1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2014, Itseez Inc, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_ML_HPP__
#define __OPENCV_ML_HPP__
#ifdef __cplusplus
# include "opencv2/core.hpp"
#endif
#ifdef __cplusplus
#include <float.h>
#include <map>
#include <iostream>
/**
@defgroup ml Machine Learning
@{
@defgroup ml_stat Statistical Models
@defgroup ml_bayes Normal Bayes Classifier
This simple classification model assumes that feature vectors from each class are normally
distributed (though, not necessarily independently distributed). So, the whole data distribution
function is assumed to be a Gaussian mixture, one component per class. Using the training data the
algorithm estimates mean vectors and covariance matrices for every class, and then it uses them for
prediction.
@defgroup ml_knearest K-Nearest Neighbors
The algorithm caches all training samples and predicts the response for a new sample by analyzing a
certain number (**K**) of the nearest neighbors of the sample using voting, calculating weighted
sum, and so on. The method is sometimes referred to as "learning by example" because for prediction
it looks for the feature vector with a known response that is closest to the given vector.
@defgroup ml_svm Support Vector Machines
Originally, support vector machines (SVM) was a technique for building an optimal binary (2-class)
classifier. Later the technique was extended to regression and clustering problems. SVM is a partial
case of kernel-based methods. It maps feature vectors into a higher-dimensional space using a kernel
function and builds an optimal linear discriminating function in this space or an optimal
hyper-plane that fits into the training data. In case of SVM, the kernel is not defined explicitly.
Instead, a distance between any 2 points in the hyper-space needs to be defined.
The solution is optimal, which means that the margin between the separating hyper-plane and the
nearest feature vectors from both classes (in case of 2-class classifier) is maximal. The feature
vectors that are the closest to the hyper-plane are called *support vectors*, which means that the
position of other vectors does not affect the hyper-plane (the decision function).
SVM implementation in OpenCV is based on @cite LibSVM .
Prediction with SVM
-------------------
StatModel::predict(samples, results, flags) should be used. Pass flags=StatModel::RAW_OUTPUT to get
the raw response from SVM (in the case of regression, 1-class or 2-class classification problem).
@defgroup ml_decsiontrees Decision Trees
The ML classes discussed in this section implement Classification and Regression Tree algorithms
described in @cite Breiman84 .
The class cv::ml::DTrees represents a single decision tree or a collection of decision trees. It's
also a base class for RTrees and Boost.
A decision tree is a binary tree (tree where each non-leaf node has two child nodes). It can be used
either for classification or for regression. For classification, each tree leaf is marked with a
class label; multiple leaves may have the same label. For regression, a constant is also assigned to
each tree leaf, so the approximation function is piecewise constant.
Predicting with Decision Trees
------------------------------
To reach a leaf node and to obtain a response for the input feature vector, the prediction procedure
starts with the root node. From each non-leaf node the procedure goes to the left (selects the left
child node as the next observed node) or to the right based on the value of a certain variable whose
index is stored in the observed node. The following variables are possible:
- **Ordered variables.** The variable value is compared with a threshold that is also stored in
the node. If the value is less than the threshold, the procedure goes to the left. Otherwise, it
goes to the right. For example, if the weight is less than 1 kilogram, the procedure goes to the
left, else to the right.
- **Categorical variables.** A discrete variable value is tested to see whether it belongs to a
certain subset of values (also stored in the node) from a limited set of values the variable
could take. If it does, the procedure goes to the left. Otherwise, it goes to the right. For
example, if the color is green or red, go to the left, else to the right.
So, in each node, a pair of entities (variable_index , `decision_rule (threshold/subset)` ) is
used. This pair is called a *split* (split on the variable variable_index ). Once a leaf node is
reached, the value assigned to this node is used as the output of the prediction procedure.
Sometimes, certain features of the input vector are missed (for example, in the darkness it is
difficult to determine the object color), and the prediction procedure may get stuck in the certain
node (in the mentioned example, if the node is split by color). To avoid such situations, decision
trees use so-called *surrogate splits*. That is, in addition to the best "primary" split, every tree
node may also be split to one or more other variables with nearly the same results.
Training Decision Trees
-----------------------
The tree is built recursively, starting from the root node. All training data (feature vectors and
responses) is used to split the root node. In each node the optimum decision rule (the best
"primary" split) is found based on some criteria. In machine learning, gini "purity" criteria are
used for classification, and sum of squared errors is used for regression. Then, if necessary, the
surrogate splits are found. They resemble the results of the primary split on the training data. All
the data is divided using the primary and the surrogate splits (like it is done in the prediction
procedure) between the left and the right child node. Then, the procedure recursively splits both
left and right nodes. At each node the recursive procedure may stop (that is, stop splitting the
node further) in one of the following cases:
- Depth of the constructed tree branch has reached the specified maximum value.
- Number of training samples in the node is less than the specified threshold when it is not
statistically representative to split the node further.
- All the samples in the node belong to the same class or, in case of regression, the variation is
too small.
- The best found split does not give any noticeable improvement compared to a random choice.
When the tree is built, it may be pruned using a cross-validation procedure, if necessary. That is,
some branches of the tree that may lead to the model overfitting are cut off. Normally, this
procedure is only applied to standalone decision trees. Usually tree ensembles build trees that are
small enough and use their own protection schemes against overfitting.
Variable Importance
-------------------
Besides the prediction that is an obvious use of decision trees, the tree can be also used for
various data analyses. One of the key properties of the constructed decision tree algorithms is an
ability to compute the importance (relative decisive power) of each variable. For example, in a spam
filter that uses a set of words occurred in the message as a feature vector, the variable importance
rating can be used to determine the most "spam-indicating" words and thus help keep the dictionary
size reasonable.
Importance of each variable is computed over all the splits on this variable in the tree, primary
and surrogate ones. Thus, to compute variable importance correctly, the surrogate splits must be
enabled in the training parameters, even if there is no missing data.
@defgroup ml_boost Boosting
A common machine learning task is supervised learning. In supervised learning, the goal is to learn
the functional relationship \f$F: y = F(x)\f$ between the input \f$x\f$ and the output \f$y\f$ . Predicting the
qualitative output is called *classification*, while predicting the quantitative output is called
*regression*.
Boosting is a powerful learning concept that provides a solution to the supervised classification
learning task. It combines the performance of many "weak" classifiers to produce a powerful
committee @cite HTF01 . A weak classifier is only required to be better than chance, and thus can be
very simple and computationally inexpensive. However, many of them smartly combine results to a
strong classifier that often outperforms most "monolithic" strong classifiers such as SVMs and
Neural Networks.
Decision trees are the most popular weak classifiers used in boosting schemes. Often the simplest
decision trees with only a single split node per tree (called stumps ) are sufficient.
The boosted model is based on \f$N\f$ training examples \f${(x_i,y_i)}1N\f$ with \f$x_i \in{R^K}\f$ and
\f$y_i \in{-1, +1}\f$ . \f$x_i\f$ is a \f$K\f$ -component vector. Each component encodes a feature relevant to
the learning task at hand. The desired two-class output is encoded as -1 and +1.
Different variants of boosting are known as Discrete Adaboost, Real AdaBoost, LogitBoost, and Gentle
AdaBoost @cite FHT98 . All of them are very similar in their overall structure. Therefore, this chapter
focuses only on the standard two-class Discrete AdaBoost algorithm, outlined below. Initially the
same weight is assigned to each sample (step 2). Then, a weak classifier \f$f_{m(x)}\f$ is trained on
the weighted training data (step 3a). Its weighted training error and scaling factor \f$c_m\f$ is
computed (step 3b). The weights are increased for training samples that have been misclassified
(step 3c). All weights are then normalized, and the process of finding the next weak classifier
continues for another \f$M\f$ -1 times. The final classifier \f$F(x)\f$ is the sign of the weighted sum over
the individual weak classifiers (step 4).
**Two-class Discrete AdaBoost Algorithm**
- Set \f$N\f$ examples \f${(x_i,y_i)}1N\f$ with \f$x_i \in{R^K}, y_i \in{-1, +1}\f$ .
- Assign weights as \f$w_i = 1/N, i = 1,...,N\f$ .
- Repeat for \f$m = 1,2,...,M\f$ :
3.1. Fit the classifier \f$f_m(x) \in{-1,1}\f$, using weights \f$w_i\f$ on the training data.
3.2. Compute \f$err_m = E_w [1_{(y \neq f_m(x))}], c_m = log((1 - err_m)/err_m)\f$ .
3.3. Set \f$w_i \Leftarrow w_i exp[c_m 1_{(y_i \neq f_m(x_i))}], i = 1,2,...,N,\f$ and renormalize
so that \f$\Sigma i w_i = 1\f$ .
1. Classify new samples *x* using the formula: \f$\textrm{sign} (\Sigma m = 1M c_m f_m(x))\f$ .
@note Similar to the classical boosting methods, the current implementation supports two-class
classifiers only. For M \> 2 classes, there is the **AdaBoost.MH** algorithm (described in
@cite FHT98) that reduces the problem to the two-class problem, yet with a much larger training set.
To reduce computation time for boosted models without substantially losing accuracy, the influence
trimming technique can be employed. As the training algorithm proceeds and the number of trees in
the ensemble is increased, a larger number of the training samples are classified correctly and with
increasing confidence, thereby those samples receive smaller weights on the subsequent iterations.
Examples with a very low relative weight have a small impact on the weak classifier training. Thus,
such examples may be excluded during the weak classifier training without having much effect on the
induced classifier. This process is controlled with the weight_trim_rate parameter. Only examples
with the summary fraction weight_trim_rate of the total weight mass are used in the weak
classifier training. Note that the weights for **all** training examples are recomputed at each
training iteration. Examples deleted at a particular iteration may be used again for learning some
of the weak classifiers further @cite FHT98 .
Prediction with Boost
---------------------
StatModel::predict(samples, results, flags) should be used. Pass flags=StatModel::RAW_OUTPUT to get
the raw sum from Boost classifier.
@defgroup ml_randomtrees Random Trees
Random trees have been introduced by Leo Breiman and Adele Cutler:
<http://www.stat.berkeley.edu/users/breiman/RandomForests/> . The algorithm can deal with both
classification and regression problems. Random trees is a collection (ensemble) of tree predictors
that is called *forest* further in this section (the term has been also introduced by L. Breiman).
The classification works as follows: the random trees classifier takes the input feature vector,
classifies it with every tree in the forest, and outputs the class label that received the majority
of "votes". In case of a regression, the classifier response is the average of the responses over
all the trees in the forest.
All the trees are trained with the same parameters but on different training sets. These sets are
generated from the original training set using the bootstrap procedure: for each training set, you
randomly select the same number of vectors as in the original set ( =N ). The vectors are chosen
with replacement. That is, some vectors will occur more than once and some will be absent. At each
node of each trained tree, not all the variables are used to find the best split, but a random
subset of them. With each node a new subset is generated. However, its size is fixed for all the
nodes and all the trees. It is a training parameter set to \f$\sqrt{number_of_variables}\f$ by
default. None of the built trees are pruned.
