1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "opencv2/core/hal/intrin.hpp"
#include "../op_halide.hpp"
#include "../op_inf_engine.hpp"
#include "../op_vkcom.hpp"
#include <float.h>
#include <algorithm>
using std::max;
using std::min;
#ifdef HAVE_OPENCL
#include "opencl_kernels_dnn.hpp"
using namespace cv::dnn::ocl4dnn;
#endif
namespace cv
{
namespace dnn
{
static inline int roundRoiSize(float v)
{
return (int)(v + (v >= 0.f ? 0.5f : -0.5f));
}
class PoolingLayerImpl CV_FINAL : public PoolingLayer
{
public:
PoolingLayerImpl(const LayerParams& params)
{
computeMaxIdx = true;
globalPooling = false;
stride = Size(1, 1);
if (params.has("pool") || params.has("kernel_size") ||
params.has("kernel_w") || params.has("kernel_h"))
{
String pool = toLowerCase(params.get<String>("pool", "max"));
if (pool == "max")
type = MAX;
else if (pool == "ave")
type = AVE;
else if (pool == "stochastic")
type = STOCHASTIC;
else
CV_Error(Error::StsBadArg, "Unknown pooling type \"" + pool + "\"");
getPoolingKernelParams(params, kernel.height, kernel.width, globalPooling,
pad_t, pad_l, pad_b, pad_r, stride.height, stride.width, padMode);
pad.width = pad_l;
pad.height = pad_t;
}
else if (params.has("pooled_w") || params.has("pooled_h"))
{
type = ROI;
pooledSize.width = params.get<uint32_t>("pooled_w", 1);
pooledSize.height = params.get<uint32_t>("pooled_h", 1);
}
else if (params.has("output_dim") && params.has("group_size"))
{
type = PSROI;
pooledSize.width = params.get<int>("group_size");
pooledSize.height = pooledSize.width;
psRoiOutChannels = params.get<int>("output_dim");
}
else
CV_Error(Error::StsBadArg, "Cannot determine pooling type");
setParamsFrom(params);
ceilMode = params.get<bool>("ceil_mode", true);
spatialScale = params.get<float>("spatial_scale", 1);
avePoolPaddedArea = params.get<bool>("ave_pool_padded_area", true);
}
#ifdef HAVE_OPENCL
Ptr<OCL4DNNPool<float> > poolOp;
#endif
void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
{
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
CV_Assert(!inputs.empty());
cv::Size inp(inputs[0].size[3], inputs[0].size[2]),
out(outputs[0].size[3], outputs[0].size[2]);
if(globalPooling)
{
kernel = inp;
}
getConvPoolPaddings(inp, out, kernel, stride, padMode, Size(1, 1), pad_t, pad_l, pad_b, pad_r);
pad.width = pad_l;
pad.height = pad_t;
#ifdef HAVE_OPENCL
poolOp.release();
#endif
computeMaxIdx = type == MAX;
}
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
if (backendId == DNN_BACKEND_INFERENCE_ENGINE)
{
if (preferableTarget == DNN_TARGET_MYRIAD)
return type == MAX || type == AVE;
else
return type != STOCHASTIC;
}
else
return backendId == DNN_BACKEND_OPENCV ||
(backendId == DNN_BACKEND_HALIDE && haveHalide() &&
(type == MAX || (type == AVE && !pad_t && !pad_l && !pad_b && !pad_r))) ||
(backendId == DNN_BACKEND_VKCOM && haveVulkan() &&
(type == MAX || type == AVE));
}
#ifdef HAVE_OPENCL
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, InputArrayOfArrays internals)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
bool use_half = (inps.depth() == CV_16S);
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
if (poolOp.empty())
{
OCL4DNNPoolConfig config;
config.in_shape = shape(inputs[0]);
config.out_shape = shape(outputs[0]);
config.kernel = kernel;
