1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Peng Xiao, pengxiao@outlook.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencl_kernels.hpp"
using namespace cv;
using namespace cv::ocl;
// currently sort procedure on the host is more efficient
static bool use_cpu_sorter = true;
// compact structure for corners
struct DefCorner
{
float eig; //eigenvalue of corner
short x; //x coordinate of corner point
short y; //y coordinate of corner point
} ;
// compare procedure for corner
//it is used for sort on the host side
struct DefCornerCompare
{
bool operator()(const DefCorner a, const DefCorner b) const
{
return a.eig > b.eig;
}
};
// sort corner point using opencl bitonicosrt implementation
static void sortCorners_caller(oclMat& corners, const int count)
{
Context * cxt = Context::getContext();
int GS = count/2;
int LS = min(255,GS);
size_t globalThreads[3] = {(size_t)GS, 1, 1};
size_t localThreads[3] = {(size_t)LS, 1, 1};
// 2^numStages should be equal to count or the output is invalid
int numStages = 0;
for(int i = count; i > 1; i >>= 1)
{
++numStages;
}
const int argc = 4;
std::vector< std::pair<size_t, const void *> > args(argc);
std::string kernelname = "sortCorners_bitonicSort";
args[0] = std::make_pair(sizeof(cl_mem), (void *)&corners.data);
args[1] = std::make_pair(sizeof(cl_int), (void *)&count);
for(int stage = 0; stage < numStages; ++stage)
{
args[2] = std::make_pair(sizeof(cl_int), (void *)&stage);
for(int passOfStage = 0; passOfStage < stage + 1; ++passOfStage)
{
args[3] = std::make_pair(sizeof(cl_int), (void *)&passOfStage);
openCLExecuteKernel(cxt, &imgproc_gftt, kernelname, globalThreads, localThreads, args, -1, -1);
}
}
}
// find corners on matrix and put it into array
static void findCorners_caller(
const oclMat& eig_mat, //input matrix worth eigenvalues
oclMat& eigMinMax, //input with min and max values of eigenvalues
const float qualityLevel,
const oclMat& mask,
oclMat& corners, //output array with detected corners
oclMat& counter) //output value with number of detected corners, have to be 0 before call
{
string opt;
Context * cxt = Context::getContext();
std::vector< std::pair<size_t, const void*> > args;
const int mask_strip = mask.step / mask.elemSize1();
args.push_back(make_pair( sizeof(cl_mem), (void*)&(eig_mat.data)));
int src_pitch = (int)eig_mat.step;
args.push_back(make_pair( sizeof(cl_int), (void*)&src_pitch ));
args.push_back(make_pair( sizeof(cl_mem), (void*)&mask.data ));
args.push_back(make_pair( sizeof(cl_mem), (void*)&corners.data ));
args.push_back(make_pair( sizeof(cl_int), (void*)&mask_strip));
args.push_back(make_pair( sizeof(cl_mem), (void*)&eigMinMax.data ));
args.push_back(make_pair( sizeof(cl_float), (void*)&qualityLevel ));
args.push_back(make_pair( sizeof(cl_int), (void*)&eig_mat.rows ));
args.push_back(make_pair( sizeof(cl_int), (void*)&eig_mat.cols ));
args.push_back(make_pair( sizeof(cl_int), (void*)&corners.cols ));
args.push_back(make_pair( sizeof(cl_mem), (void*)&counter.data ));
size_t globalThreads[3] = {(size_t)eig_mat.cols, (size_t)eig_mat.rows, 1};
size_t localThreads[3] = {16, 16, 1};
if(!mask.empty())
opt += " -D WITH_MASK=1";
openCLExecuteKernel(cxt, &imgproc_gftt, "findCorners", globalThreads, localThreads, args, -1, -1, opt.c_str());
}
static void minMaxEig_caller(const oclMat &src, oclMat &dst, oclMat & tozero)
{
size_t groupnum = src.clCxt->getDeviceInfo().maxComputeUnits;
CV_Assert(groupnum != 0);
int dbsize = groupnum * 2 * src.elemSize();
ensureSizeIsEnough(1, dbsize, CV_8UC1, dst);
cl_mem dst_data = reinterpret_cast<cl_mem>(dst.data);
int vElemSize = src.elemSize1();
int src_step = src.step / vElemSize, src_offset = src.offset / vElemSize;
int total = src.size().area();
{
// first parallel pass
vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_mem) , (void *)&src.data));
args.push_back( make_pair( sizeof(cl_int) , (void *)&src_step));
args.push_back( make_pair( sizeof(cl_int) , (void *)&src_offset));
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.rows ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.cols ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&total));
args.push_back( make_pair( sizeof(cl_int) , (void *)&groupnum));
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst_data ));
size_t globalThreads[3] = {(size_t)groupnum * 256, 1, 1};
size_t localThreads[3] = {256, 1, 1};
openCLExecuteKernel(src.clCxt, &arithm_minMax, "arithm_op_minMax", globalThreads, localThreads,
args, -1, -1, "-D T=float -D DEPTH_5 -D vlen=1");
}
{
// run final "serial" kernel to find accumulate results from threads and reset corner counter
vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst_data ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&groupnum ));
