detection_output_layer.cpp 38.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
/*M ///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "../precomp.hpp"
#include "layers_common.hpp"
#include "../op_inf_engine.hpp"
#include <float.h>
#include <string>
#include "../nms.inl.hpp"

#ifdef HAVE_OPENCL
#include "opencl_kernels_dnn.hpp"
#endif

namespace cv
{
namespace dnn
{

namespace util
{

class NormalizedBBox
{
public:
    float xmin, ymin, xmax, ymax;

    NormalizedBBox()
        : xmin(0), ymin(0), xmax(0), ymax(0), has_size_(false), size_(0) {}

    float size() const { return size_; }

    bool has_size() const { return has_size_; }

    void set_size(float value) { size_ = value; has_size_ = true; }

    void clear_size() { size_ = 0; has_size_ = false; }

private:
    bool has_size_;
    float size_;
};

template <typename T>
static inline bool SortScorePairDescend(const std::pair<float, T>& pair1,
                          const std::pair<float, T>& pair2)
{
    return pair1.first > pair2.first;
}

static inline float caffe_box_overlap(const util::NormalizedBBox& a, const util::NormalizedBBox& b);

static inline float caffe_norm_box_overlap(const util::NormalizedBBox& a, const util::NormalizedBBox& b);

} // namespace

class DetectionOutputLayerImpl CV_FINAL : public DetectionOutputLayer
{
public:
    unsigned _numClasses;
    bool _shareLocation;
    int _numLocClasses;

    int _backgroundLabelId;

    cv::String _codeType;

    bool _varianceEncodedInTarget;
    int _keepTopK;
    float _confidenceThreshold;

    float _nmsThreshold;
    int _topK;
    // Whenever predicted bounding boxes are represented in YXHW instead of XYWH layout.
    bool _locPredTransposed;
    // It's true whenever predicted bounding boxes and proposals are normalized to [0, 1].
    bool _bboxesNormalized;
    bool _clip;
    bool _groupByClasses;

    enum { _numAxes = 4 };
    static const std::string _layerName;

    typedef std::map<int, std::vector<util::NormalizedBBox> > LabelBBox;

    bool getParameterDict(const LayerParams &params,
                          const std::string &parameterName,
                          DictValue& result)
    {
        if (!params.has(parameterName))
        {
            return false;
        }

        result = params.get(parameterName);
        return true;
    }

    template<typename T>
    T getParameter(const LayerParams &params,
                   const std::string &parameterName,
                   const size_t &idx=0,
                   const bool required=true,
                   const T& defaultValue=T())
    {
        DictValue dictValue;
        bool success = getParameterDict(params, parameterName, dictValue);
        if(!success)
        {
            if(required)
            {
                std::string message = _layerName;
                message += " layer parameter does not contain ";
                message += parameterName;
                message += " parameter.";
                CV_Error(Error::StsBadArg, message);
            }
            else
            {
                return defaultValue;
            }
        }
        return dictValue.get<T>(idx);
    }

    void getCodeType(const LayerParams &params)
    {
        String codeTypeString = toLowerCase(params.get<String>("code_type"));
        if (codeTypeString == "center_size")
            _codeType = "CENTER_SIZE";
        else
            _codeType = "CORNER";
    }

    DetectionOutputLayerImpl(const LayerParams &params)
    {
        _numClasses = getParameter<unsigned>(params, "num_classes");
        _shareLocation = getParameter<bool>(params, "share_location");
        _numLocClasses = _shareLocation ? 1 : _numClasses;
        _backgroundLabelId = getParameter<int>(params, "background_label_id");
        _varianceEncodedInTarget = getParameter<bool>(params, "variance_encoded_in_target", 0, false, false);
        _keepTopK = getParameter<int>(params, "keep_top_k");
        _confidenceThreshold = getParameter<float>(params, "confidence_threshold", 0, false, -FLT_MAX);
        _topK = getParameter<int>(params, "top_k", 0, false, -1);
        _locPredTransposed = getParameter<bool>(params, "loc_pred_transposed", 0, false, false);
        _bboxesNormalized = getParameter<bool>(params, "normalized_bbox", 0, false, true);
        _clip = getParameter<bool>(params, "clip", 0, false, false);
        _groupByClasses = getParameter<bool>(params, "group_by_classes", 0, false, true);

        getCodeType(params);