config.pad_l = pad_l;
config.pad_t = pad_t;
config.pad_r = pad_r;
config.pad_b = pad_b;
config.stride = stride;
config.channels = inputs[0].size[1];
config.pool_method = type == MAX ? LIBDNN_POOLING_METHOD_MAX :
(type == AVE ? LIBDNN_POOLING_METHOD_AVE :
LIBDNN_POOLING_METHOD_STO);
config.avePoolPaddedArea = avePoolPaddedArea;
config.computeMaxIdx = computeMaxIdx;
config.use_half = use_half;
poolOp = Ptr<OCL4DNNPool<float> >(new OCL4DNNPool<float>(config));
}
CV_Assert_N(inputs.size() == 1, !outputs.empty(), !computeMaxIdx || outputs.size() == 2);
UMat& inpMat = inputs[0];
UMat& outMat = outputs[0];
UMat maskMat = computeMaxIdx ? outputs[1] : UMat();
CV_Assert(inpMat.offset == 0 && outMat.offset == 0);
return poolOp->Forward(inpMat, outMat, maskMat);
}
#endif
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
if (type == MAX || type == AVE || type == STOCHASTIC)
{
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
forward_ocl(inputs_arr, outputs_arr, internals_arr))
}
if (inputs_arr.depth() == CV_16S)
{
forward_fallback(inputs_arr, outputs_arr, internals_arr);
return;
}
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
switch (type)
{
case MAX:
{
CV_Assert_N(inputs.size() == 1, !computeMaxIdx || outputs.size() == 2);
Mat mask = computeMaxIdx ? outputs[1] : Mat();
maxPooling(inputs[0], outputs[0], mask);
break;
}
case AVE:
CV_Assert_N(inputs.size() == 1, outputs.size() == 1);
avePooling(inputs[0], outputs[0]);
break;
case ROI: case PSROI:
CV_Assert_N(inputs.size() == 2, outputs.size() == 1);
roiPooling(inputs[0], inputs[1], outputs[0]);
break;
default:
CV_Error(Error::StsNotImplemented, "Not implemented");
break;
}
}
virtual Ptr<BackendNode> initVkCom(const std::vector<Ptr<BackendWrapper> > &inputs) CV_OVERRIDE
{
#ifdef HAVE_VULKAN
int padding_mode;
vkcom::PoolType pool_type;
int filter_size[2] = {kernel.height, kernel.width};
int pad_size[2] = {pad.height, pad.width};
int stride_size[2] = {stride.height, stride.width};
pool_type = type == MAX ? vkcom::kPoolTypeMax:
(type == AVE ? vkcom::kPoolTypeAvg:
vkcom::kPoolTypeNum);
if (padMode.empty())
{
padding_mode = vkcom::kPaddingModeCaffe;
}
else if (padMode == "VALID")
{
padding_mode = vkcom::kPaddingModeValid;
}
else if (padMode == "SAME")
{
padding_mode = vkcom::kPaddingModeSame;
}
else
CV_Error(Error::StsError, "Unsupported padding mode " + padMode);
std::shared_ptr<vkcom::OpBase> op(new vkcom::OpPool(filter_size, pad_size,
stride_size, padding_mode,
pool_type, avePoolPaddedArea));
return Ptr<BackendNode>(new VkComBackendNode(inputs, op));
#endif
return Ptr<BackendNode>();
}
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs) CV_OVERRIDE
{
if (type == MAX)
return initMaxPoolingHalide(inputs);
else if (type == AVE)
return initAvePoolingHalide(inputs);
else
return Ptr<BackendNode>();
}
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE
{
#ifdef HAVE_INF_ENGINE
InferenceEngine::LayerParams lp;
lp.name = name;
lp.precision = InferenceEngine::Precision::FP32;
std::shared_ptr<InferenceEngine::CNNLayer> ieLayer;
if (type == MAX || type == AVE)
{
lp.type = "Pooling";
InferenceEngine::PoolingLayer* poolLayer = new InferenceEngine::PoolingLayer(lp);
#if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2018R3)
