shift_layer.cpp 4.97 KB
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.

// Copyright (C) 2016, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.

/*
Implementation of shift layer, which adds up const values to blob.
*/

#include "../precomp.hpp"
#include "op_inf_engine.hpp"
#include <opencv2/dnn/shape_utils.hpp>

namespace cv
{
namespace dnn
{

class ShiftLayerImpl : public ShiftLayer
{
public:
    ShiftLayerImpl(const LayerParams &params)
    {
        setParamsFrom(params);
        CV_Assert(blobs.size() == 1);
    }

    virtual bool supportBackend(int backendId)
    {
        return backendId == DNN_BACKEND_DEFAULT ||
               backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine();
    }

    bool getMemoryShapes(const std::vector<MatShape> &inputs,
                         const int requiredOutputs,
                         std::vector<MatShape> &outputs,
                         std::vector<MatShape> &internals) const
    {
        Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals);
        internals.assign(1, shape(1, total(inputs[0], 2)));
        return true;
    }

    void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
    {
        CV_TRACE_FUNCTION();
        CV_TRACE_ARG_VALUE(name, "name", name.c_str());

        Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
    }

    virtual void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
    {
        CV_TRACE_FUNCTION();
        CV_TRACE_ARG_VALUE(name, "name", name.c_str());

        CV_Assert(inputs.size() > 0);
        CV_Assert(blobs.size() > 0);

        if(inputs[0]->dims == blobs[0].dims)
        {
            for (size_t ii = 0; ii < outputs.size(); ii++)
            {
                Mat &inpBlob = *inputs[ii];
                Mat &outBlob = outputs[ii];

                outBlob = inpBlob + blobs[0];
            }
        }
        else
        {
            Mat biasOnesMat = internals[0];
            biasOnesMat.setTo(1);
            for (size_t ii = 0; ii < outputs.size(); ii++)
            {
                Mat &inpBlob = *inputs[ii];
                Mat &outBlob = outputs[ii];

                inpBlob.copyTo(outBlob);

                for (int n = 0; n < inpBlob.size[0]; n++)
                {
                    Mat dstMat(inpBlob.size[1], inpBlob.size[2] * inpBlob.size[3],
                               outBlob.type(), outBlob.ptr(n));
                    gemm(blobs[0], biasOnesMat, 1, dstMat, 1, dstMat); //TODO: gemv
                }
            }
        }
    }

    virtual Ptr<BackendNode> tryAttach(const Ptr<BackendNode>& node)
    {
        switch (node->backendId)
        {
            case DNN_BACKEND_INFERENCE_ENGINE:
            {
#ifdef HAVE_INF_ENGINE
                auto base = node.dynamicCast<InfEngineBackendNode>();
                auto conv = std::dynamic_pointer_cast<InferenceEngine::ConvolutionLayer>(base->layer);
                if (conv)
                {
                    fuseConvWeights(conv, Mat(), blobs[0]);
                    return base;
                }
#endif  // HAVE_INF_ENGINE
                break;
            }
        }
        return Ptr<BackendNode>();
    }

    virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&)
    {
#ifdef HAVE_INF_ENGINE
        // Inference Engine has no layer just for biases. Create a linear
        // transformation layer with ones weights.
        InferenceEngine::LayerParams lp;
        lp.name = name;
        lp.type = "ScaleShift";
        lp.precision = InferenceEngine::Precision::FP32;
        std::shared_ptr<InferenceEngine::ScaleShiftLayer> ieLayer(new InferenceEngine::ScaleShiftLayer(lp));

        auto weights = InferenceEngine::make_shared_blob<float>(InferenceEngine::Precision::FP32,
                                                                {blobs[0].total()});
        weights->allocate();

        std::vector<float> ones(blobs[0].total(), 1);
        weights->set(ones);
        ieLayer->_weights = weights;

        ieLayer->_biases = wrapToInfEngineBlob(blobs[0]);
        return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
#endif  // HAVE_INF_ENGINE
        return Ptr<BackendNode>();
    }

    void getScaleShift(Mat& scale, Mat& shift) const
    {
        scale = Mat();
        shift = blobs[0];
    }

    virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
                           const std::vector<MatShape> &outputs) const
    {
        (void)outputs; // suppress unused variable warning
        long flops = 0;

        for(int i= 0; i < inputs.size(); i++)
        {
           flops += total(inputs[i]);
        }

        return flops;
    }
};

Ptr<ShiftLayer> ShiftLayer::create(const LayerParams& params)
{
    return Ptr<ShiftLayer>(new ShiftLayerImpl(params));
}

}
}