        // Parameters used in nms.
        _nmsThreshold = getParameter<float>(params, "nms_threshold");
        CV_Assert(_nmsThreshold > 0.);

        setParamsFrom(params);
    }

    virtual bool supportBackend(int backendId) CV_OVERRIDE
    {
        return backendId == DNN_BACKEND_OPENCV ||
               (backendId == DNN_BACKEND_INFERENCE_ENGINE && !_locPredTransposed && _bboxesNormalized && !_clip);
    }

    bool getMemoryShapes(const std::vector<MatShape> &inputs,
                         const int requiredOutputs,
                         std::vector<MatShape> &outputs,
                         std::vector<MatShape> &internals) const CV_OVERRIDE
    {
        CV_Assert(inputs.size() >= 3);
        CV_Assert(inputs[0][0] == inputs[1][0]);

        int numPriors = inputs[2][2] / 4;
        CV_Assert((numPriors * _numLocClasses * 4) == total(inputs[0], 1));
        CV_Assert(int(numPriors * _numClasses) == total(inputs[1], 1));
        CV_Assert(inputs[2][1] == 1 + (int)(!_varianceEncodedInTarget));

        // num() and channels() are 1.
        // Since the number of bboxes to be kept is unknown before nms, we manually
        // set it to maximal number of detections, [keep_top_k] parameter.
        // Each row is a 7 dimension std::vector, which stores
        // [image_id, label, confidence, xmin, ymin, xmax, ymax]
        outputs.resize(1, shape(1, 1, _keepTopK, 7));

        return false;
    }

#ifdef HAVE_OPENCL
    // Decode all bboxes in a batch
    bool ocl_DecodeBBoxesAll(UMat& loc_mat, UMat& prior_mat,
                             const int num, const int numPriors, const bool share_location,
                             const int num_loc_classes, const int background_label_id,
                             const cv::String& code_type, const bool variance_encoded_in_target,
                             const bool clip, std::vector<LabelBBox>& all_decode_bboxes)
    {
        UMat outmat = UMat(loc_mat.dims, loc_mat.size, CV_32F);
        size_t nthreads = loc_mat.total();
        String kernel_name;

        if (code_type == "CORNER")
            kernel_name = "DecodeBBoxesCORNER";
        else if (code_type == "CENTER_SIZE")
            kernel_name = "DecodeBBoxesCENTER_SIZE";
        else
            return false;

        for (int i = 0; i < num; ++i)
        {
            ocl::Kernel kernel(kernel_name.c_str(), ocl::dnn::detection_output_oclsrc);
            kernel.set(0, (int)nthreads);
            kernel.set(1, ocl::KernelArg::PtrReadOnly(loc_mat));
            kernel.set(2, ocl::KernelArg::PtrReadOnly(prior_mat));
            kernel.set(3, (int)variance_encoded_in_target);
            kernel.set(4, (int)numPriors);
            kernel.set(5, (int)share_location);
            kernel.set(6, (int)num_loc_classes);
            kernel.set(7, (int)background_label_id);
            kernel.set(8, (int)clip);
            kernel.set(9, (int)_locPredTransposed);
            kernel.set(10, ocl::KernelArg::PtrWriteOnly(outmat));

            if (!kernel.run(1, &nthreads, NULL, false))
                return false;
        }

        all_decode_bboxes.clear();
        all_decode_bboxes.resize(num);
        {
            Mat mat = outmat.getMat(ACCESS_READ);
            const float* decode_data = mat.ptr<float>();
            for (int i = 0; i < num; ++i)
            {
                LabelBBox& decode_bboxes = all_decode_bboxes[i];
                for (int c = 0; c < num_loc_classes; ++c)
                {
                    int label = share_location ? -1 : c;
                    decode_bboxes[label].resize(numPriors);
                    for (int p = 0; p < numPriors; ++p)
                    {
                        int startIdx = p * num_loc_classes * 4;
                        util::NormalizedBBox& bbox = decode_bboxes[label][p];
                        bbox.xmin = decode_data[startIdx + c * 4];
                        bbox.ymin = decode_data[startIdx + c * 4 + 1];
                        bbox.xmax = decode_data[startIdx + c * 4 + 2];
                        bbox.ymax = decode_data[startIdx + c * 4 + 3];
                    }
                }
            }
        }
        return true;
    }

    void ocl_GetConfidenceScores(const UMat& inp1, const int num,
                                 const int numPredsPerClass, const int numClasses,
                                 std::vector<Mat>& confPreds)
    {
        int shape[] = { numClasses, numPredsPerClass };
        for (int i = 0; i < num; i++)
            confPreds.push_back(Mat(2, shape, CV_32F));

        shape[0] = num * numPredsPerClass;
        shape[1] = inp1.total() / shape[0];
        UMat umat = inp1.reshape(1, 2, &shape[0]);
        for (int i = 0; i < num; ++i)
        {
            Range ranges[] = { Range(i * numPredsPerClass, (i + 1) * numPredsPerClass), Range::all() };
            transpose(umat(ranges), confPreds[i]);
        }
    }

    bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
    {
        std::vector<UMat> inputs;
        std::vector<UMat> outputs;

        bool use_half = (inps.depth() == CV_16S);
        if (use_half)
        {
            std::vector<UMat> orig_inputs;
            std::vector<UMat> orig_outputs;

            inps.getUMatVector(orig_inputs);
            outs.getUMatVector(orig_outputs);

            inputs.resize(orig_inputs.size());
            for (size_t i = 0; i < orig_inputs.size(); i++)
                convertFp16(orig_inputs[i], inputs[i]);
        }
        else
        {
            inps.getUMatVector(inputs);
            outs.getUMatVector(outputs);
        }

        std::vector<LabelBBox> allDecodedBBoxes;
        std::vector<Mat> allConfidenceScores;

        int num = inputs[0].size[0];