In random trees there is no need for any accuracy estimation procedures, such as cross-validation or
bootstrap, or a separate test set to get an estimate of the training error. The error is estimated
internally during the training. When the training set for the current tree is drawn by sampling with
replacement, some vectors are left out (so-called *oob (out-of-bag) data* ). The size of oob data is
about N/3 . The classification error is estimated by using this oob-data as follows:
- Get a prediction for each vector, which is oob relative to the i-th tree, using the very i-th
tree.
- After all the trees have been trained, for each vector that has ever been oob, find the
class-*winner* for it (the class that has got the majority of votes in the trees where the
vector was oob) and compare it to the ground-truth response.
- Compute the classification error estimate as a ratio of the number of misclassified oob vectors
to all the vectors in the original data. In case of regression, the oob-error is computed as the
squared error for oob vectors difference divided by the total number of vectors.
For the random trees usage example, please, see letter_recog.cpp sample in OpenCV distribution.
**References:**
- *Machine Learning*, Wald I, July 2002.
<http://stat-www.berkeley.edu/users/breiman/wald2002-1.pdf>
- *Looking Inside the Black Box*, Wald II, July 2002.
<http://stat-www.berkeley.edu/users/breiman/wald2002-2.pdf>
- *Software for the Masses*, Wald III, July 2002.
<http://stat-www.berkeley.edu/users/breiman/wald2002-3.pdf>
- And other articles from the web site
<http://www.stat.berkeley.edu/users/breiman/RandomForests/cc_home.htm>
@defgroup ml_em Expectation Maximization
The Expectation Maximization(EM) algorithm estimates the parameters of the multivariate probability
density function in the form of a Gaussian mixture distribution with a specified number of mixtures.
Consider the set of the N feature vectors { \f$x_1, x_2,...,x_{N}\f$ } from a d-dimensional Euclidean
space drawn from a Gaussian mixture:
\f[p(x;a_k,S_k, \pi _k) = \sum _{k=1}^{m} \pi _kp_k(x), \quad \pi _k \geq 0, \quad \sum _{k=1}^{m} \pi _k=1,\f]
\f[p_k(x)= \varphi (x;a_k,S_k)= \frac{1}{(2\pi)^{d/2}\mid{S_k}\mid^{1/2}} exp \left \{ - \frac{1}{2} (x-a_k)^TS_k^{-1}(x-a_k) \right \} ,\f]
where \f$m\f$ is the number of mixtures, \f$p_k\f$ is the normal distribution density with the mean \f$a_k\f$
and covariance matrix \f$S_k\f$, \f$\pi_k\f$ is the weight of the k-th mixture. Given the number of mixtures
\f$M\f$ and the samples \f$x_i\f$, \f$i=1..N\f$ the algorithm finds the maximum-likelihood estimates (MLE) of
all the mixture parameters, that is, \f$a_k\f$, \f$S_k\f$ and \f$\pi_k\f$ :
\f[L(x, \theta )=logp(x, \theta )= \sum _{i=1}^{N}log \left ( \sum _{k=1}^{m} \pi _kp_k(x) \right ) \to \max _{ \theta \in \Theta },\f]
\f[\Theta = \left \{ (a_k,S_k, \pi _k): a_k \in \mathbbm{R} ^d,S_k=S_k^T>0,S_k \in \mathbbm{R} ^{d \times d}, \pi _k \geq 0, \sum _{k=1}^{m} \pi _k=1 \right \} .\f]
The EM algorithm is an iterative procedure. Each iteration includes two steps. At the first step
(Expectation step or E-step), you find a probability \f$p_{i,k}\f$ (denoted \f$\alpha_{i,k}\f$ in the
formula below) of sample i to belong to mixture k using the currently available mixture parameter
estimates:
\f[\alpha _{ki} = \frac{\pi_k\varphi(x;a_k,S_k)}{\sum\limits_{j=1}^{m}\pi_j\varphi(x;a_j,S_j)} .\f]
At the second step (Maximization step or M-step), the mixture parameter estimates are refined using
the computed probabilities:
\f[\pi _k= \frac{1}{N} \sum _{i=1}^{N} \alpha _{ki}, \quad a_k= \frac{\sum\limits_{i=1}^{N}\alpha_{ki}x_i}{\sum\limits_{i=1}^{N}\alpha_{ki}} , \quad S_k= \frac{\sum\limits_{i=1}^{N}\alpha_{ki}(x_i-a_k)(x_i-a_k)^T}{\sum\limits_{i=1}^{N}\alpha_{ki}}\f]
Alternatively, the algorithm may start with the M-step when the initial values for \f$p_{i,k}\f$ can be
provided. Another alternative when \f$p_{i,k}\f$ are unknown is to use a simpler clustering algorithm to
pre-cluster the input samples and thus obtain initial \f$p_{i,k}\f$ . Often (including machine learning)
the k-means algorithm is used for that purpose.
One of the main problems of the EM algorithm is a large number of parameters to estimate. The
majority of the parameters reside in covariance matrices, which are \f$d \times d\f$ elements each where
\f$d\f$ is the feature space dimensionality. However, in many practical problems, the covariance
matrices are close to diagonal or even to \f$\mu_k*I\f$ , where \f$I\f$ is an identity matrix and \f$\mu_k\f$ is
a mixture-dependent "scale" parameter. So, a robust computation scheme could start with harder
constraints on the covariance matrices and then use the estimated parameters as an input for a less
constrained optimization problem (often a diagonal covariance matrix is already a good enough
approximation).
References:
- Bilmes98 J. A. Bilmes. *A Gentle Tutorial of the EM Algorithm and its Application to Parameter
Estimation for Gaussian Mixture and Hidden Markov Models*. Technical Report TR-97-021,
International Computer Science Institute and Computer Science Division, University of California
at Berkeley, April 1998.
@defgroup ml_neural Neural Networks
ML implements feed-forward artificial neural networks or, more particularly, multi-layer perceptrons
(MLP), the most commonly used type of neural networks. MLP consists of the input layer, output
layer, and one or more hidden layers. Each layer of MLP includes one or more neurons directionally
linked with the neurons from the previous and the next layer. The example below represents a 3-layer
perceptron with three inputs, two outputs, and the hidden layer including five neurons:

All the neurons in MLP are similar. Each of them has several input links (it takes the output values
from several neurons in the previous layer as input) and several output links (it passes the
response to several neurons in the next layer). The values retrieved from the previous layer are
summed up with certain weights, individual for each neuron, plus the bias term. The sum is
transformed using the activation function \f$f\f$ that may be also different for different neurons.

In other words, given the outputs \f$x_j\f$ of the layer \f$n\f$ , the outputs \f$y_i\f$ of the layer \f$n+1\f$ are
computed as:
\f[u_i = \sum _j (w^{n+1}_{i,j}*x_j) + w^{n+1}_{i,bias}\f]
\f[y_i = f(u_i)\f]
Different activation functions may be used. ML implements three standard functions:
- Identity function ( ANN_MLP::IDENTITY ): \f$f(x)=x\f$
- Symmetrical sigmoid ( ANN_MLP::SIGMOID_SYM ): \f$f(x)=\beta*(1-e^{-\alpha x})/(1+e^{-\alpha x}\f$
), which is the default choice for MLP. The standard sigmoid with \f$\beta =1, \alpha =1\f$ is shown
below:

- Gaussian function ( ANN_MLP::GAUSSIAN ): \f$f(x)=\beta e^{-\alpha x*x}\f$ , which is not completely
supported at the moment.
In ML, all the neurons have the same activation functions, with the same free parameters (
\f$\alpha, \beta\f$ ) that are specified by user and are not altered by the training algorithms.
So, the whole trained network works as follows:
1. Take the feature vector as input. The vector size is equal to the size of the input layer.
2. Pass values as input to the first hidden layer.
3. Compute outputs of the hidden layer using the weights and the activation functions.
4. Pass outputs further downstream until you compute the output layer.
So, to compute the network, you need to know all the weights \f$w^{n+1)}_{i,j}\f$ . The weights are
computed by the training algorithm. The algorithm takes a training set, multiple input vectors with
the corresponding output vectors, and iteratively adjusts the weights to enable the network to give
the desired response to the provided input vectors.
The larger the network size (the number of hidden layers and their sizes) is, the more the potential
network flexibility is. The error on the training set could be made arbitrarily small. But at the
same time the learned network also "learns" the noise present in the training set, so the error on
the test set usually starts increasing after the network size reaches a limit. Besides, the larger
networks are trained much longer than the smaller ones, so it is reasonable to pre-process the data,
using PCA::operator() or similar technique, and train a smaller network on only essential features.
Another MLP feature is an inability to handle categorical data as is. However, there is a
workaround. If a certain feature in the input or output (in case of n -class classifier for \f$n>2\f$ )
layer is categorical and can take \f$M>2\f$ different values, it makes sense to represent it as a binary
tuple of M elements, where the i -th element is 1 if and only if the feature is equal to the i -th
value out of M possible. It increases the size of the input/output layer but speeds up the training
algorithm convergence and at the same time enables "fuzzy" values of such variables, that is, a
tuple of probabilities instead of a fixed value.
ML implements two algorithms for training MLP's. The first algorithm is a classical random
sequential back-propagation algorithm. The second (default) one is a batch RPROP algorithm.
@defgroup ml_lr Logistic Regression
ML implements logistic regression, which is a probabilistic classification technique. Logistic
Regression is a binary classification algorithm which is closely related to Support Vector Machines
(SVM). Like SVM, Logistic Regression can be extended to work on multi-class classification problems
like digit recognition (i.e. recognizing digitis like 0,1 2, 3,... from the given images). This
version of Logistic Regression supports both binary and multi-class classifications (for multi-class
it creates a multiple 2-class classifiers). In order to train the logistic regression classifier,
Batch Gradient Descent and Mini-Batch Gradient Descent algorithms are used (see <http://en.wikipedia.org/wiki/Gradient_descent_optimization>).
Logistic Regression is a discriminative classifier (see <http://www.cs.cmu.edu/~tom/NewChapters.html> for more details).
Logistic Regression is implemented as a C++ class in LogisticRegression.
In Logistic Regression, we try to optimize the training paramater \f$\theta\f$ such that the hypothesis
\f$0 \leq h_\theta(x) \leq 1\f$ is acheived. We have \f$h_\theta(x) = g(h_\theta(x))\f$ and
\f$g(z) = \frac{1}{1+e^{-z}}\f$ as the logistic or sigmoid function. The term "Logistic" in Logistic
Regression refers to this function. For given data of a binary classification problem of classes 0
and 1, one can determine that the given data instance belongs to class 1 if \f$h_\theta(x) \geq 0.5\f$
or class 0 if \f$h_\theta(x) < 0.5\f$ .