poolLayer->_kernel.insert(InferenceEngine::X_AXIS, kernel.width);
poolLayer->_kernel.insert(InferenceEngine::Y_AXIS, kernel.height);
poolLayer->_stride.insert(InferenceEngine::X_AXIS, stride.width);
poolLayer->_stride.insert(InferenceEngine::Y_AXIS, stride.height);
poolLayer->_padding.insert(InferenceEngine::X_AXIS, pad_l);
poolLayer->_padding.insert(InferenceEngine::Y_AXIS, pad_t);
poolLayer->_pads_end.insert(InferenceEngine::X_AXIS, pad_r);
poolLayer->_pads_end.insert(InferenceEngine::Y_AXIS, pad_b);
poolLayer->params["kernel"] = format("%d,%d", kernel.height, kernel.width);
poolLayer->params["pads_begin"] = format("%d,%d", pad_t, pad_l);
poolLayer->params["pads_end"] = format("%d,%d", pad_b, pad_r);
poolLayer->params["strides"] = format("%d,%d", stride.height, stride.width);
#else
poolLayer->_kernel_x = kernel.width;
poolLayer->_kernel_y = kernel.height;
poolLayer->_stride_x = stride.width;
poolLayer->_stride_y = stride.height;
poolLayer->_padding_x = pad_l;
poolLayer->_padding_y = pad_t;
poolLayer->params["pad-r"] = format("%d", pad_r);
poolLayer->params["pad-b"] = format("%d", pad_b);
#endif
poolLayer->_exclude_pad = type == AVE && padMode == "SAME";
poolLayer->params["rounding-type"] = ceilMode ? "ceil" : "floor";
poolLayer->_type = type == MAX ? InferenceEngine::PoolingLayer::PoolType::MAX :
InferenceEngine::PoolingLayer::PoolType::AVG;
ieLayer = std::shared_ptr<InferenceEngine::CNNLayer>(poolLayer);
}
else if (type == ROI)
{
lp.type = "ROIPooling";
ieLayer = std::shared_ptr<InferenceEngine::CNNLayer>(new InferenceEngine::CNNLayer(lp));
ieLayer->params["pooled_w"] = format("%d", pooledSize.width);
ieLayer->params["pooled_h"] = format("%d", pooledSize.height);
ieLayer->params["spatial_scale"] = format("%f", spatialScale);
}
else if (type == PSROI)
{
lp.type = "PSROIPooling";
ieLayer = std::shared_ptr<InferenceEngine::CNNLayer>(new InferenceEngine::CNNLayer(lp));
ieLayer->params["output_dim"] = format("%d", psRoiOutChannels);
ieLayer->params["group_size"] = format("%d", pooledSize.width);
ieLayer->params["spatial_scale"] = format("%f", spatialScale);
}
else
CV_Error(Error::StsNotImplemented, "Unsupported pooling type");
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
#endif // HAVE_INF_ENGINE
return Ptr<BackendNode>();
}
class PoolingInvoker : public ParallelLoopBody
{
public:
const Mat* src, *rois;
Mat *dst, *mask;
Size kernel, stride;
int pad_l, pad_t, pad_r, pad_b;
bool avePoolPaddedArea;
int nstripes;
bool computeMaxIdx;
std::vector<int> ofsbuf;
int poolingType;
float spatialScale;
PoolingInvoker() : src(0), rois(0), dst(0), mask(0), pad_l(0), pad_t(0), pad_r(0), pad_b(0),
avePoolPaddedArea(false), nstripes(0),
computeMaxIdx(0), poolingType(MAX), spatialScale(0) {}
static void run(const Mat& src, const Mat& rois, Mat& dst, Mat& mask, Size kernel,
Size stride, int pad_l, int pad_t, int pad_r, int pad_b, bool avePoolPaddedArea, int poolingType, float spatialScale,
bool computeMaxIdx, int nstripes)
{
CV_Assert_N(
src.isContinuous(), dst.isContinuous(),
src.type() == CV_32F, src.type() == dst.type(),
src.dims == 4, dst.dims == 4,
(((poolingType == ROI || poolingType == PSROI) && dst.size[0] == rois.size[0]) || src.size[0] == dst.size[0]),
poolingType == PSROI || src.size[1] == dst.size[1],
