1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other GpuMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or bpied warranties, including, but not limited to, the bpied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::gpu;
using namespace std;
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
void cv::gpu::BroxOpticalFlow::operator ()(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::interpolateFrames(const GpuMat&, const GpuMat&, const GpuMat&, const GpuMat&, const GpuMat&, const GpuMat&, float, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::createOpticalFlowNeedleMap(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&) { throw_nogpu(); }
#else
namespace
{
size_t getBufSize(const NCVBroxOpticalFlowDescriptor& desc, const NCVMatrix<Ncv32f>& frame0, const NCVMatrix<Ncv32f>& frame1,
NCVMatrix<Ncv32f>& u, NCVMatrix<Ncv32f>& v, const cudaDeviceProp& devProp)
{
NCVMemStackAllocator gpuCounter(static_cast<Ncv32u>(devProp.textureAlignment));
ncvSafeCall( NCVBroxOpticalFlow(desc, gpuCounter, frame0, frame1, u, v, 0) );
return gpuCounter.maxSize();
}
}
namespace
{
static void outputHandler(const std::string &msg) { CV_Error(CV_GpuApiCallError, msg.c_str()); }
}
void cv::gpu::BroxOpticalFlow::operator ()(const GpuMat& frame0, const GpuMat& frame1, GpuMat& u, GpuMat& v, Stream& s)
{
ncvSetDebugOutputHandler(outputHandler);
CV_Assert(frame0.type() == CV_32FC1);
CV_Assert(frame1.size() == frame0.size() && frame1.type() == frame0.type());
u.create(frame0.size(), CV_32FC1);
v.create(frame0.size(), CV_32FC1);
cudaDeviceProp devProp;
cudaSafeCall( cudaGetDeviceProperties(&devProp, getDevice()) );
NCVBroxOpticalFlowDescriptor desc;
desc.alpha = alpha;
desc.gamma = gamma;
desc.scale_factor = scale_factor;
desc.number_of_inner_iterations = inner_iterations;
desc.number_of_outer_iterations = outer_iterations;
desc.number_of_solver_iterations = solver_iterations;
NCVMemSegment frame0MemSeg;
frame0MemSeg.begin.memtype = NCVMemoryTypeDevice;
frame0MemSeg.begin.ptr = const_cast<uchar*>(frame0.data);
frame0MemSeg.size = frame0.step * frame0.rows;
NCVMemSegment frame1MemSeg;
frame1MemSeg.begin.memtype = NCVMemoryTypeDevice;
frame1MemSeg.begin.ptr = const_cast<uchar*>(frame1.data);
frame1MemSeg.size = frame1.step * frame1.rows;
NCVMemSegment uMemSeg;
uMemSeg.begin.memtype = NCVMemoryTypeDevice;
uMemSeg.begin.ptr = u.ptr();
uMemSeg.size = u.step * u.rows;
NCVMemSegment vMemSeg;
vMemSeg.begin.memtype = NCVMemoryTypeDevice;
vMemSeg.begin.ptr = v.ptr();
vMemSeg.size = v.step * v.rows;
NCVMatrixReuse<Ncv32f> frame0Mat(frame0MemSeg, static_cast<Ncv32u>(devProp.textureAlignment), frame0.cols, frame0.rows, static_cast<Ncv32u>(frame0.step));
NCVMatrixReuse<Ncv32f> frame1Mat(frame1MemSeg, static_cast<Ncv32u>(devProp.textureAlignment), frame1.cols, frame1.rows, static_cast<Ncv32u>(frame1.step));
NCVMatrixReuse<Ncv32f> uMat(uMemSeg, static_cast<Ncv32u>(devProp.textureAlignment), u.cols, u.rows, static_cast<Ncv32u>(u.step));
NCVMatrixReuse<Ncv32f> vMat(vMemSeg, static_cast<Ncv32u>(devProp.textureAlignment), v.cols, v.rows, static_cast<Ncv32u>(v.step));
cudaStream_t stream = StreamAccessor::getStream(s);
size_t bufSize = getBufSize(desc, frame0Mat, frame1Mat, uMat, vMat, devProp);
ensureSizeIsEnough(1, static_cast<int>(bufSize), CV_8UC1, buf);
NCVMemStackAllocator gpuAllocator(NCVMemoryTypeDevice, bufSize, static_cast<Ncv32u>(devProp.textureAlignment), buf.ptr());
ncvSafeCall( NCVBroxOpticalFlow(desc, gpuAllocator, frame0Mat, frame1Mat, uMat, vMat, stream) );
}
void cv::gpu::interpolateFrames(const GpuMat& frame0, const GpuMat& frame1, const GpuMat& fu, const GpuMat& fv, const GpuMat& bu, const GpuMat& bv,