In Logistic Regression, choosing the right parameters is of utmost importance for reducing the
training error and ensuring high training accuracy. LogisticRegression::Params is the structure that
defines parameters that are required to train a Logistic Regression classifier. The learning rate is
determined by LogisticRegression::Params.alpha. It determines how faster we approach the solution.
It is a positive real number. Optimization algorithms like Batch Gradient Descent and Mini-Batch
Gradient Descent are supported in LogisticRegression. It is important that we mention the number of
iterations these optimization algorithms have to run. The number of iterations are mentioned by
LogisticRegression::Params.num_iters. The number of iterations can be thought as number of steps
taken and learning rate specifies if it is a long step or a short step. These two parameters define
how fast we arrive at a possible solution. In order to compensate for overfitting regularization is
performed, which can be enabled by setting LogisticRegression::Params.regularized to a positive
integer (greater than zero). One can specify what kind of regularization has to be performed by
setting LogisticRegression::Params.norm to LogisticRegression::REG_L1 or
LogisticRegression::REG_L2 values. LogisticRegression provides a choice of 2 training methods with
Batch Gradient Descent or the Mini-Batch Gradient Descent. To specify this, set
LogisticRegression::Params.train_method to either LogisticRegression::BATCH or
LogisticRegression::MINI_BATCH. If LogisticRegression::Params is set to
LogisticRegression::MINI_BATCH, the size of the mini batch has to be to a postive integer using
LogisticRegression::Params.mini_batch_size.
A sample set of training parameters for the Logistic Regression classifier can be initialized as
follows:
@code
LogisticRegression::Params params;
params.alpha = 0.5;
params.num_iters = 10000;
params.norm = LogisticRegression::REG_L2;
params.regularized = 1;
params.train_method = LogisticRegression::MINI_BATCH;
params.mini_batch_size = 10;
@endcode
@defgroup ml_data Training Data
In machine learning algorithms there is notion of training data. Training data includes several
components:
- A set of training samples. Each training sample is a vector of values (in Computer Vision it's
sometimes referred to as feature vector). Usually all the vectors have the same number of
components (features); OpenCV ml module assumes that. Each feature can be ordered (i.e. its
values are floating-point numbers that can be compared with each other and strictly ordered,
i.e. sorted) or categorical (i.e. its value belongs to a fixed set of values that can be
integers, strings etc.).
- Optional set of responses corresponding to the samples. Training data with no responses is used
in unsupervised learning algorithms that learn structure of the supplied data based on distances
between different samples. Training data with responses is used in supervised learning
algorithms, which learn the function mapping samples to responses. Usually the responses are
scalar values, ordered (when we deal with regression problem) or categorical (when we deal with
classification problem; in this case the responses are often called "labels"). Some algorithms,
most noticeably Neural networks, can handle not only scalar, but also multi-dimensional or
vector responses.
- Another optional component is the mask of missing measurements. Most algorithms require all the
components in all the training samples be valid, but some other algorithms, such as decision
tress, can handle the cases of missing measurements.
- In the case of classification problem user may want to give different weights to different
classes. This is useful, for example, when
- user wants to shift prediction accuracy towards lower false-alarm rate or higher hit-rate.
- user wants to compensate for significantly different amounts of training samples from
different classes.
- In addition to that, each training sample may be given a weight, if user wants the algorithm to
pay special attention to certain training samples and adjust the training model accordingly.
- Also, user may wish not to use the whole training data at once, but rather use parts of it, e.g.
to do parameter optimization via cross-validation procedure.
As you can see, training data can have rather complex structure; besides, it may be very big and/or
not entirely available, so there is need to make abstraction for this concept. In OpenCV ml there is
cv::ml::TrainData class for that.
@}
*/
namespace cv
{
namespace ml
{
//! @addtogroup ml
//! @{
/* Variable type */
enum
{
VAR_NUMERICAL =0,
VAR_ORDERED =0,
VAR_CATEGORICAL =1
};
enum
{
TEST_ERROR = 0,
TRAIN_ERROR = 1
};
enum
{
ROW_SAMPLE = 0,
COL_SAMPLE = 1
};
//! @addtogroup ml_svm
//! @{
/** @brief The structure represents the logarithmic grid range of statmodel parameters.
It is used for optimizing statmodel accuracy by varying model parameters, the accuracy estimate
being computed by cross-validation.
- member double ParamGrid::minVal
Minimum value of the statmodel parameter.
- member double ParamGrid::maxVal
Maximum value of the statmodel parameter.
- member double ParamGrid::logStep
Logarithmic step for iterating the statmodel parameter.
The grid determines the following iteration sequence of the statmodel parameter values:
\f[(minVal, minVal*step, minVal*{step}^2, \dots, minVal*{logStep}^n),\f]
where \f$n\f$ is the maximal index satisfying
\f[\texttt{minVal} * \texttt{logStep} ^n < \texttt{maxVal}\f]
The grid is logarithmic, so logStep must always be greater then 1.
*/
class CV_EXPORTS_W_MAP ParamGrid
{
public:
/** @brief The constructors.
The full constructor initializes corresponding members. The default constructor creates a dummy
grid:
@code
ParamGrid::ParamGrid()
{
minVal = maxVal = 0;
logStep = 1;
}
@endcode
*/
ParamGrid();
ParamGrid(double _minVal, double _maxVal, double _logStep);
CV_PROP_RW double minVal;
CV_PROP_RW double maxVal;
CV_PROP_RW double logStep;
};
//! @} ml_svm
//! @addtogroup ml_data
//! @{
/** @brief Class encapsulating training data.
Please note that the class only specifies the interface of training data, but not implementation.
All the statistical model classes in ml take Ptr\<TrainData\>. In other words, you can create your
own class derived from TrainData and supply smart pointer to the instance of this class into
StatModel::train.
*/
class CV_EXPORTS TrainData
{
public:
static inline float missingValue() { return FLT_MAX; }
virtual ~TrainData();
virtual int getLayout() const = 0;
virtual int getNTrainSamples() const = 0;
virtual int getNTestSamples() const = 0;
virtual int getNSamples() const = 0;
virtual int getNVars() const = 0;
virtual int getNAllVars() const = 0;
virtual void getSample(InputArray varIdx, int sidx, float* buf) const = 0;
virtual Mat getSamples() const = 0;
virtual Mat getMissing() const = 0;
/** @brief Returns matrix of train samples
@param layout The requested layout. If it's different from the initial one, the matrix is
transposed.
@param compressSamples if true, the function returns only the training samples (specified by
sampleIdx)
@param compressVars if true, the function returns the shorter training samples, containing only
the active variables.
In current implementation the function tries to avoid physical data copying and returns the matrix
stored inside TrainData (unless the transposition or compression is needed).
*/
virtual Mat getTrainSamples(int layout=ROW_SAMPLE,
bool compressSamples=true,
bool compressVars=true) const = 0;
/** @brief Returns the vector of responses
The function returns ordered or the original categorical responses. Usually it's used in regression
algorithms.
*/
virtual Mat getTrainResponses() const = 0;
/** @brief Returns the vector of normalized categorical responses
The function returns vector of responses. Each response is integer from 0 to \<number of
classes\>-1. The actual label value can be retrieved then from the class label vector, see
TrainData::getClassLabels.
*/
virtual Mat getTrainNormCatResponses() const = 0;
virtual Mat getTestResponses() const = 0;
virtual Mat getTestNormCatResponses() const = 0;
virtual Mat getResponses() const = 0;
virtual Mat getNormCatResponses() const = 0;
virtual Mat getSampleWeights() const = 0;
virtual Mat getTrainSampleWeights() const = 0;
virtual Mat getTestSampleWeights() const = 0;
virtual Mat getVarIdx() const = 0;
virtual Mat getVarType() const = 0;
virtual int getResponseType() const = 0;
virtual Mat getTrainSampleIdx() const = 0;
virtual Mat getTestSampleIdx() const = 0;
virtual void getValues(int vi, InputArray sidx, float* values) const = 0;
virtual void getNormCatValues(int vi, InputArray sidx, int* values) const = 0;
virtual Mat getDefaultSubstValues() const = 0;
virtual int getCatCount(int vi) const = 0;
/** @brief Returns the vector of class labels
The function returns vector of unique labels occurred in the responses.
*/
virtual Mat getClassLabels() const = 0;
virtual Mat getCatOfs() const = 0;
virtual Mat getCatMap() const = 0;
virtual void setTrainTestSplit(int count, bool shuffle=true) = 0;
/** @brief Splits the training data into the training and test parts
The function selects a subset of specified relative size and then returns it as the training set. If
the function is not called, all the data is used for training. Please, note that for each of
TrainData::getTrain\* there is corresponding TrainData::getTest\*, so that the test subset can be
retrieved and processed as well.
*/
virtual void setTrainTestSplitRatio(double ratio, bool shuffle=true) = 0;
virtual void shuffleTrainTest() = 0;
static Mat getSubVector(const Mat& vec, const Mat& idx);
/** @brief Reads the dataset from a .csv file and returns the ready-to-use training data.
@param filename The input file name
@param headerLineCount The number of lines in the beginning to skip; besides the header, the
function also skips empty lines and lines staring with '\#'
@param responseStartIdx Index of the first output variable. If -1, the function considers the last
variable as the response
@param responseEndIdx Index of the last output variable + 1. If -1, then there is single response
variable at responseStartIdx.
@param varTypeSpec The optional text string that specifies the variables' types. It has the format ord[n1-n2,n3,n4-n5,...]cat[n6,n7-n8,...]. That is, variables from n1 to n2 (inclusive range), n3, n4 to n5 ... are considered ordered and n6, n7 to n8 ... are considered as categorical. The range [n1..n2] + [n3] + [n4..n5] + ... + [n6] + [n7..n8] should cover all the variables. If varTypeSpec is not specified, then algorithm uses the following rules:
# all input variables are considered ordered by default. If some column contains has
non-numerical values, e.g. 'apple', 'pear', 'apple', 'apple', 'mango', the corresponding
variable is considered categorical.
# if there are several output variables, they are all considered as ordered. Error is
reported when non-numerical values are used.
# if there is a single output variable, then if its values are non-numerical or are all
integers, then it's considered categorical. Otherwise, it's considered ordered.
@param delimiter The character used to separate values in each line.
@param missch The character used to specify missing measurements. It should not be a digit.
Although it's a non-numerical value, it surely does not affect the decision of whether the
variable ordered or categorical.
*/
static Ptr<TrainData> loadFromCSV(const String& filename,
int headerLineCount,
int responseStartIdx=-1,
int responseEndIdx=-1,
const String& varTypeSpec=String(),
char delimiter=',',
char missch='?');
/** @brief Creates training data from in-memory arrays.
@param samples matrix of samples. It should have CV_32F type.
@param layout it's either ROW_SAMPLE, which means that each training sample is a row of samples,
or COL_SAMPLE, which means that each training sample occupies a column of samples.
