[l].num_mix )
                                {
                                    mp[l + ofs] += mp[l] * state[l].weight[m];
                                }
                            }
                        }
                    }

                    /* 4. Put logarithms of summary probabilities to the destination matrix */
                    res = icvbLog_64f32f( mix_prob, (float*)(hmm->obsProb),//[j],
                                            obs_x * n_states );
                    if( res < 0 ) goto processing_exit;
                }
            }
        }

processing_exit:

        if( log_mix_prob != local_log_mix_prob ) icvFree( &log_mix_prob );
        return res;
#undef MAX_BUF_SIZE
    }
#else
/*    for( i = 0; i < hmm->num_states; i++ )
    {
        CvEHMM* ehmm = &(hmm->u.ehmm[i]);
        CvEHMMState* state = ehmm->u.state;

        for( j = 0; j < obs_info->obs_y; j++ )
        {
            int k,m;

            int obs_index = j * obs_info->obs_x;

            float* B = ehmm->obsProb[j];

            // cycles through obs and states
            for( k = 0; k < obs_info->obs_x; k++ )
            {
                CvVect32f vect = (obs_info->obs) + (obs_index + k) * vect_size;

                float* matr_line = B + k * ehmm->num_states;

                for( m = 0; m < ehmm->num_states; m++ )
                {
                    matr_line[m] = icvComputeGaussMixture( vect, state[m].mu, state[m].inv_var,
                                                             state[m].log_var_val, vect_size, state[m].weight,
                                                             state[m].num_mix );
                }
            }
        }
    }
*/
#endif
}


/*F///////////////////////////////////////////////////////////////////////////////////////
//    Name: EstimateTransProb
//    Purpose: The function calculates the state and super state transition probabilities
//             of the model given the images,
//             the state segmentation and the input parameters
//    Context:
//    Parameters: obs_info_array - array of pointers to image observations
//                num_img - length of above array
//                hmm - pointer to HMM structure
//    Returns: void
//
//    Notes:
//F*/
CvStatus icvEstimate1DTransProb( Cv1DObsInfo** obs_info_array,
                                 int num_seq,
                                 CvEHMM* hmm )
{
    int    i, j, k;

    /* as a counter we will use transP matrix */

    /* initialization */

    /* clear transP */
    icvSetZero_32f( hmm->transP, hmm->num_states, hmm->num_states );


    /* compute the counters */
    for (i = 0; i < num_seq; i++)
    {
        int counter = 0;
        Cv1DObsInfo* info = obs_info_array[i];

        for (k = 0; k < info->obs_x; k++, counter++)
        {
            /* compute how many transitions from state to state
               occured */
            int state;
            int nextstate;

            state = info->state[counter];

            if (k < info->obs_x - 1)
            {
                int transP_size = hmm->num_states;

                nextstate = info->state[counter+1];
                hmm->transP[ state * transP_size + nextstate] += 1;
            }
        }
    }

    /* estimate superstate matrix */
    for( i = 0; i < hmm->num_states; i++)
    {
        float total = 0;
        float inv_total;
        for( j = 0; j < hmm->num_states; j++)
        {
            total += hmm->transP[i * hmm->num_states + j];
        }
        //assert( total );

        inv_total = total ? 1.f/total : 0;

        for( j = 0; j < hmm->num_states; j++)
        {
            hmm->transP[i * hmm->num_states + j] =
                hmm->transP[i * hmm->num_states + j] ?
                (float)log( hmm->transP[i * hmm->num_states + j] * inv_total ) : -BIG_FLT;
        }
    }

    return CV_NO_ERR;
}


/*F///////////////////////////////////////////////////////////////////////////////////////
//    Name: MixSegmL2
//    Purpose: The function implements the mixture segmentation of the states of the embedded HMM
//    Context: used with the Viterbi training of the embedded HMM
//
//    Parameters:
//             obs_info_array
//             num_img
//             hmm
//    Returns: void
//
//    Notes:
//F*/
CvStatus icv1DMixSegmL2(CvImgObsInfo** obs_info_array, int num_img, CvEHMM* hmm )
{
    int     k, i, m;

    CvEHMMState* state = hmm->u.state;

    for (k = 0; k < num_img; k++)
    {
        //int counter = 0;
        CvImgObsInfo* info = obs_info_array[k];

        for (i = 0; i < info->obs_x; i++)
        {
            int e_state = info->state[i];
            float min_dist;

            min_dist = icvSquareDistance((info->obs) + (i * info->obs_size),
                                               state[e_state].mu, info->obs_size);
            info->mix[i] = 0;

            for (m = 1; m < state[e_state].num_mix; m++)
            {
                float dist=icvSquareDistance( (info->obs) + (i * info->obs_size),
                                               state[e_state].mu + m * info->obs_size,
                                               info->obs_size);
                if (dist < min_dist)
                {
                    min_dist = dist;
                    /* assign mixture with smallest distance */
                    info->mix[i] = m;
                }
            }
        }
    }
    return CV_NO_ERR;
}

/*F///////////////////////////////////////////////////////////////////////////////////////
//    Name: icvEViterbi
//    Purpose: The function calculates the embedded Viterbi algorithm
//             for 1 image
//    Context:
//    Parameters:
//             obs_info - observations
//             hmm      - HMM
//
//    Returns: the Embedded Viterbi probability (float)
//             and do state segmentation of observations
//
//    Notes:
//F*/
float icvViterbi(Cv1DObsInfo* obs_info, CvEHMM* hmm)
{
    int    i, counter;
    float  log_likelihood;

    //CvEHMMState* first_state = hmm->u.state;

    /* memory allocation for superB */
    /*CvMatr32f superB = picvCreateMatrix_32f(hmm->num_states, obs_info->obs_x );*/