        // extract predictions from input layers
        {
            int numPriors = inputs[2].size[2] / 4;

            // Retrieve all confidences
            ocl_GetConfidenceScores(inputs[1], num, numPriors, _numClasses, allConfidenceScores);

            // Decode all loc predictions to bboxes
            bool ret = ocl_DecodeBBoxesAll(inputs[0], inputs[2], num, numPriors,
                                           _shareLocation, _numLocClasses, _backgroundLabelId,
                                           _codeType, _varianceEncodedInTarget, _clip,
                                           allDecodedBBoxes);
            if (!ret)
                return false;
        }

        size_t numKept = 0;
        std::vector<std::map<int, std::vector<int> > > allIndices;
        for (int i = 0; i < num; ++i)
        {
            numKept += processDetections_(allDecodedBBoxes[i], allConfidenceScores[i], allIndices);
        }

        if (numKept == 0)
        {
            // Set confidences to zeros.
            Range ranges[] = {Range::all(), Range::all(), Range::all(), Range(2, 3)};
            if (use_half)
            {
                std::vector<UMat> orig_outputs;
                outs.getUMatVector(orig_outputs);
                orig_outputs[0](ranges).setTo(0);
            } else
                outputs[0](ranges).setTo(0);
            return true;
        }
        int outputShape[] = {1, 1, (int)numKept, 7};
        UMat umat = UMat(4, outputShape, CV_32F);
        {
            Mat mat = umat.getMat(ACCESS_WRITE);
            float* outputsData = mat.ptr<float>();

            size_t count = 0;
            for (int i = 0; i < num; ++i)
            {
                count += outputDetections_(i, &outputsData[count * 7],
                                           allDecodedBBoxes[i], allConfidenceScores[i],
                                           allIndices[i], _groupByClasses);
            }
            CV_Assert(count == numKept);
        }

        if (use_half)
        {
            UMat half_umat;
            convertFp16(umat, half_umat);

            std::vector<UMat> orig_outputs;
            outs.getUMatVector(orig_outputs);
            orig_outputs.clear();
            orig_outputs.push_back(half_umat);
            outs.assign(orig_outputs);
        } else {
            outputs.clear();
            outputs.push_back(umat);
            outs.assign(outputs);
        }

        return true;
    }
#endif

    void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
    {
        CV_TRACE_FUNCTION();
        CV_TRACE_ARG_VALUE(name, "name", name.c_str());

        if (_bboxesNormalized)
        {
            CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
                       forward_ocl(inputs_arr, outputs_arr, internals_arr))
        }
        if (inputs_arr.depth() == CV_16S)
        {
            forward_fallback(inputs_arr, outputs_arr, internals_arr);
            return;
        }

        std::vector<Mat> inputs, outputs;
        inputs_arr.getMatVector(inputs);
        outputs_arr.getMatVector(outputs);

        std::vector<LabelBBox> allDecodedBBoxes;
        std::vector<Mat> allConfidenceScores;

        int num = inputs[0].size[0];

        // extract predictions from input layers
        {
            int numPriors = inputs[2].size[2] / 4;

            const float* locationData = inputs[0].ptr<float>();
            const float* confidenceData = inputs[1].ptr<float>();
            const float* priorData = inputs[2].ptr<float>();

            // Retrieve all location predictions
            std::vector<LabelBBox> allLocationPredictions;
            GetLocPredictions(locationData, num, numPriors, _numLocClasses,
                              _shareLocation, _locPredTransposed, allLocationPredictions);

            // Retrieve all confidences
            GetConfidenceScores(confidenceData, num, numPriors, _numClasses, allConfidenceScores);

            // Retrieve all prior bboxes
            std::vector<util::NormalizedBBox> priorBBoxes;
            std::vector<std::vector<float> > priorVariances;
            GetPriorBBoxes(priorData, numPriors, _bboxesNormalized, priorBBoxes, priorVariances);