@param responses matrix of responses. If the responses are scalar, they should be stored as a
single row or as a single column. The matrix should have type CV_32F or CV_32S (in the former
case the responses are considered as ordered by default; in the latter case - as categorical)
@param varIdx vector specifying which variables to use for training. It can be an integer vector
(CV_32S) containing 0-based variable indices or byte vector (CV_8U) containing a mask of active
variables.
@param sampleIdx vector specifying which samples to use for training. It can be an integer vector
(CV_32S) containing 0-based sample indices or byte vector (CV_8U) containing a mask of training
samples.
@param sampleWeights optional vector with weights for each sample. It should have CV_32F type.
@param varType optional vector of type CV_8U and size \<number_of_variables_in_samples\> +
\<number_of_variables_in_responses\>, containing types of each input and output variable. The
ordered variables are denoted by value VAR_ORDERED, and categorical - by VAR_CATEGORICAL.
*/
static Ptr<TrainData> create(InputArray samples, int layout, InputArray responses,
InputArray varIdx=noArray(), InputArray sampleIdx=noArray(),
InputArray sampleWeights=noArray(), InputArray varType=noArray());
};
//! @} ml_data
//! @addtogroup ml_stat
//! @{
/** @brief Base class for statistical models in OpenCV ML.
*/
class CV_EXPORTS_W StatModel : public Algorithm
{
public:
enum { UPDATE_MODEL = 1, RAW_OUTPUT=1, COMPRESSED_INPUT=2, PREPROCESSED_INPUT=4 };
virtual void clear();
/** @brief Returns the number of variables in training samples
The method must be overwritten in the derived classes.
*/
virtual int getVarCount() const = 0;
/** @brief Returns true if the model is trained
The method must be overwritten in the derived classes.
*/
virtual bool isTrained() const = 0;
/** @brief Returns true if the model is classifier
The method must be overwritten in the derived classes.
*/
virtual bool isClassifier() const = 0;
/** @brief Trains the statistical model
@param trainData training data that can be loaded from file using TrainData::loadFromCSV or
created with TrainData::create.
@param flags optional flags, depending on the model. Some of the models can be updated with the
new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).
There are 2 instance methods and 2 static (class) template methods. The first two train the already
created model (the very first method must be overwritten in the derived classes). And the latter two
variants are convenience methods that construct empty model and then call its train method.
*/
virtual bool train( const Ptr<TrainData>& trainData, int flags=0 );
/** @overload
@param samples training samples
@param layout ROW_SAMPLE (training samples are the matrix rows) or COL_SAMPLE (training samples
are the matrix columns)
@param responses vector of responses associated with the training samples.
*/
virtual bool train( InputArray samples, int layout, InputArray responses );
/** @brief Computes error on the training or test dataset
@param data the training data
@param test if true, the error is computed over the test subset of the data, otherwise it's
computed over the training subset of the data. Please note that if you loaded a completely
different dataset to evaluate already trained classifier, you will probably want not to set the
test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so that the
error is computed for the whole new set. Yes, this sounds a bit confusing.
@param resp the optional output responses.
The method uses StatModel::predict to compute the error. For regression models the error is computed
as RMS, for classifiers - as a percent of missclassified samples (0%-100%).
*/
virtual float calcError( const Ptr<TrainData>& data, bool test, OutputArray resp ) const;
/** @brief Predicts response(s) for the provided sample(s)
@param samples The input samples, floating-point matrix
@param results The optional output matrix of results.
@param flags The optional flags, model-dependent. Some models, such as Boost, SVM recognize
StatModel::RAW_OUTPUT flag, which makes the method return the raw results (the sum), not the
class label.
*/
virtual float predict( InputArray samples, OutputArray results=noArray(), int flags=0 ) const = 0;
/** @brief Loads model from the file
This is static template method of StatModel. It's usage is following (in the case of SVM): :
Ptr<SVM> svm = StatModel::load<SVM>("my_svm_model.xml");
In order to make this method work, the derived class must overwrite
Algorithm::read(const FileNode& fn).
*/
template<typename _Tp> static Ptr<_Tp> load(const String& filename)
{
FileStorage fs(filename, FileStorage::READ);
Ptr<_Tp> model = _Tp::create();
model->read(fs.getFirstTopLevelNode());
return model->isTrained() ? model : Ptr<_Tp>();
}
/** @brief Loads model from a String
@param strModel The string variable containing the model you want to load.
This is static template method of StatModel. It's usage is following (in the case of SVM):
Ptr<SVM> svm = StatModel::loadFromString<SVM>(myStringModel);
*/
template<typename _Tp> static Ptr<_Tp> loadFromString(const String& strModel)
{
FileStorage fs(strModel, FileStorage::READ + FileStorage::MEMORY);
Ptr<_Tp> model = _Tp::create();
model->read(fs.getFirstTopLevelNode());
return model->isTrained() ? model : Ptr<_Tp>();
}
template<typename _Tp> static Ptr<_Tp> train(const Ptr<TrainData>& data, const typename _Tp::Params& p, int flags=0)
{
Ptr<_Tp> model = _Tp::create(p);
return !model.empty() && model->train(data, flags) ? model : Ptr<_Tp>();
}
template<typename _Tp> static Ptr<_Tp> train(InputArray samples, int layout, InputArray responses,
const typename _Tp::Params& p, int flags=0)
{
Ptr<_Tp> model = _Tp::create(p);
return !model.empty() && model->train(TrainData::create(samples, layout, responses), flags) ? model : Ptr<_Tp>();
}
/** @brief Saves the model to a file.
In order to make this method work, the derived class must overwrite
Algorithm::write(FileStorage& fs).
*/
virtual void save(const String& filename) const;
virtual String getDefaultModelName() const = 0;
};
//! @} ml_stat
/****************************************************************************************\
* Normal Bayes Classifier *
\****************************************************************************************/
//! @addtogroup ml_bayes
//! @{
/** @brief Bayes classifier for normally distributed data.
*/
class CV_EXPORTS_W NormalBayesClassifier : public StatModel
{
public:
class CV_EXPORTS_W Params
{
public:
Params();
};
/** @brief Predicts the response for sample(s).
The method estimates the most probable classes for input vectors. Input vectors (one or more) are
stored as rows of the matrix inputs. In case of multiple input vectors, there should be one output
vector outputs. The predicted class for a single input vector is returned by the method. The vector
outputProbs contains the output probabilities corresponding to each element of result.
*/
virtual float predictProb( InputArray inputs, OutputArray outputs,
OutputArray outputProbs, int flags=0 ) const = 0;
virtual void setParams(const Params& params) = 0;
virtual Params getParams() const = 0;
/** @brief Creates empty model
@param params The model parameters. There is none so far, the structure is used as a placeholder
for possible extensions.
Use StatModel::train to train the model,
StatModel::train\<NormalBayesClassifier\>(traindata, params) to create and train the model,
StatModel::load\<NormalBayesClassifier\>(filename) to load the pre-trained model.
*/
static Ptr<NormalBayesClassifier> create(const Params& params=Params());
};
//! @} ml_bayes
/****************************************************************************************\
* K-Nearest Neighbour Classifier *
\****************************************************************************************/
//! @addtogroup ml_knearest
//! @{
/** @brief The class implements K-Nearest Neighbors model as described in the beginning of this section.
@note
- (Python) An example of digit recognition using KNearest can be found at
opencv_source/samples/python2/digits.py
- (Python) An example of grid search digit recognition using KNearest can be found at
opencv_source/samples/python2/digits_adjust.py
- (Python) An example of video digit recognition using KNearest can be found at
opencv_source/samples/python2/digits_video.py
*/
class CV_EXPORTS_W KNearest : public StatModel
{
public:
class CV_EXPORTS_W_MAP Params
{
public:
Params(int defaultK=10, bool isclassifier_=true, int Emax_=INT_MAX, int algorithmType_=BRUTE_FORCE);
CV_PROP_RW int defaultK;
CV_PROP_RW bool isclassifier;
CV_PROP_RW int Emax; // for implementation with KDTree
CV_PROP_RW int algorithmType;
};
virtual void setParams(const Params& p) = 0;
virtual Params getParams() const = 0;
/** @brief Finds the neighbors and predicts responses for input vectors.
@param samples Input samples stored by rows. It is a single-precision floating-point matrix of
\<number_of_samples\> \* k size.
@param k Number of used nearest neighbors. Should be greater than 1.
@param results Vector with results of prediction (regression or classification) for each input
sample. It is a single-precision floating-point vector with \<number_of_samples\> elements.
@param neighborResponses Optional output values for corresponding neighbors. It is a
single-precision floating-point matrix of \<number_of_samples\> \* k size.
@param dist Optional output distances from the input vectors to the corresponding neighbors. It is
a single-precision floating-point matrix of \<number_of_samples\> \* k size.
For each input vector (a row of the matrix samples), the method finds the k nearest neighbors. In
case of regression, the predicted result is a mean value of the particular vector's neighbor
responses. In case of classification, the class is determined by voting.
For each input vector, the neighbors are sorted by their distances to the vector.
In case of C++ interface you can use output pointers to empty matrices and the function will
allocate memory itself.
If only a single input vector is passed, all output matrices are optional and the predicted value is
returned by the method.
The function is parallelized with the TBB library.
*/
virtual float findNearest( InputArray samples, int k,
OutputArray results,
OutputArray neighborResponses=noArray(),
OutputArray dist=noArray() ) const = 0;
enum { BRUTE_FORCE=1, KDTREE=2 };
/** @brief Creates the empty model
@param params The model parameters: default number of neighbors to use in predict method (in
KNearest::findNearest this number must be passed explicitly) and the flag on whether
classification or regression model should be trained.
The static method creates empty KNearest classifier. It should be then trained using train method
(see StatModel::train). Alternatively, you can load boost model from file using
StatModel::load\<KNearest\>(filename).
*/
static Ptr<KNearest> create(const Params& params=Params());
};
//! @} ml_knearest
/****************************************************************************************\
* Support Vector Machines *
\****************************************************************************************/
//! @addtogroup ml_svm
//! @{
/** @brief Support Vector Machines.
@note
- (Python) An example of digit recognition using SVM can be found at
opencv_source/samples/python2/digits.py
- (Python) An example of grid search digit recognition using SVM can be found at
opencv_source/samples/python2/digits_adjust.py
- (Python) An example of video digit recognition using SVM can be found at
opencv_source/samples/python2/digits_video.py
*/
class CV_EXPORTS_W SVM : public StatModel
{
public:
/** @brief SVM training parameters.
The structure must be initialized and passed to the training method of SVM.
*/
class CV_EXPORTS_W_MAP Params
{
public:
Params();
/** @brief The constructors
@param svm_type Type of a SVM formulation. Possible values are:
- **SVM::C_SVC** C-Support Vector Classification. n-class classification (n \f$\geq\f$ 2), allows
imperfect separation of classes with penalty multiplier C for outliers.