(mask.empty() || (mask.type() == src.type() && mask.size == dst.size)));
PoolingInvoker p;
p.src = &src;
p.rois = &rois;
p.dst = &dst;
p.mask = &mask;
p.kernel = kernel;
p.stride = stride;
p.pad_l = pad_l;
p.pad_t = pad_t;
p.pad_r = pad_r;
p.pad_b = pad_b;
p.avePoolPaddedArea = avePoolPaddedArea;
p.nstripes = nstripes;
p.computeMaxIdx = computeMaxIdx;
p.poolingType = poolingType;
p.spatialScale = spatialScale;
if( !computeMaxIdx )
{
p.ofsbuf.resize(kernel.width*kernel.height);
for( int i = 0; i < kernel.height; i++ )
for( int j = 0; j < kernel.width; j++ )
p.ofsbuf[i*kernel.width + j] = src.size[3]*i + j;
}
parallel_for_(Range(0, nstripes), p, nstripes);
}
void operator()(const Range& r) const CV_OVERRIDE
{
int channels = dst->size[1], width = dst->size[3], height = dst->size[2];
int inp_width = src->size[3], inp_height = src->size[2];
size_t total = dst->total();
size_t stripeSize = (total + nstripes - 1)/nstripes;
size_t stripeStart = r.start*stripeSize;
size_t stripeEnd = std::min(r.end*stripeSize, total);
int kernel_w = kernel.width, kernel_h = kernel.height;
int stride_w = stride.width, stride_h = stride.height;
bool compMaxIdx = computeMaxIdx;
#if CV_SIMD128
const int* ofsptr = ofsbuf.empty() ? 0 : (const int*)&ofsbuf[0];
if (poolingType == MAX && !compMaxIdx && !ofsptr)
CV_Error(Error::StsBadArg, "ofsbuf should be initialized in this mode");
v_float32x4 idx00(0.f, (float)stride_w, (float)(stride_w*2), (float)(stride_w*3));
v_float32x4 ones = v_setall_f32(1.f);
v_float32x4 idx_delta = v_setall_f32((float)(inp_width - kernel_w));
#endif
for( size_t ofs0 = stripeStart; ofs0 < stripeEnd; )
{
size_t ofs = ofs0;
int x0 = (int)(ofs % width);
ofs /= width;
int y0 = (int)(ofs % height);
ofs /= height;
int c = (int)(ofs % channels);
int n = (int)(ofs / channels);
int ystart, yend;
const float *srcData = 0;
if (poolingType == ROI)
{
const float *roisData = rois->ptr<float>(n);
int ystartROI = roundRoiSize(roisData[2] * spatialScale);
int yendROI = roundRoiSize(roisData[4] * spatialScale);
int roiHeight = std::max(yendROI - ystartROI + 1, 1);
float roiRatio = (float)roiHeight / height;
ystart = ystartROI + y0 * roiRatio;
yend = ystartROI + std::ceil((y0 + 1) * roiRatio);
CV_Assert(roisData[0] < src->size[0]);
srcData = src->ptr<float>(roisData[0], c);
}
else if (poolingType == PSROI)
{
const float *roisData = rois->ptr<float>(n);
float ystartROI = roundRoiSize(roisData[2]) * spatialScale;
float yendROI = roundRoiSize(roisData[4] + 1) * spatialScale;
float roiHeight = std::max(yendROI - ystartROI, 0.1f);
float roiRatio = roiHeight / height;
ystart = (int)std::floor(ystartROI + y0 * roiRatio);
yend = (int)std::ceil(ystartROI + (y0 + 1) * roiRatio);
}
else
{
ystart = y0 * stride_h - pad_t;
yend = min(ystart + kernel_h, inp_height + pad_b);
srcData = src->ptr<float>(n, c);
}
int ydelta = yend - ystart;
ystart = max(ystart, 0);
yend = min(yend, inp_height);
float *dstData = dst->ptr<float>(n, c, y0);
float *dstMaskData = mask->data ? mask->ptr<float>(n, c, y0) : 0;
int delta = std::min((int)(stripeEnd - ofs0), width - x0);
ofs0 += delta;
int x1 = x0 + delta;
if( poolingType == MAX)
for( ; x0 < x1; x0++ )
{
int xstart = x0 * stride_w - pad_l;
int xend = min(xstart + kernel_w, inp_width);