float pos, GpuMat& newFrame, GpuMat& buf, Stream& s)
{
CV_Assert(frame0.type() == CV_32FC1);
CV_Assert(frame1.size() == frame0.size() && frame1.type() == frame0.type());
CV_Assert(fu.size() == frame0.size() && fu.type() == frame0.type());
CV_Assert(fv.size() == frame0.size() && fv.type() == frame0.type());
CV_Assert(bu.size() == frame0.size() && bu.type() == frame0.type());
CV_Assert(bv.size() == frame0.size() && bv.type() == frame0.type());
newFrame.create(frame0.size(), frame0.type());
buf.create(6 * frame0.rows, frame0.cols, CV_32FC1);
buf.setTo(Scalar::all(0));
// occlusion masks
GpuMat occ0 = buf.rowRange(0 * frame0.rows, 1 * frame0.rows);
GpuMat occ1 = buf.rowRange(1 * frame0.rows, 2 * frame0.rows);
// interpolated forward flow
GpuMat fui = buf.rowRange(2 * frame0.rows, 3 * frame0.rows);
GpuMat fvi = buf.rowRange(3 * frame0.rows, 4 * frame0.rows);
// interpolated backward flow
GpuMat bui = buf.rowRange(4 * frame0.rows, 5 * frame0.rows);
GpuMat bvi = buf.rowRange(5 * frame0.rows, 6 * frame0.rows);
size_t step = frame0.step;
CV_Assert(frame1.step == step && fu.step == step && fv.step == step && bu.step == step && bv.step == step && newFrame.step == step && buf.step == step);
cudaStream_t stream = StreamAccessor::getStream(s);
NppStStreamHandler h(stream);
NppStInterpolationState state;
state.size = NcvSize32u(frame0.cols, frame0.rows);
state.nStep = static_cast<Ncv32u>(step);
state.pSrcFrame0 = const_cast<Ncv32f*>(frame0.ptr<Ncv32f>());
state.pSrcFrame1 = const_cast<Ncv32f*>(frame1.ptr<Ncv32f>());
state.pFU = const_cast<Ncv32f*>(fu.ptr<Ncv32f>());
state.pFV = const_cast<Ncv32f*>(fv.ptr<Ncv32f>());
state.pBU = const_cast<Ncv32f*>(bu.ptr<Ncv32f>());
state.pBV = const_cast<Ncv32f*>(bv.ptr<Ncv32f>());
state.pos = pos;
state.pNewFrame = newFrame.ptr<Ncv32f>();
state.ppBuffers[0] = occ0.ptr<Ncv32f>();
state.ppBuffers[1] = occ1.ptr<Ncv32f>();
state.ppBuffers[2] = fui.ptr<Ncv32f>();
state.ppBuffers[3] = fvi.ptr<Ncv32f>();
state.ppBuffers[4] = bui.ptr<Ncv32f>();
state.ppBuffers[5] = bvi.ptr<Ncv32f>();
ncvSafeCall( nppiStInterpolateFrames(&state) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
namespace cv { namespace gpu { namespace device
{
namespace optical_flow
{
void NeedleMapAverage_gpu(PtrStepSzf u, PtrStepSzf v, PtrStepSzf u_avg, PtrStepSzf v_avg);
void CreateOpticalFlowNeedleMap_gpu(PtrStepSzf u_avg, PtrStepSzf v_avg, float* vertex_buffer, float* color_data, float max_flow, float xscale, float yscale);
}
}}}
void cv::gpu::createOpticalFlowNeedleMap(const GpuMat& u, const GpuMat& v, GpuMat& vertex, GpuMat& colors)
{
using namespace cv::gpu::device::optical_flow;
CV_Assert(u.type() == CV_32FC1);
CV_Assert(v.type() == u.type() && v.size() == u.size());
const int NEEDLE_MAP_SCALE = 16;
const int x_needles = u.cols / NEEDLE_MAP_SCALE;
const int y_needles = u.rows / NEEDLE_MAP_SCALE;
GpuMat u_avg(y_needles, x_needles, CV_32FC1);
GpuMat v_avg(y_needles, x_needles, CV_32FC1);
NeedleMapAverage_gpu(u, v, u_avg, v_avg);
const int NUM_VERTS_PER_ARROW = 6;
const int num_arrows = x_needles * y_needles * NUM_VERTS_PER_ARROW;
vertex.create(1, num_arrows, CV_32FC3);
colors.create(1, num_arrows, CV_32FC3);
colors.setTo(Scalar::all(1.0));
double uMax, vMax;
minMax(u_avg, 0, &uMax);
minMax(v_avg, 0, &vMax);
float max_flow = static_cast<float>(std::sqrt(uMax * uMax + vMax * vMax));
CreateOpticalFlowNeedleMap_gpu(u_avg, v_avg, vertex.ptr<float>(), colors.ptr<float>(), max_flow, 1.0f / u.cols, 1.0f / u.rows);
cvtColor(colors, colors, COLOR_HSV2RGB);
}
#endif /* HAVE_CUDA */