- **SVM::NU_SVC** \f$\nu\f$-Support Vector Classification. n-class classification with possible
imperfect separation. Parameter \f$\nu\f$ (in the range 0..1, the larger the value, the smoother
the decision boundary) is used instead of C.
- **SVM::ONE_CLASS** Distribution Estimation (One-class SVM). All the training data are from
the same class, SVM builds a boundary that separates the class from the rest of the feature
space.
- **SVM::EPS_SVR** \f$\epsilon\f$-Support Vector Regression. The distance between feature vectors
from the training set and the fitting hyper-plane must be less than p. For outliers the
penalty multiplier C is used.
- **SVM::NU_SVR** \f$\nu\f$-Support Vector Regression. \f$\nu\f$ is used instead of p.
See @cite LibSVM for details.
@param kernel_type Type of a SVM kernel. Possible values are:
- **SVM::LINEAR** Linear kernel. No mapping is done, linear discrimination (or regression) is
done in the original feature space. It is the fastest option. \f$K(x_i, x_j) = x_i^T x_j\f$.
- **SVM::POLY** Polynomial kernel:
\f$K(x_i, x_j) = (\gamma x_i^T x_j + coef0)^{degree}, \gamma > 0\f$.
- **SVM::RBF** Radial basis function (RBF), a good choice in most cases.
\f$K(x_i, x_j) = e^{-\gamma ||x_i - x_j||^2}, \gamma > 0\f$.
- **SVM::SIGMOID** Sigmoid kernel: \f$K(x_i, x_j) = \tanh(\gamma x_i^T x_j + coef0)\f$.
- **SVM::CHI2** Exponential Chi2 kernel, similar to the RBF kernel:
\f$K(x_i, x_j) = e^{-\gamma \chi^2(x_i,x_j)}, \chi^2(x_i,x_j) = (x_i-x_j)^2/(x_i+x_j), \gamma > 0\f$.
- **SVM::INTER** Histogram intersection kernel. A fast kernel. \f$K(x_i, x_j) = min(x_i,x_j)\f$.
@param degree Parameter degree of a kernel function (POLY).
@param gamma Parameter \f$\gamma\f$ of a kernel function (POLY / RBF / SIGMOID / CHI2).
@param coef0 Parameter coef0 of a kernel function (POLY / SIGMOID).
@param Cvalue Parameter C of a SVM optimization problem (C_SVC / EPS_SVR / NU_SVR).
@param nu Parameter \f$\nu\f$ of a SVM optimization problem (NU_SVC / ONE_CLASS / NU_SVR).
@param p Parameter \f$\epsilon\f$ of a SVM optimization problem (EPS_SVR).
@param classWeights Optional weights in the C_SVC problem , assigned to particular classes. They
are multiplied by C so the parameter C of class \#i becomes classWeights(i) \* C. Thus these
weights affect the misclassification penalty for different classes. The larger weight, the larger
penalty on misclassification of data from the corresponding class.
@param termCrit Termination criteria of the iterative SVM training procedure which solves a
partial case of constrained quadratic optimization problem. You can specify tolerance and/or the
maximum number of iterations.
The default constructor initialize the structure with following values:
@code
SVMParams::SVMParams() :
svmType(SVM::C_SVC), kernelType(SVM::RBF), degree(0),
gamma(1), coef0(0), C(1), nu(0), p(0), classWeights(0)
{
termCrit = TermCriteria( TermCriteria::MAX_ITER+TermCriteria::EPS, 1000, FLT_EPSILON );
}
@endcode
A comparison of different kernels on the following 2D test case with four classes. Four C_SVC SVMs
have been trained (one against rest) with auto_train. Evaluation on three different kernels (CHI2,
INTER, RBF). The color depicts the class with max score. Bright means max-score \> 0, dark means
max-score \< 0.

*/
Params( int svm_type, int kernel_type,
double degree, double gamma, double coef0,
double Cvalue, double nu, double p,
const Mat& classWeights, TermCriteria termCrit );
CV_PROP_RW int svmType;
CV_PROP_RW int kernelType;
CV_PROP_RW double gamma, coef0, degree;
CV_PROP_RW double C; // for CV_SVM_C_SVC, CV_SVM_EPS_SVR and CV_SVM_NU_SVR
CV_PROP_RW double nu; // for CV_SVM_NU_SVC, CV_SVM_ONE_CLASS, and CV_SVM_NU_SVR
CV_PROP_RW double p; // for CV_SVM_EPS_SVR
CV_PROP_RW Mat classWeights; // for CV_SVM_C_SVC
CV_PROP_RW TermCriteria termCrit; // termination criteria
};
class CV_EXPORTS Kernel : public Algorithm
{
public:
virtual int getType() const = 0;
virtual void calc( int vcount, int n, const float* vecs, const float* another, float* results ) = 0;
};
// SVM type
enum { C_SVC=100, NU_SVC=101, ONE_CLASS=102, EPS_SVR=103, NU_SVR=104 };
// SVM kernel type
enum { CUSTOM=-1, LINEAR=0, POLY=1, RBF=2, SIGMOID=3, CHI2=4, INTER=5 };
// SVM params type
enum { C=0, GAMMA=1, P=2, NU=3, COEF=4, DEGREE=5 };
/** @brief Trains an SVM with optimal parameters.
@param data the training data that can be constructed using TrainData::create or
TrainData::loadFromCSV.
@param kFold Cross-validation parameter. The training set is divided into kFold subsets. One
subset is used to test the model, the others form the train set. So, the SVM algorithm is executed
kFold times.
@param Cgrid
@param gammaGrid
@param pGrid
@param nuGrid
@param coeffGrid
@param degreeGrid Iteration grid for the corresponding SVM parameter.
@param balanced If true and the problem is 2-class classification then the method creates more
balanced cross-validation subsets that is proportions between classes in subsets are close to such
proportion in the whole train dataset.
The method trains the SVM model automatically by choosing the optimal parameters C, gamma, p, nu,
coef0, degree from SVM::Params. Parameters are considered optimal when the cross-validation estimate
of the test set error is minimal.
If there is no need to optimize a parameter, the corresponding grid step should be set to any value
less than or equal to 1. For example, to avoid optimization in gamma, set gammaGrid.step = 0,
gammaGrid.minVal, gamma_grid.maxVal as arbitrary numbers. In this case, the value params.gamma is
taken for gamma.
And, finally, if the optimization in a parameter is required but the corresponding grid is unknown,
you may call the function SVM::getDefaulltGrid. To generate a grid, for example, for gamma, call
SVM::getDefaulltGrid(SVM::GAMMA).
This function works for the classification (params.svmType=SVM::C_SVC or
params.svmType=SVM::NU_SVC) as well as for the regression (params.svmType=SVM::EPS_SVR or
params.svmType=SVM::NU_SVR). If params.svmType=SVM::ONE_CLASS, no optimization is made and the
usual SVM with parameters specified in params is executed.
*/
virtual bool trainAuto( const Ptr<TrainData>& data, int kFold = 10,
ParamGrid Cgrid = SVM::getDefaultGrid(SVM::C),
ParamGrid gammaGrid = SVM::getDefaultGrid(SVM::GAMMA),
ParamGrid pGrid = SVM::getDefaultGrid(SVM::P),
ParamGrid nuGrid = SVM::getDefaultGrid(SVM::NU),
ParamGrid coeffGrid = SVM::getDefaultGrid(SVM::COEF),
ParamGrid degreeGrid = SVM::getDefaultGrid(SVM::DEGREE),
bool balanced=false) = 0;
/** @brief Retrieves all the support vectors
The method returns all the support vector as floating-point matrix, where support vectors are stored
as matrix rows.
*/
CV_WRAP virtual Mat getSupportVectors() const = 0;
virtual void setParams(const Params& p, const Ptr<Kernel>& customKernel=Ptr<Kernel>()) = 0;
/** @brief Returns the current SVM parameters.
This function may be used to get the optimal parameters obtained while automatically training
SVM::trainAuto.
*/
virtual Params getParams() const = 0;
virtual Ptr<Kernel> getKernel() const = 0;
/** @brief Retrieves the decision function
@param i the index of the decision function. If the problem solved is regression, 1-class or
2-class classification, then there will be just one decision function and the index should always
be 0. Otherwise, in the case of N-class classification, there will be N\*(N-1)/2 decision
functions.
@param alpha the optional output vector for weights, corresponding to different support vectors.
In the case of linear SVM all the alpha's will be 1's.
@param svidx the optional output vector of indices of support vectors within the matrix of support
vectors (which can be retrieved by SVM::getSupportVectors). In the case of linear SVM each
decision function consists of a single "compressed" support vector.
The method returns rho parameter of the decision function, a scalar subtracted from the weighted sum
of kernel responses.
*/
virtual double getDecisionFunction(int i, OutputArray alpha, OutputArray svidx) const = 0;
/** @brief Generates a grid for SVM parameters.
@param param_id SVM parameters IDs that must be one of the following:
- **SVM::C**
- **SVM::GAMMA**
- **SVM::P**
- **SVM::NU**
- **SVM::COEF**
- **SVM::DEGREE**
The grid is generated for the parameter with this ID.
The function generates a grid for the specified parameter of the SVM algorithm. The grid may be
passed to the function SVM::trainAuto.
*/
static ParamGrid getDefaultGrid( int param_id );
/** @brief Creates empty model
@param p SVM parameters
@param customKernel the optional custom kernel to use. It must implement SVM::Kernel interface.
Use StatModel::train to train the model, StatModel::train\<RTrees\>(traindata, params) to create and
train the model, StatModel::load\<RTrees\>(filename) to load the pre-trained model. Since SVM has
several parameters, you may want to find the best parameters for your problem. It can be done with
SVM::trainAuto.
*/
static Ptr<SVM> create(const Params& p=Params(), const Ptr<Kernel>& customKernel=Ptr<Kernel>());
};
//! @} ml_svm
/****************************************************************************************\
* Expectation - Maximization *
\****************************************************************************************/
//! @addtogroup ml_em
//! @{
/** @brief The class implements the EM algorithm as described in the beginning of this section.
*/
class CV_EXPORTS_W EM : public StatModel
{
public:
// Type of covariation matrices
enum {COV_MAT_SPHERICAL=0, COV_MAT_DIAGONAL=1, COV_MAT_GENERIC=2, COV_MAT_DEFAULT=COV_MAT_DIAGONAL};
// Default parameters
enum {DEFAULT_NCLUSTERS=5, DEFAULT_MAX_ITERS=100};
// The initial step
enum {START_E_STEP=1, START_M_STEP=2, START_AUTO_STEP=0};
/** @brief The class describes EM training parameters.
*/
class CV_EXPORTS_W_MAP Params
{
public:
/** @brief The constructor
@param nclusters The number of mixture components in the Gaussian mixture model. Default value of
the parameter is EM::DEFAULT_NCLUSTERS=5. Some of EM implementation could determine the optimal
number of mixtures within a specified value range, but that is not the case in ML yet.