xstart = max(xstart, 0);
if (xstart >= xend || ystart >= yend)
{
dstData[x0] = 0;
if (compMaxIdx && dstMaskData)
dstMaskData[x0] = -1;
continue;
}
#if CV_SIMD128
if( xstart > 0 && x0 + 7 < x1 && (x0 + 7) * stride_w - pad_l + kernel_w < inp_width )
{
if( compMaxIdx )
{
v_float32x4 max_val0 = v_setall_f32(-FLT_MAX);
v_float32x4 max_val1 = max_val0;
v_float32x4 max_idx0 = v_setall_f32(-1.f);
v_float32x4 max_idx1 = max_idx0;
int index0 = ystart * inp_width + xstart;
v_float32x4 idx0 = idx00 + v_setall_f32((float)index0);
v_float32x4 idx1 = idx0 + v_setall_f32((float)(stride_w*4));
for (int y = ystart; y < yend; ++y)
{
for (int x = xstart; x < xend; ++x, idx0 += ones, idx1 += ones)
{
const int index = y * inp_width + x;
v_float32x4 v0(srcData[index], srcData[index + stride_w],
srcData[index + stride_w*2], srcData[index + stride_w*3]);
v_float32x4 v1(srcData[index + stride_w*4], srcData[index + stride_w*5],
srcData[index + stride_w*6], srcData[index + stride_w*7]);
max_idx0 = v_select(v0 > max_val0, idx0, max_idx0);
max_idx1 = v_select(v1 > max_val1, idx1, max_idx1);
max_val0 = v_max(max_val0, v0);
max_val1 = v_max(max_val1, v1);
}
idx0 += idx_delta;
idx1 += idx_delta;
}
v_store(dstData + x0, max_val0);
v_store(dstData + x0 + 4, max_val1);
if (dstMaskData)
{
v_store(dstMaskData + x0, max_idx0);
v_store(dstMaskData + x0 + 4, max_idx1);
}
x0 += 7;
}
else
{
v_float32x4 max_val0 = v_setall_f32(-FLT_MAX);
v_float32x4 max_val1 = max_val0;
if( yend - ystart == kernel_h )
{
const float* srcData1 = srcData + ystart*inp_width + xstart;
if( stride_w == 1 )
for (int k = 0; k < kernel_w*kernel_h; k++)
{
int index = ofsptr[k];
v_float32x4 v0 = v_load(srcData1 + index);
v_float32x4 v1 = v_load(srcData1 + index + 4);
max_val0 = v_max(max_val0, v0);
max_val1 = v_max(max_val1, v1);
}
else if( stride_w == 2 )
for (int k = 0; k < kernel_w*kernel_h; k++)
{
int index = ofsptr[k];
v_float32x4 v0, v1, dummy;
v_load_deinterleave(srcData1 + index, v0, dummy); // f0 f2 f4 f6 ,f1 f3 f5 f7
v_load_deinterleave(srcData1 + index + 8, v1, dummy); // f8 f10 f12 f14 ,f9 f11 f13 f15
max_val0 = v_max(max_val0, v0);
max_val1 = v_max(max_val1, v1);
}
else
for (int k = 0; k < kernel_w*kernel_h; k++)
{
int index = ofsptr[k];
v_float32x4 v0(srcData1[index], srcData1[index + stride_w],
srcData1[index + stride_w*2], srcData1[index + stride_w*3]);
v_float32x4 v1(srcData1[index + stride_w*4], srcData1[index + stride_w*5],
srcData1[index + stride_w*6], srcData1[index + stride_w*7]);
max_val0 = v_max(max_val0, v0);
max_val1 = v_max(max_val1, v1);
}
}
else
{
for (int y = ystart; y < yend; ++y)
{
for (int x = xstart; x < xend; ++x)
{
const int index = y * inp_width + x;
v_float32x4 v0(srcData[index], srcData[index + stride_w],
srcData[index + stride_w*2], srcData[index + stride_w*3]);
v_float32x4 v1(srcData[index + stride_w*4], srcData[index + stride_w*5],
srcData[index + stride_w*6], srcData[index + stride_w*7]);
max_val0 = v_max(max_val0, v0);
max_val1 = v_max(max_val1, v1);
}
}
}
v_store(dstData + x0, max_val0);
v_store(dstData + x0 + 4, max_val1);
x0 += 7;
}
}
else
#endif
{
float max_val = -FLT_MAX;
if( compMaxIdx )
{
int max_index = -1;
for (int y = ystart; y < yend; ++y)
for (int x = xstart; x < xend; ++x)
{
const int index = y * inp_width + x;