    /* memory allocation for q */
    int* super_q = (int*)icvAlloc( obs_info->obs_x * sizeof(int) );

    /* perform Viterbi segmentation (process 1D HMM) */
    icvViterbiSegmentation( hmm->num_states, obs_info->obs_x,
                            hmm->transP, (float*)(hmm->obsProb), 0,
                            _CV_LAST_STATE, &super_q, obs_info->obs_x,
                             obs_info->obs_x, &log_likelihood );

    log_likelihood /= obs_info->obs_x ;

    counter = 0;
    /* assign new state to observation vectors */
    for (i = 0; i < obs_info->obs_x; i++)
    {
         int state = super_q[i];
         obs_info->state[i] = state;
    }

    /* memory deallocation for superB */
    /*picvDeleteMatrix( superB );*/
    icvFree( &super_q );

    return log_likelihood;
}

CvStatus icvEstimate1DHMMStateParams(CvImgObsInfo** obs_info_array, int num_img, CvEHMM* hmm)

{
    /* compute gamma, weights, means, vars */
    int k, i, j, m;
    int counter = 0;
    int total = 0;
    int vect_len = obs_info_array[0]->obs_size;

    float start_log_var_val = LN2PI * vect_len;

    CvVect32f tmp_vect = icvCreateVector_32f( vect_len );

    CvEHMMState* first_state = hmm->u.state;

    assert( sizeof(float) == sizeof(int) );

    total+= hmm->num_states;

    /***************Gamma***********************/
    /* initialize gamma */
    for( i = 0; i < total; i++ )
    {
        for (m = 0; m < first_state[i].num_mix; m++)
        {
            ((int*)(first_state[i].weight))[m] = 0;
        }
    }

    /* maybe gamma must be computed in mixsegm process ?? */

    /* compute gamma */
    counter = 0;
    for (k = 0; k < num_img; k++)
    {
        CvImgObsInfo* info = obs_info_array[k];
        int num_obs = info->obs_y * info->obs_x;

        for (i = 0; i < num_obs; i++)
        {
            int state, mixture;
            state = info->state[i];
            mixture = info->mix[i];
            /* computes gamma - number of observations corresponding
               to every mixture of every state */
            ((int*)(first_state[state].weight))[mixture] += 1;
        }
    }
    /***************Mean and Var***********************/
    /* compute means and variances of every item */
    /* initially variance placed to inv_var */
    /* zero mean and variance */
    for (i = 0; i < total; i++)
    {
        memset( (void*)first_state[i].mu, 0, first_state[i].num_mix * vect_len *
                                                                         sizeof(float) );
        memset( (void*)first_state[i].inv_var, 0, first_state[i].num_mix * vect_len *
                                                                         sizeof(float) );
    }

    /* compute sums */
    for (i = 0; i < num_img; i++)
    {
        CvImgObsInfo* info = obs_info_array[i];
        int total_obs = info->obs_x;// * info->obs_y;

        float* vector = info->obs;

        for (j = 0; j < total_obs; j++, vector+=vect_len )
        {
            int state = info->state[j];
            int mixture = info->mix[j];

            CvVect32f mean  = first_state[state].mu + mixture * vect_len;
            CvVect32f mean2 = first_state[state].inv_var + mixture * vect_len;

            icvAddVector_32f( mean, vector, mean, vect_len );
            icvAddSquare_32f_C1IR( vector, vect_len * sizeof(float),
                                    mean2, vect_len * sizeof(float), cvSize(vect_len, 1) );
        }
    }

    /*compute the means and variances */
    /* assume gamma already computed */
    counter = 0;
    for (i = 0; i < total; i++)
    {
        CvEHMMState* state = &(first_state[i]);

        for (m = 0; m < state->num_mix; m++)
        {
            int k;
            CvVect32f mu  = state->mu + m * vect_len;
            CvVect32f invar = state->inv_var + m * vect_len;

            if ( ((int*)state->weight)[m] > 1)
            {
                float inv_gamma = 1.f/((int*)(state->weight))[m];

                icvScaleVector_32f( mu, mu, vect_len, inv_gamma);
                icvScaleVector_32f( invar, invar, vect_len, inv_gamma);
            }

            icvMulVectors_32f(mu, mu, tmp_vect, vect_len);
            icvSubVector_32f( invar, tmp_vect, invar, vect_len);

            /* low bound of variance - 0.01 (Ara's experimental result) */
            for( k = 0; k < vect_len; k++ )
            {
                invar[k] = (invar[k] > 0.01f) ? invar[k] : 0.01f;
            }

            /* compute log_var */
            state->log_var_val[m] = start_log_var_val;
            for( k = 0; k < vect_len; k++ )
            {
                state->log_var_val[m] += (float)log( invar[k] );
            }

            state->log_var_val[m] *= 0.5;

            /* compute inv_var = 1/sqrt(2*variance) */
            icvScaleVector_32f(invar, invar, vect_len, 2.f );
            icvbInvSqrt_32f(invar, invar, vect_len );
        }
    }

    /***************Weights***********************/
    /* normilize gammas - i.e. compute mixture weights */

    //compute weights
    for (i = 0; i < total; i++)
    {
        int gamma_total = 0;
        float norm;

        for (m = 0; m < first_state[i].num_mix; m++)
        {
            gamma_total += ((int*)(first_state[i].weight))[m];
        }

        norm = gamma_total ? (1.f/(float)gamma_total) : 0.f;

        for (m = 0; m < first_state[i].num_mix; m++)
        {
            first_state[i].weight[m] = ((int*)(first_state[i].weight))[m] * norm;
        }
    }

    icvDeleteVector( tmp_vect);
    return CV_NO_ERR;
}





#endif