@param covMatType Constraint on covariance matrices which defines type of matrices. Possible
values are:
- **EM::COV_MAT_SPHERICAL** A scaled identity matrix \f$\mu_k * I\f$. There is the only
parameter \f$\mu_k\f$ to be estimated for each matrix. The option may be used in special cases,
when the constraint is relevant, or as a first step in the optimization (for example in case
when the data is preprocessed with PCA). The results of such preliminary estimation may be
passed again to the optimization procedure, this time with
covMatType=EM::COV_MAT_DIAGONAL.
- **EM::COV_MAT_DIAGONAL** A diagonal matrix with positive diagonal elements. The number of
free parameters is d for each matrix. This is most commonly used option yielding good
estimation results.
- **EM::COV_MAT_GENERIC** A symmetric positively defined matrix. The number of free
parameters in each matrix is about \f$d^2/2\f$. It is not recommended to use this option, unless
there is pretty accurate initial estimation of the parameters and/or a huge number of
training samples.
@param termCrit The termination criteria of the EM algorithm. The EM algorithm can be terminated
by the number of iterations termCrit.maxCount (number of M-steps) or when relative change of
likelihood logarithm is less than termCrit.epsilon. Default maximum number of iterations is
EM::DEFAULT_MAX_ITERS=100.
*/
explicit Params(int nclusters=DEFAULT_NCLUSTERS, int covMatType=EM::COV_MAT_DIAGONAL,
const TermCriteria& termCrit=TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,
EM::DEFAULT_MAX_ITERS, 1e-6));
CV_PROP_RW int nclusters;
CV_PROP_RW int covMatType;
CV_PROP_RW TermCriteria termCrit;
};
virtual void setParams(const Params& p) = 0;
virtual Params getParams() const = 0;
/** @brief Returns weights of the mixtures
Returns vector with the number of elements equal to the number of mixtures.
*/
virtual Mat getWeights() const = 0;
/** @brief Returns the cluster centers (means of the Gaussian mixture)
Returns matrix with the number of rows equal to the number of mixtures and number of columns equal
to the space dimensionality.
*/
virtual Mat getMeans() const = 0;
/** @brief Returns covariation matrices
Returns vector of covariation matrices. Number of matrices is the number of gaussian mixtures, each
matrix is a square floating-point matrix NxN, where N is the space dimensionality.
*/
virtual void getCovs(std::vector<Mat>& covs) const = 0;
/** @brief Returns a likelihood logarithm value and an index of the most probable mixture component for the
given sample.
@param sample A sample for classification. It should be a one-channel matrix of \f$1 \times dims\f$ or
\f$dims \times 1\f$ size.
@param probs Optional output matrix that contains posterior probabilities of each component given
the sample. It has \f$1 \times nclusters\f$ size and CV_64FC1 type.
The method returns a two-element double vector. Zero element is a likelihood logarithm value for the
sample. First element is an index of the most probable mixture component for the given sample.
*/
CV_WRAP virtual Vec2d predict2(InputArray sample, OutputArray probs) const = 0;
virtual bool train( const Ptr<TrainData>& trainData, int flags=0 ) = 0;
/** @brief Static methods that estimate the Gaussian mixture parameters from a samples set
@param samples Samples from which the Gaussian mixture model will be estimated. It should be a
one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type it
will be converted to the inner matrix of such type for the further computing.
@param logLikelihoods The optional output matrix that contains a likelihood logarithm value for
each sample. It has \f$nsamples \times 1\f$ size and CV_64FC1 type.
@param labels The optional output "class label" for each sample:
\f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most probable mixture
component for each sample). It has \f$nsamples \times 1\f$ size and CV_32SC1 type.
@param probs The optional output matrix that contains posterior probabilities of each Gaussian
mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and CV_64FC1
type.
@param params The Gaussian mixture params, see EM::Params description
@return true if the Gaussian mixture model was trained successfully, otherwise it returns
false.
Starts with Expectation step. Initial values of the model parameters will be estimated by the
k-means algorithm.
Unlike many of the ML models, EM is an unsupervised learning algorithm and it does not take
responses (class labels or function values) as input. Instead, it computes the *Maximum Likelihood
Estimate* of the Gaussian mixture parameters from an input sample set, stores all the parameters
inside the structure: \f$p_{i,k}\f$ in probs, \f$a_k\f$ in means , \f$S_k\f$ in covs[k], \f$\pi_k\f$ in weights ,
and optionally computes the output "class label" for each sample:
\f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most probable mixture
component for each sample).
The trained model can be used further for prediction, just like any other classifier. The trained
model is similar to the NormalBayesClassifier.
*/
static Ptr<EM> train(InputArray samples,
OutputArray logLikelihoods=noArray(),
OutputArray labels=noArray(),
OutputArray probs=noArray(),
const Params& params=Params());
/** Starts with Expectation step. You need to provide initial means \f$a_k\f$ of mixture
components. Optionally you can pass initial weights \f$\pi_k\f$ and covariance matrices
\f$S_k\f$ of mixture components.
@param samples Samples from which the Gaussian mixture model will be estimated. It should be a
one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type it
will be converted to the inner matrix of such type for the further computing.
@param means0 Initial means \f$a_k\f$ of mixture components. It is a one-channel matrix of
\f$nclusters \times dims\f$ size. If the matrix does not have CV_64F type it will be converted to the
inner matrix of such type for the further computing.
@param covs0 The vector of initial covariance matrices \f$S_k\f$ of mixture components. Each of
covariance matrices is a one-channel matrix of \f$dims \times dims\f$ size. If the matrices do not
have CV_64F type they will be converted to the inner matrices of such type for the further
computing.
@param weights0 Initial weights \f$\pi_k\f$ of mixture components. It should be a one-channel
floating-point matrix with \f$1 \times nclusters\f$ or \f$nclusters \times 1\f$ size.
@param logLikelihoods The optional output matrix that contains a likelihood logarithm value for
each sample. It has \f$nsamples \times 1\f$ size and CV_64FC1 type.
@param labels The optional output "class label" for each sample:
\f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most probable mixture
component for each sample). It has \f$nsamples \times 1\f$ size and CV_32SC1 type.
@param probs The optional output matrix that contains posterior probabilities of each Gaussian
mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and CV_64FC1
type.
@param params The Gaussian mixture params, see EM::Params description
*/
static Ptr<EM> train_startWithE(InputArray samples, InputArray means0,
InputArray covs0=noArray(),
InputArray weights0=noArray(),
OutputArray logLikelihoods=noArray(),
OutputArray labels=noArray(),
OutputArray probs=noArray(),
const Params& params=Params());
/** Starts with Maximization step. You need to provide initial probabilities \f$p_{i,k}\f$ to
use this option.
@param samples Samples from which the Gaussian mixture model will be estimated. It should be a
one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type it
will be converted to the inner matrix of such type for the further computing.
@param probs0
@param logLikelihoods The optional output matrix that contains a likelihood logarithm value for
each sample. It has \f$nsamples \times 1\f$ size and CV_64FC1 type.
@param labels The optional output "class label" for each sample:
\f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most probable mixture
component for each sample). It has \f$nsamples \times 1\f$ size and CV_32SC1 type.
@param probs The optional output matrix that contains posterior probabilities of each Gaussian
mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and CV_64FC1
type.
@param params The Gaussian mixture params, see EM::Params description
*/
static Ptr<EM> train_startWithM(InputArray samples, InputArray probs0,
OutputArray logLikelihoods=noArray(),
OutputArray labels=noArray(),
OutputArray probs=noArray(),
const Params& params=Params());
/** @brief Creates empty EM model
@param params EM parameters
The model should be trained then using StatModel::train(traindata, flags) method. Alternatively, you
can use one of the EM::train\* methods or load it from file using StatModel::load\<EM\>(filename).
*/
static Ptr<EM> create(const Params& params=Params());
};
//! @} ml_em
/****************************************************************************************\
* Decision Tree *
\****************************************************************************************/
//! @addtogroup ml_decsiontrees
//! @{
/** @brief The class represents a single decision tree or a collection of decision trees. The current public
interface of the class allows user to train only a single decision tree, however the class is
capable of storing multiple decision trees and using them for prediction (by summing responses or
using a voting schemes), and the derived from DTrees classes (such as RTrees and Boost) use this
capability to implement decision tree ensembles.
*/
class CV_EXPORTS_W DTrees : public StatModel
{
public:
enum { PREDICT_AUTO=0, PREDICT_SUM=(1<<8), PREDICT_MAX_VOTE=(2<<8), PREDICT_MASK=(3<<8) };
/** @brief The structure contains all the decision tree training parameters. You can initialize it by default
constructor and then override any parameters directly before training, or the structure may be fully
initialized using the advanced variant of the constructor.
*/
class CV_EXPORTS_W_MAP Params
{
public:
Params();
/** @brief The constructors
@param maxDepth The maximum possible depth of the tree. That is the training algorithms attempts
to split a node while its depth is less than maxDepth. The root node has zero depth. The actual
depth may be smaller if the other termination criteria are met (see the outline of the training
procedure in the beginning of the section), and/or if the tree is pruned.
@param minSampleCount If the number of samples in a node is less than this parameter then the node
will not be split.
@param regressionAccuracy Termination criteria for regression trees. If all absolute differences
between an estimated value in a node and values of train samples in this node are less than this
parameter then the node will not be split further.
@param useSurrogates If true then surrogate splits will be built. These splits allow to work with
missing data and compute variable importance correctly.
@note currently it's not implemented.
@param maxCategories Cluster possible values of a categorical variable into K\<=maxCategories
clusters to find a suboptimal split. If a discrete variable, on which the training procedure
tries to make a split, takes more than maxCategories values, the precise best subset estimation
may take a very long time because the algorithm is exponential. Instead, many decision trees
engines (including our implementation) try to find sub-optimal split in this case by clustering
all the samples into maxCategories clusters that is some categories are merged together. The
clustering is applied only in n \> 2-class classification problems for categorical variables
with N \> max_categories possible values. In case of regression and 2-class classification the
optimal split can be found efficiently without employing clustering, thus the parameter is not
used in these cases.
@param CVFolds If CVFolds \> 1 then algorithms prunes the built decision tree using K-fold
cross-validation procedure where K is equal to CVFolds.
@param use1SERule If true then a pruning will be harsher. This will make a tree more compact and
more resistant to the training data noise but a bit less accurate.
@param truncatePrunedTree If true then pruned branches are physically removed from the tree.
Otherwise they are retained and it is possible to get results from the original unpruned (or
pruned less aggressively) tree.