float val = srcData[index];
if (val > max_val)
{
max_val = val;
max_index = index;
}
}
dstData[x0] = max_val;
if (dstMaskData)
dstMaskData[x0] = max_index;
}
else
{
for (int y = ystart; y < yend; ++y)
for (int x = xstart; x < xend; ++x)
{
const int index = y * inp_width + x;
float val = srcData[index];
max_val = std::max(max_val, val);
}
dstData[x0] = max_val;
}
}
}
else if (poolingType == AVE)
{
for( ; x0 < x1; x0++ )
{
int xstart = x0 * stride_w - pad_l;
int xend = min(xstart + kernel_w, inp_width + pad_r);
int xdelta = xend - xstart;
xstart = max(xstart, 0);
xend = min(xend, inp_width);
float inv_kernel_area = avePoolPaddedArea ? xdelta * ydelta : ((yend - ystart) * (xend - xstart));
inv_kernel_area = 1.0 / inv_kernel_area;
#if CV_SIMD128
if( xstart > 0 && x0 + 7 < x1 && (x0 + 7) * stride_w - pad_l + kernel_w < inp_width )
{
v_float32x4 sum_val0 = v_setzero_f32(), sum_val1 = v_setzero_f32();
v_float32x4 ikarea = v_setall_f32(inv_kernel_area);
for (int y = ystart; y < yend; ++y)
{
for (int x = xstart; x < xend; ++x)
{
const int index = y * inp_width + x;
v_float32x4 v0(srcData[index], srcData[index + stride_w],
srcData[index + stride_w*2], srcData[index + stride_w*3]);
v_float32x4 v1(srcData[index + stride_w*4], srcData[index + stride_w*5],
srcData[index + stride_w*6], srcData[index + stride_w*7]);
sum_val0 += v0;
sum_val1 += v1;
}
}
v_store(dstData + x0, sum_val0*ikarea);
v_store(dstData + x0 + 4, sum_val1*ikarea);
x0 += 7;
}
else
#endif
{
float sum_val = 0.f;
for (int y = ystart; y < yend; ++y)
for (int x = xstart; x < xend; ++x)
{
const int index = y * inp_width + x;
float val = srcData[index];
sum_val += val;
}
dstData[x0] = sum_val*inv_kernel_area;
}
}
}
else if (poolingType == ROI)
{
const float *roisData = rois->ptr<float>(n);
int xstartROI = roundRoiSize(roisData[1] * spatialScale);
int xendROI = roundRoiSize(roisData[3] * spatialScale);
int roiWidth = std::max(xendROI - xstartROI + 1, 1);
float roiRatio = (float)roiWidth / width;
for( ; x0 < x1; x0++ )
{
int xstart = xstartROI + x0 * roiRatio;
int xend = xstartROI + std::ceil((x0 + 1) * roiRatio);
xstart = max(xstart, 0);
xend = min(xend, inp_width);
if (xstart >= xend || ystart >= yend)
{
dstData[x0] = 0;
if (compMaxIdx && dstMaskData)
dstMaskData[x0] = -1;
continue;
}
float max_val = -FLT_MAX;
for (int y = ystart; y < yend; ++y)
for (int x = xstart; x < xend; ++x)
{
const int index = y * inp_width + x;
float val = srcData[index];
max_val = std::max(max_val, val);
}
dstData[x0] = max_val;
}
}
else // PSROI
{
const float *roisData = rois->ptr<float>(n);
CV_Assert(roisData[0] < src->size[0]);
float xstartROI = roundRoiSize(roisData[1]) * spatialScale;
float xendROI = roundRoiSize(roisData[3] + 1) * spatialScale;
float roiWidth = std::max(xendROI - xstartROI, 0.1f);
float roiRatio = roiWidth / width;
for( ; x0 < x1; x0++ )
{
int xstart = (int)std::floor(xstartROI + x0 * roiRatio);
int xend = (int)std::ceil(xstartROI + (x0 + 1) * roiRatio);
xstart = max(xstart, 0);
xend = min(xend, inp_width);
if (xstart >= xend || ystart >= yend)
{
dstData[x0] = 0;
continue;
}
srcData = src->ptr<float>(roisData[0], (c * height + y0) * width + x0);
float sum_val = 0.f;
for (int y = ystart; y < yend; ++y)
for (int x = xstart; x < xend; ++x)
{