args.push_back( make_pair( sizeof(cl_mem) , (void *)&tozero.data ));
size_t globalThreads[3] = {1, 1, 1};
size_t localThreads[3] = {1, 1, 1};
openCLExecuteKernel(src.clCxt, &imgproc_gftt, "arithm_op_minMax_final", globalThreads, localThreads,
args, -1, -1);
}
}
void cv::ocl::GoodFeaturesToTrackDetector_OCL::operator ()(const oclMat& image, oclMat& corners, const oclMat& mask)
{
CV_Assert(qualityLevel > 0 && minDistance >= 0 && maxCorners >= 0);
CV_Assert(mask.empty() || (mask.type() == CV_8UC1 && mask.size() == image.size()));
ensureSizeIsEnough(image.size(), CV_32F, eig_);
if (useHarrisDetector)
cornerHarris_dxdy(image, eig_, Dx_, Dy_, blockSize, 3, harrisK);
else
cornerMinEigenVal_dxdy(image, eig_, Dx_, Dy_, blockSize, 3);
ensureSizeIsEnough(1,1, CV_32SC1, counter_);
// find max eigenvalue and reset detected counters
minMaxEig_caller(eig_,eig_minmax_,counter_);
// allocate buffer for kernels
int corner_array_size = std::max(1024, static_cast<int>(image.size().area() * 0.05));
if(!use_cpu_sorter)
{ // round to 2^n
unsigned int n=1;
for(n=1;n<(unsigned int)corner_array_size;n<<=1) ;
corner_array_size = (int)n;
ensureSizeIsEnough(1, corner_array_size , CV_32FC2, tmpCorners_);
// set to 0 to be able use bitonic sort on whole 2^n array
tmpCorners_.setTo(0);
}
else
{
ensureSizeIsEnough(1, corner_array_size , CV_32FC2, tmpCorners_);
}
int total = tmpCorners_.cols; // by default the number of corner is full array
vector<DefCorner> tmp(tmpCorners_.cols); // input buffer with corner for HOST part of algorithm
//find points with high eigenvalue and put it into the output array
findCorners_caller(
eig_,
eig_minmax_,
static_cast<float>(qualityLevel),
mask,
tmpCorners_,
counter_);
if(!use_cpu_sorter)
{// sort detected corners on deivce side
sortCorners_caller(tmpCorners_, corner_array_size);
}
else
{// send non-blocking request to read real non-zero number of corners to sort it on the HOST side
openCLVerifyCall(clEnqueueReadBuffer(getClCommandQueue(counter_.clCxt), (cl_mem)counter_.data, CL_FALSE, 0,sizeof(int), &total, 0, NULL, NULL));
}
//blocking read whole corners array (sorted or not sorted)
openCLReadBuffer(tmpCorners_.clCxt,(cl_mem)tmpCorners_.data,&tmp[0],tmpCorners_.cols*sizeof(DefCorner));
if (total == 0)
{// check for trivial case
corners.release();
return;
}
if(use_cpu_sorter)
{// sort detected corners on cpu side.
tmp.resize(total);
cv::sort(tmp,DefCornerCompare());
}
//estimate maximal size of final output array
int total_max = maxCorners > 0 ? std::min(maxCorners, total) : total;
int D2 = (int)ceil(minDistance * minDistance);
// allocate output buffer
vector<Point2f> tmp2;
tmp2.reserve(total_max);
if (minDistance < 1)
{// we have not distance restriction. then just copy with conversion maximal allowed points into output array
for(int i=0;i<total_max && tmp[i].eig>0.0f;++i)
{
tmp2.push_back(Point2f(tmp[i].x,tmp[i].y));
}
}
else
{// we have distance restriction. then start coping to output array from the first element and check distance for each next one
const int cell_size = cvRound(minDistance);
const int grid_width = (image.cols + cell_size - 1) / cell_size;
const int grid_height = (image.rows + cell_size - 1) / cell_size;
std::vector< std::vector<Point2i> > grid(grid_width * grid_height);
for (int i = 0; i < total ; ++i)
{
DefCorner p = tmp[i];
if(p.eig<=0.0f)
break; // condition to stop that is needed for GPU bitonic sort usage.
bool good = true;
int x_cell = static_cast<int>(p.x / cell_size);
int y_cell = static_cast<int>(p.y / cell_size);
int x1 = x_cell - 1;
int y1 = y_cell - 1;
int x2 = x_cell + 1;
int y2 = y_cell + 1;
// boundary check
x1 = std::max(0, x1);
y1 = std::max(0, y1);
x2 = std::min(grid_width - 1, x2);
y2 = std::min(grid_height - 1, y2);
for (int yy = y1; yy <= y2; yy++)
{
for (int xx = x1; xx <= x2; xx++)
{
vector<Point2i>& m = grid[yy * grid_width + xx];
if (m.empty())
continue;
for(size_t j = 0; j < m.size(); j++)
{
int dx = p.x - m[j].x;
int dy = p.y - m[j].y;
if (dx * dx + dy * dy < D2)
{
good = false;
goto break_out_;
}
}
}
}
break_out_:
if(good)
{
grid[y_cell * grid_width + x_cell].push_back(Point2i(p.x,p.y));
tmp2.push_back(Point2f(p.x,p.y));
if (maxCorners > 0 && tmp2.size() == static_cast<size_t>(maxCorners))
break;
}
}
}
int final_size = static_cast<int>(tmp2.size());
if(final_size>0)
corners.upload(Mat(1, final_size, CV_32FC2, &tmp2[0]));
else
corners.release();
}
void cv::ocl::GoodFeaturesToTrackDetector_OCL::downloadPoints(const oclMat &points, vector<Point2f> &points_v)
{
CV_DbgAssert(points.type() == CV_32FC2);
points_v.resize(points.cols);
openCLSafeCall(clEnqueueReadBuffer(
*(cl_command_queue*)getClCommandQueuePtr(),
reinterpret_cast<cl_mem>(points.data),
CL_TRUE,
0,
points.cols * sizeof(Point2f),
&points_v[0],
0,
NULL,
NULL));
}