@param priors The array of a priori class probabilities, sorted by the class label value. The
parameter can be used to tune the decision tree preferences toward a certain class. For example,
if you want to detect some rare anomaly occurrence, the training base will likely contain much
more normal cases than anomalies, so a very good classification performance will be achieved
just by considering every case as normal. To avoid this, the priors can be specified, where the
anomaly probability is artificially increased (up to 0.5 or even greater), so the weight of the
misclassified anomalies becomes much bigger, and the tree is adjusted properly. You can also
think about this parameter as weights of prediction categories which determine relative weights
that you give to misclassification. That is, if the weight of the first category is 1 and the
weight of the second category is 10, then each mistake in predicting the second category is
equivalent to making 10 mistakes in predicting the first category.
The default constructor initializes all the parameters with the default values tuned for the
standalone classification tree:
@code
DTrees::Params::Params()
{
maxDepth = INT_MAX;
minSampleCount = 10;
regressionAccuracy = 0.01f;
useSurrogates = false;
maxCategories = 10;
CVFolds = 10;
use1SERule = true;
truncatePrunedTree = true;
priors = Mat();
}
@endcode
*/
Params( int maxDepth, int minSampleCount,
double regressionAccuracy, bool useSurrogates,
int maxCategories, int CVFolds,
bool use1SERule, bool truncatePrunedTree,
const Mat& priors );
CV_PROP_RW int maxCategories;
CV_PROP_RW int maxDepth;
CV_PROP_RW int minSampleCount;
CV_PROP_RW int CVFolds;
CV_PROP_RW bool useSurrogates;
CV_PROP_RW bool use1SERule;
CV_PROP_RW bool truncatePrunedTree;
CV_PROP_RW float regressionAccuracy;
CV_PROP_RW Mat priors;
};
/** @brief The class represents a decision tree node. It has public members:
- member double value
Value at the node: a class label in case of classification or estimated function value in case
of regression.
- member int classIdx
Class index normalized to 0..class_count-1 range and assigned to the node. It is used
internally in classification trees and tree ensembles.
- member int parent
Index of the parent node
- member int left
Index of the left child node
- member int right
Index of right child node.
- member int defaultDir
Default direction where to go (-1: left or +1: right). It helps in the case of missing values.
- member int split
Index of the first split
*/
class CV_EXPORTS Node
{
public:
Node();
double value;
int classIdx;
int parent;
int left;
int right;
int defaultDir;
int split;
};
/** @brief The class represents split in a decision tree. It has public members:
- member int varIdx
Index of variable on which the split is created.
- member bool inversed
If true, then the inverse split rule is used (i.e. left and right branches are exchanged in
the rule expressions below).
- member float quality
The split quality, a positive number. It is used to choose the best split.
- member int next
Index of the next split in the list of splits for the node
- member float c
The threshold value in case of split on an ordered variable. The rule is: :
if var_value < c
then next_node<-left
else next_node<-right
- member int subsetOfs
Offset of the bitset used by the split on a categorical variable. The rule is: :
if bitset[var_value] == 1
then next_node <- left
else next_node <- right
*/
class CV_EXPORTS Split
{
public:
Split();
int varIdx;
bool inversed;
float quality;
int next;
float c;
int subsetOfs;
};
/** @brief Sets the training parameters
@param p Training parameters of type DTrees::Params.
The method sets the training parameters.
*/
virtual void setDParams(const Params& p);
/** @brief Returns the training parameters
The method returns the training parameters.
*/
virtual Params getDParams() const;
/** @brief Returns indices of root nodes
*/
virtual const std::vector<int>& getRoots() const = 0;
/** @brief Returns all the nodes
all the node indices, mentioned above (left, right, parent, root indices) are indices in the
returned vector
*/
virtual const std::vector<Node>& getNodes() const = 0;
/** @brief Returns all the splits
all the split indices, mentioned above (split, next etc.) are indices in the returned vector
*/
virtual const std::vector<Split>& getSplits() const = 0;
/** @brief Returns all the bitsets for categorical splits
Split::subsetOfs is an offset in the returned vector
*/
virtual const std::vector<int>& getSubsets() const = 0;
/** @brief Creates the empty model
The static method creates empty decision tree with the specified parameters. It should be then
trained using train method (see StatModel::train). Alternatively, you can load the model from file
using StatModel::load\<DTrees\>(filename).
*/
static Ptr<DTrees> create(const Params& params=Params());
};
//! @} ml_decsiontrees
/****************************************************************************************\
* Random Trees Classifier *
\****************************************************************************************/
//! @addtogroup ml_randomtrees
//! @{
/** @brief The class implements the random forest predictor as described in the beginning of this section.
*/
class CV_EXPORTS_W RTrees : public DTrees
{
public:
/** @brief The set of training parameters for the forest is a superset of the training
parameters for a single tree.
However, random trees do not need all the functionality/features of decision trees. Most
noticeably, the trees are not pruned, so the cross-validation parameters are not used.
*/
class CV_EXPORTS_W_MAP Params : public DTrees::Params
{
public:
Params();
/** @brief The constructors
@param maxDepth the depth of the tree. A low value will likely underfit and conversely a high
value will likely overfit. The optimal value can be obtained using cross validation or other
suitable methods.
@param minSampleCount minimum samples required at a leaf node for it to be split. A reasonable
value is a small percentage of the total data e.g. 1%.
@param regressionAccuracy
@param useSurrogates
@param maxCategories Cluster possible values of a categorical variable into K \<= maxCategories
clusters to find a suboptimal split. If a discrete variable, on which the training procedure tries
to make a split, takes more than max_categories values, the precise best subset estimation may
take a very long time because the algorithm is exponential. Instead, many decision trees engines
(including ML) try to find sub-optimal split in this case by clustering all the samples into
maxCategories clusters that is some categories are merged together. The clustering is applied only
in n\>2-class classification problems for categorical variables with N \> max_categories possible
values. In case of regression and 2-class classification the optimal split can be found
efficiently without employing clustering, thus the parameter is not used in these cases.
@param priors
@param calcVarImportance If true then variable importance will be calculated and then it can be
retrieved by RTrees::getVarImportance.
@param nactiveVars The size of the randomly selected subset of features at each tree node and that
are used to find the best split(s). If you set it to 0 then the size will be set to the square
root of the total number of features.
@param termCrit The termination criteria that specifies when the training algorithm stops - either
when the specified number of trees is trained and added to the ensemble or when sufficient
accuracy (measured as OOB error) is achieved. Typically the more trees you have the better the
accuracy. However, the improvement in accuracy generally diminishes and asymptotes pass a certain
number of trees. Also to keep in mind, the number of tree increases the prediction time linearly.
The default constructor sets all parameters to default values which are different from default
values of `DTrees::Params`:
@code
RTrees::Params::Params() : DTrees::Params( 5, 10, 0, false, 10, 0, false, false, Mat() ),
calcVarImportance(false), nactiveVars(0)
{
termCrit = cvTermCriteria( TermCriteria::MAX_ITERS + TermCriteria::EPS, 50, 0.1 );
}
@endcode
*/
Params( int maxDepth, int minSampleCount,
double regressionAccuracy, bool useSurrogates,
int maxCategories, const Mat& priors,
bool calcVarImportance, int nactiveVars,
TermCriteria termCrit );
CV_PROP_RW bool calcVarImportance; // true <=> RF processes variable importance
CV_PROP_RW int nactiveVars;
CV_PROP_RW TermCriteria termCrit;
};
virtual void setRParams(const Params& p) = 0;
virtual Params getRParams() const = 0;
/** @brief Returns the variable importance array.
The method returns the variable importance vector, computed at the training stage when
RTParams::calcVarImportance is set to true. If this flag was set to false, the empty matrix is
returned.
*/
virtual Mat getVarImportance() const = 0;
/** @brief Creates the empty model
Use StatModel::train to train the model, StatModel::train to create and
train the model, StatModel::load to load the pre-trained model.
*/
static Ptr<RTrees> create(const Params& params=Params());
};
//! @} ml_randomtrees
/****************************************************************************************\
* Boosted tree classifier *
\****************************************************************************************/
//! @addtogroup ml_boost
//! @{
/** @brief Boosted tree classifier derived from DTrees
*/
class CV_EXPORTS_W Boost : public DTrees
{
public:
/** @brief The structure is derived from DTrees::Params but not all of the decision tree parameters are
supported. In particular, cross-validation is not supported.
All parameters are public. You can initialize them by a constructor and then override some of them
directly if you want.
*/
class CV_EXPORTS_W_MAP Params : public DTrees::Params
{
public:
CV_PROP_RW int boostType;
CV_PROP_RW int weakCount;
CV_PROP_RW double weightTrimRate;
Params();
/** @brief The constructors.
@param boostType Type of the boosting algorithm. Possible values are:
- **Boost::DISCRETE** Discrete AdaBoost.
- **Boost::REAL** Real AdaBoost. It is a technique that utilizes confidence-rated predictions
and works well with categorical data.
- **Boost::LOGIT** LogitBoost. It can produce good regression fits.
- **Boost::GENTLE** Gentle AdaBoost. It puts less weight on outlier data points and for that
reason is often good with regression data.
Gentle AdaBoost and Real AdaBoost are often the preferable choices.
@param weakCount The number of weak classifiers.
@param weightTrimRate A threshold between 0 and 1 used to save computational time. Samples
with summary weight \f$\leq 1 - weight_trim_rate\f$ do not participate in the *next* iteration of
training. Set this parameter to 0 to turn off this functionality.
@param maxDepth
@param useSurrogates
@param priors
See DTrees::Params for description of other parameters.
Default parameters are:
@code
Boost::Params::Params()
{
boostType = Boost::REAL;
weakCount = 100;
weightTrimRate = 0.95;
CVFolds = 0;
maxDepth = 1;
}
@endcode
*/
Params( int boostType, int weakCount, double weightTrimRate,
int maxDepth, bool useSurrogates, const Mat& priors );
};
// Boosting type
enum { DISCRETE=0, REAL=1, LOGIT=2, GENTLE=3 };
/** @brief Returns the boosting parameters
The method returns the training parameters.
*/
virtual Params getBParams() const = 0;
/** @brief Sets the boosting parameters
@param p Training parameters of type Boost::Params.
The method sets the training parameters.
*/
virtual void setBParams(const Params& p) = 0;
/** @brief Creates the empty model
Use StatModel::train to train the model, StatModel::train\<Boost\>(traindata, params) to create and
train the model, StatModel::load\<Boost\>(filename) to load the pre-trained model.
*/
static Ptr<Boost> create(const Params& params=Params());
};
//! @} ml_boost
/****************************************************************************************\
* Gradient Boosted Trees *
\****************************************************************************************/
/*class CV_EXPORTS_W GBTrees : public DTrees
{
public:
struct CV_EXPORTS_W_MAP Params : public DTrees::Params
{
CV_PROP_RW int weakCount;
CV_PROP_RW int lossFunctionType;
CV_PROP_RW float subsamplePortion;
CV_PROP_RW float shrinkage;
Params();
Params( int lossFunctionType, int weakCount, float shrinkage,
float subsamplePortion, int maxDepth, bool useSurrogates );
};
enum {SQUARED_LOSS=0, ABSOLUTE_LOSS, HUBER_LOSS=3, DEVIANCE_LOSS};
virtual void setK(int k) = 0;
virtual float predictSerial( InputArray samples,
OutputArray weakResponses, int flags) const = 0;
static Ptr<GBTrees> create(const Params& p);
};*/
/****************************************************************************************\
* Artificial Neural Networks (ANN) *
\****************************************************************************************/
/////////////////////////////////// Multi-Layer Perceptrons //////////////////////////////
//! @addtogroup ml_neural
//! @{
/** @brief MLP model.