const int index = y * inp_width + x;
float val = srcData[index];
sum_val += val;
}
dstData[x0] = sum_val / ((yend - ystart) * (xend - xstart));
}
}
}
}
};
void maxPooling(Mat &src, Mat &dst, Mat &mask)
{
const int nstripes = getNumThreads();
Mat rois;
PoolingInvoker::run(src, rois, dst, mask, kernel, stride, pad_l, pad_t, pad_r, pad_b, avePoolPaddedArea, type, spatialScale, computeMaxIdx, nstripes);
}
void avePooling(Mat &src, Mat &dst)
{
const int nstripes = getNumThreads();
Mat rois, mask;
PoolingInvoker::run(src, rois, dst, mask, kernel, stride, pad_l, pad_t, pad_r, pad_b, avePoolPaddedArea, type, spatialScale, computeMaxIdx, nstripes);
}
void roiPooling(const Mat &src, const Mat &rois, Mat &dst)
{
const int nstripes = getNumThreads();
Mat mask;
PoolingInvoker::run(src, rois, dst, mask, kernel, stride, pad_l, pad_t, pad_r, pad_b, avePoolPaddedArea, type, spatialScale, computeMaxIdx, nstripes);
}
virtual Ptr<BackendNode> initMaxPoolingHalide(const std::vector<Ptr<BackendWrapper> > &inputs)
{
#ifdef HAVE_HALIDE
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);
const int inWidth = inputBuffer.width();
const int inHeight = inputBuffer.height();
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
Halide::RDom r(0, kernel.width, 0, kernel.height);
Halide::Expr kx, ky;
if(pad_l || pad_t)
{
kx = clamp(x * stride.width + r.x - pad_l, 0, inWidth - 1);
ky = clamp(y * stride.height + r.y - pad_t, 0, inHeight - 1);
}
else
{
kx = min(x * stride.width + r.x, inWidth - 1);
ky = min(y * stride.height + r.y, inHeight - 1);
}
// Halide::argmax returns tuple (r.x, r.y, max).
Halide::Tuple res = argmax(inputBuffer(kx, ky, c, n));
// Compute offset from argmax in range [0, kernel_size).
Halide::Expr max_index;
if(pad_l || pad_t)
{
max_index = clamp(y * stride.height + res[1] - pad_t,
0, inHeight - 1) * inWidth +
clamp(x * stride.width + res[0] - pad_l,
0, inWidth - 1);
}
else
{
max_index = min(y * stride.height + res[1], inHeight - 1) * inWidth +
min(x * stride.width + res[0], inWidth - 1);
}
top(x, y, c, n) = { res[2], Halide::cast<float>(max_index) };
return Ptr<BackendNode>(new HalideBackendNode(top));
#endif // HAVE_HALIDE
return Ptr<BackendNode>();
}
virtual Ptr<BackendNode> initAvePoolingHalide(const std::vector<Ptr<BackendWrapper> > &inputs)
{
#ifdef HAVE_HALIDE
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);
const int inW = inputBuffer.width(), inH = inputBuffer.height();
if ((inW - kernel.width) % stride.width || (inH - kernel.height) % stride.height)
{
CV_Error(cv::Error::StsNotImplemented,
"Halide backend for average pooling with partial "
"kernels is not implemented");
}
const float norm = 1.0f / (kernel.width * kernel.height);
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
Halide::RDom r(0, kernel.width, 0, kernel.height);
top(x, y, c, n) = sum(
inputBuffer(x * stride.width + r.x,
y * stride.height + r.y, c, n)) * norm;
return Ptr<BackendNode>(new HalideBackendNode(top));
#endif // HAVE_HALIDE
return Ptr<BackendNode>();
}
virtual void applyHalideScheduler(Ptr<BackendNode>& node,
const std::vector<Mat*> &inputs,
const std::vector<Mat> &outputs,
int targetId) const CV_OVERRIDE
{
#ifdef HAVE_HALIDE
if (targetId != DNN_TARGET_CPU)
{
Layer::applyHalideScheduler(node, inputs, outputs, targetId);