Unlike many other models in ML that are constructed and trained at once, in the MLP model these
steps are separated. First, a network with the specified topology is created using the non-default
constructor or the method ANN_MLP::create. All the weights are set to zeros. Then, the network is
trained using a set of input and output vectors. The training procedure can be repeated more than
once, that is, the weights can be adjusted based on the new training data.
*/
class CV_EXPORTS_W ANN_MLP : public StatModel
{
public:
/** @brief Parameters of the MLP and of the training algorithm.
You can initialize the structure by a constructor or the individual parameters can be adjusted
after the structure is created.
The network structure:
- member Mat layerSizes
The number of elements in each layer of network. The very first element specifies the number
of elements in the input layer. The last element - number of elements in the output layer.
- member int activateFunc
The activation function. Currently the only fully supported activation function is
ANN_MLP::SIGMOID_SYM.
- member double fparam1
The first parameter of activation function, 0 by default.
- member double fparam2
The second parameter of the activation function, 0 by default.
@note
If you are using the default ANN_MLP::SIGMOID_SYM activation function with the default
parameter values fparam1=0 and fparam2=0 then the function used is y = 1.7159\*tanh(2/3 \* x),
so the output will range from [-1.7159, 1.7159], instead of [0,1].
The back-propagation algorithm parameters:
- member double bpDWScale
Strength of the weight gradient term. The recommended value is about 0.1.
- member double bpMomentScale
Strength of the momentum term (the difference between weights on the 2 previous iterations).
This parameter provides some inertia to smooth the random fluctuations of the weights. It
can vary from 0 (the feature is disabled) to 1 and beyond. The value 0.1 or so is good
enough
The RPROP algorithm parameters (see @cite RPROP93 for details):
- member double prDW0
Initial value \f$\Delta_0\f$ of update-values \f$\Delta_{ij}\f$.
- member double rpDWPlus
Increase factor \f$\eta^+\f$. It must be \>1.
- member double rpDWMinus
Decrease factor \f$\eta^-\f$. It must be \<1.
- member double rpDWMin
Update-values lower limit \f$\Delta_{min}\f$. It must be positive.
- member double rpDWMax
Update-values upper limit \f$\Delta_{max}\f$. It must be \>1.
*/
struct CV_EXPORTS_W_MAP Params
{
Params();
/** @brief Construct the parameter structure
@param layerSizes Integer vector specifying the number of neurons in each layer including the
input and output layers.
@param activateFunc Parameter specifying the activation function for each neuron: one of
ANN_MLP::IDENTITY, ANN_MLP::SIGMOID_SYM, and ANN_MLP::GAUSSIAN.
@param fparam1 The first parameter of the activation function, \f$\alpha\f$. See the formulas in the
introduction section.
@param fparam2 The second parameter of the activation function, \f$\beta\f$. See the formulas in the
introduction section.
@param termCrit Termination criteria of the training algorithm. You can specify the maximum number
of iterations (maxCount) and/or how much the error could change between the iterations to make the
algorithm continue (epsilon).
@param trainMethod Training method of the MLP. Possible values are:
- **ANN_MLP_TrainParams::BACKPROP** The back-propagation algorithm.
- **ANN_MLP_TrainParams::RPROP** The RPROP algorithm.
@param param1 Parameter of the training method. It is rp_dw0 for RPROP and bp_dw_scale for
BACKPROP.
@param param2 Parameter of the training method. It is rp_dw_min for RPROP and bp_moment_scale
for BACKPROP.
By default the RPROP algorithm is used:
@code
ANN_MLP_TrainParams::ANN_MLP_TrainParams()
{
layerSizes = Mat();
activateFun = SIGMOID_SYM;
fparam1 = fparam2 = 0;
term_crit = TermCriteria( TermCriteria::MAX_ITER + TermCriteria::EPS, 1000, 0.01 );
train_method = RPROP;
bpDWScale = bpMomentScale = 0.1;
rpDW0 = 0.1; rpDWPlus = 1.2; rpDWMinus = 0.5;
rpDWMin = FLT_EPSILON; rpDWMax = 50.;
}
@endcode
*/
Params( const Mat& layerSizes, int activateFunc, double fparam1, double fparam2,
TermCriteria termCrit, int trainMethod, double param1, double param2=0 );
enum { BACKPROP=0, RPROP=1 };
CV_PROP_RW Mat layerSizes;
CV_PROP_RW int activateFunc;
CV_PROP_RW double fparam1;
CV_PROP_RW double fparam2;
CV_PROP_RW TermCriteria termCrit;
CV_PROP_RW int trainMethod;
// backpropagation parameters
CV_PROP_RW double bpDWScale, bpMomentScale;
// rprop parameters
CV_PROP_RW double rpDW0, rpDWPlus, rpDWMinus, rpDWMin, rpDWMax;
};
// possible activation functions
enum { IDENTITY = 0, SIGMOID_SYM = 1, GAUSSIAN = 2 };
// available training flags
enum { UPDATE_WEIGHTS = 1, NO_INPUT_SCALE = 2, NO_OUTPUT_SCALE = 4 };
virtual Mat getWeights(int layerIdx) const = 0;
/** @brief Sets the new network parameters
@param p The new parameters
The existing network, if any, will be destroyed and new empty one will be created. It should be
re-trained after that.
*/
virtual void setParams(const Params& p) = 0;
/** @brief Retrieves the current network parameters
*/
virtual Params getParams() const = 0;
/** @brief Creates empty model
Use StatModel::train to train the model, StatModel::train\<ANN_MLP\>(traindata, params) to create
and train the model, StatModel::load\<ANN_MLP\>(filename) to load the pre-trained model. Note that
the train method has optional flags, and the following flags are handled by \`ANN_MLP\`:
- **UPDATE_WEIGHTS** Algorithm updates the network weights, rather than computes them from
scratch. In the latter case the weights are initialized using the Nguyen-Widrow algorithm.
- **NO_INPUT_SCALE** Algorithm does not normalize the input vectors. If this flag is not set,
the training algorithm normalizes each input feature independently, shifting its mean value to
0 and making the standard deviation equal to 1. If the network is assumed to be updated
frequently, the new training data could be much different from original one. In this case, you
should take care of proper normalization.
- **NO_OUTPUT_SCALE** Algorithm does not normalize the output vectors. If the flag is not set,
the training algorithm normalizes each output feature independently, by transforming it to the
certain range depending on the used activation function.
*/
static Ptr<ANN_MLP> create(const Params& params=Params());
};
//! @} ml_neural
/****************************************************************************************\
* Logistic Regression *
\****************************************************************************************/
//! @addtogroup ml_lr
//! @{
/** @brief Implements Logistic Regression classifier.
*/
class CV_EXPORTS LogisticRegression : public StatModel
{
public:
class CV_EXPORTS Params
{
public:
/** @brief The constructors
@param learning_rate Specifies the learning rate.
@param iters Specifies the number of iterations.
@param method Specifies the kind of training method used. It should be set to either
LogisticRegression::BATCH or LogisticRegression::MINI_BATCH. If using
LogisticRegression::MINI_BATCH, set LogisticRegression::Params.mini_batch_size to a positive
integer.
@param normalization Specifies the kind of regularization to be applied.
LogisticRegression::REG_L1 or LogisticRegression::REG_L2 (L1 norm or L2 norm). To use this, set
LogisticRegression::Params.regularized to a integer greater than zero.
@param reg To enable or disable regularization. Set to positive integer (greater than zero) to
enable and to 0 to disable.
@param batch_size Specifies the number of training samples taken in each step of Mini-Batch
Gradient Descent. Will only be used if using LogisticRegression::MINI_BATCH training algorithm.
It has to take values less than the total number of training samples.
By initializing this structure, one can set all the parameters required for Logistic Regression
classifier.
*/
Params(double learning_rate = 0.001,
int iters = 1000,
int method = LogisticRegression::BATCH,
int normalization = LogisticRegression::REG_L2,
int reg = 1,
int batch_size = 1);
double alpha;
int num_iters;
int norm;
int regularized;
int train_method;
int mini_batch_size;
TermCriteria term_crit;
};
enum { REG_L1 = 0, REG_L2 = 1};
enum { BATCH = 0, MINI_BATCH = 1};
/** @brief This function writes the trained LogisticRegression clasifier to disk.
*/
virtual void write( FileStorage &fs ) const = 0;
/** @brief This function reads the trained LogisticRegression clasifier from disk.
*/
virtual void read( const FileNode &fn ) = 0;
/** @brief Trains the Logistic Regression classifier and returns true if successful.
@param trainData Instance of ml::TrainData class holding learning data.
@param flags Not used.
*/
virtual bool train( const Ptr<TrainData>& trainData, int flags=0 ) = 0;
/** @brief Predicts responses for input samples and returns a float type.
@param samples The input data for the prediction algorithm. Matrix [m x n], where each row
contains variables (features) of one object being classified. Should have data type CV_32F.
@param results Predicted labels as a column matrix of type CV_32S.
@param flags Not used.
*/
virtual float predict( InputArray samples, OutputArray results=noArray(), int flags=0 ) const = 0;
virtual void clear() = 0;
/** @brief This function returns the trained paramters arranged across rows.
For a two class classifcation problem, it returns a row matrix.
It returns learnt paramters of the Logistic Regression as a matrix of type CV_32F.
*/
virtual Mat get_learnt_thetas() const = 0;
/** @brief Creates empty model.
@param params The training parameters for the classifier of type LogisticRegression::Params.
Creates Logistic Regression model with parameters given.
*/
static Ptr<LogisticRegression> create( const Params& params = Params() );
};
//! @} ml_lr
/****************************************************************************************\
* Auxilary functions declarations *
\****************************************************************************************/
/** Generates `sample` from multivariate normal distribution, where `mean` - is an
average row vector, `cov` - symmetric covariation matrix */
CV_EXPORTS void randMVNormal( InputArray mean, InputArray cov, int nsamples, OutputArray samples);
/** Generates sample from gaussian mixture distribution */
CV_EXPORTS void randGaussMixture( InputArray means, InputArray covs, InputArray weights,
int nsamples, OutputArray samples, OutputArray sampClasses );
/** creates test set */
CV_EXPORTS void createConcentricSpheresTestSet( int nsamples, int nfeatures, int nclasses,
OutputArray samples, OutputArray responses);
//! @} ml
}
}
#endif // __cplusplus
#endif // __OPENCV_ML_HPP__
/* End of file. */