return;
}
Halide::Var x("x"), y("y"), c("c"), n("n"), tile("tile"),
xi("xi"), yi("yi"), ci("ci"), xo("xo"), yo("yo"), co("co");
Halide::Func& top = node.dynamicCast<HalideBackendNode>()->funcs.back();
int outW, outH, outC, outN;
getCanonicalSize(outputs[0].size, &outW, &outH, &outC, &outN);
if (outW < 8 || outH < 8)
{
if (outC > 8)
top.split(c, co, ci, 8)
.fuse(x, y, tile).fuse(co, tile, tile).fuse(n, tile, tile)
.parallel(tile)
.vectorize(ci);
else
{
top.fuse(y, c, tile).fuse(n, tile, tile)
.parallel(tile);
if (outW > 1)
top.vectorize(x);
}
}
else
{
if (outC > 8)
top.split(x, xo, xi, 8).split(y, yo, yi, 8).split(c, co, ci, 8)
.fuse(xo, yo, tile).fuse(co, tile, tile).fuse(n, tile, tile)
.parallel(tile)
.vectorize(xi);
else
top.split(x, xo, xi, 8).split(y, yo, yi, 8)
.fuse(xo, yo, tile).fuse(c, tile, tile).fuse(n, tile, tile)
.parallel(tile)
.vectorize(xi);
}
#endif // HAVE_HALIDE
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE
{
CV_Assert(inputs.size() != 0);
Size in(inputs[0][3], inputs[0][2]), out;
if (globalPooling)
{
out.height = 1;
out.width = 1;
}
else if (type == ROI || type == PSROI)
{
out.height = pooledSize.height;
out.width = pooledSize.width;
}
else if (padMode.empty())
{
float height = (float)(in.height + pad_t + pad_b - kernel.height) / stride.height;
float width = (float)(in.width + pad_l + pad_r - kernel.width) / stride.width;
out.height = 1 + (ceilMode ? ceil(height) : floor(height));
out.width = 1 + (ceilMode ? ceil(width) : floor(width));
if (pad_r || pad_b)
{
// If we have padding, ensure that the last pooling starts strictly
// inside the image (instead of at the padding); otherwise clip the last.
if ((out.height - 1) * stride.height >= in.height + pad_b)
--out.height;
if ((out.width - 1) * stride.width >= in.width + pad_r)
--out.width;
CV_Assert((out.height - 1) * stride.height < in.height + pad_b);
CV_Assert((out.width - 1) * stride.width < in.width + pad_r);
}
}
else
{
getConvPoolOutParams(in, kernel, stride, padMode, Size(1, 1), out);
}
int dims[] = {inputs[0][0], inputs[0][1], out.height, out.width};
if (type == ROI)
{
CV_Assert(inputs.size() == 2);
dims[0] = inputs[1][0]; // Number of proposals;
}
else if (type == PSROI)
{
CV_Assert(inputs.size() == 2);
CV_Assert(psRoiOutChannels * pooledSize.width * pooledSize.height == inputs[0][1]);
dims[0] = inputs[1][0]; // Number of proposals;
dims[1] = psRoiOutChannels;
}
int numOutputs = requiredOutputs ? requiredOutputs : (type == MAX ? 2 : 1);
CV_Assert(numOutputs == 1 || (numOutputs == 2 && type == MAX));
outputs.assign(numOutputs, shape(dims, 4));
return false;
}
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const CV_OVERRIDE
{
CV_UNUSED(inputs); // suppress unused variable warning
long flops = 0;
for(int i = 0; i < outputs.size(); i++)
{
if (type == MAX)
{
if (i%2 == 0)
flops += total(outputs[i])*kernel.area();
}
else
{
flops += total(outputs[i])*(kernel.area() + 1);
}
}
return flops;
}
private:
enum Type
{
MAX,
AVE,
STOCHASTIC,
ROI, // RoI pooling, https://arxiv.org/pdf/1504.08083.pdf
PSROI // Position-sensitive RoI pooling, https://arxiv.org/pdf/1605.06409.pdf
};
};
Ptr<PoolingLayer> PoolingLayer::create(const LayerParams& params)
{
return Ptr<PoolingLayer>(new PoolingLayerImpl(params));
}
}
}