            // Decode all loc predictions to bboxes
            util::NormalizedBBox clipBounds;
            if (_clip)
            {
                CV_Assert(_bboxesNormalized || inputs.size() >= 4);
                clipBounds.xmin = clipBounds.ymin = 0.0f;
                if (_bboxesNormalized)
                    clipBounds.xmax = clipBounds.ymax = 1.0f;
                else
                {
                    // Input image sizes;
                    CV_Assert(inputs[3].dims == 4);
                    clipBounds.xmax = inputs[3].size[3] - 1;
                    clipBounds.ymax = inputs[3].size[2] - 1;
                }
            }
            DecodeBBoxesAll(allLocationPredictions, priorBBoxes, priorVariances, num,
                            _shareLocation, _numLocClasses, _backgroundLabelId,
                            _codeType, _varianceEncodedInTarget, _clip, clipBounds,
                            _bboxesNormalized, allDecodedBBoxes);
        }

        size_t numKept = 0;
        std::vector<std::map<int, std::vector<int> > > allIndices;
        for (int i = 0; i < num; ++i)
        {
            numKept += processDetections_(allDecodedBBoxes[i], allConfidenceScores[i], allIndices);
        }

        if (numKept == 0)
        {
            // Set confidences to zeros.
            Range ranges[] = {Range::all(), Range::all(), Range::all(), Range(2, 3)};
            outputs[0](ranges).setTo(0);
            return;
        }
        int outputShape[] = {1, 1, (int)numKept, 7};
        outputs[0].create(4, outputShape, CV_32F);
        float* outputsData = outputs[0].ptr<float>();

        size_t count = 0;
        for (int i = 0; i < num; ++i)
        {
            count += outputDetections_(i, &outputsData[count * 7],
                                       allDecodedBBoxes[i], allConfidenceScores[i],
                                       allIndices[i], _groupByClasses);
        }
        CV_Assert(count == numKept);
        // Sync results back due changed output shape.
        outputs_arr.assign(outputs);
    }

    size_t outputDetections_(
            const int i, float* outputsData,
            const LabelBBox& decodeBBoxes, Mat& confidenceScores,
            const std::map<int, std::vector<int> >& indicesMap,
            bool groupByClasses
    )
    {
        std::vector<int> dstIndices;
        std::vector<std::pair<float, int> > allScores;
        for (std::map<int, std::vector<int> >::const_iterator it = indicesMap.begin(); it != indicesMap.end(); ++it)
        {
            int label = it->first;
            if (confidenceScores.rows <= label)
                CV_Error_(cv::Error::StsError, ("Could not find confidence predictions for label %d", label));
            const std::vector<float>& scores = confidenceScores.row(label);
            const std::vector<int>& indices = it->second;

            const int numAllScores = allScores.size();
            allScores.reserve(numAllScores + indices.size());
            for (size_t j = 0; j < indices.size(); ++j)
            {
                allScores.push_back(std::make_pair(scores[indices[j]], numAllScores + j));
            }
        }
        if (!groupByClasses)
            std::sort(allScores.begin(), allScores.end(), util::SortScorePairDescend<int>);

        dstIndices.resize(allScores.size());
        for (size_t j = 0; j < dstIndices.size(); ++j)
        {
            dstIndices[allScores[j].second] = j;
        }

        size_t count = 0;
        for (std::map<int, std::vector<int> >::const_iterator it = indicesMap.begin(); it != indicesMap.end(); ++it)
        {
            int label = it->first;
            if (confidenceScores.rows <= label)
                CV_Error_(cv::Error::StsError, ("Could not find confidence predictions for label %d", label));
            const std::vector<float>& scores = confidenceScores.row(label);
            int locLabel = _shareLocation ? -1 : label;
            LabelBBox::const_iterator label_bboxes = decodeBBoxes.find(locLabel);
            if (label_bboxes == decodeBBoxes.end())
                CV_Error_(cv::Error::StsError, ("Could not find location predictions for label %d", locLabel));
            const std::vector<int>& indices = it->second;

            for (size_t j = 0; j < indices.size(); ++j, ++count)
            {
                int idx = indices[j];
                int dstIdx = dstIndices[count];
                const util::NormalizedBBox& decode_bbox = label_bboxes->second[idx];
                outputsData[dstIdx * 7] = i;
                outputsData[dstIdx * 7 + 1] = label;
                outputsData[dstIdx * 7 + 2] = scores[idx];
                outputsData[dstIdx * 7 + 3] = decode_bbox.xmin;
                outputsData[dstIdx * 7 + 4] = decode_bbox.ymin;
                outputsData[dstIdx * 7 + 5] = decode_bbox.xmax;
                outputsData[dstIdx * 7 + 6] = decode_bbox.ymax;
            }
        }
        return count;
    }

    size_t processDetections_(
            const LabelBBox& decodeBBoxes, Mat& confidenceScores,
            std::vector<std::map<int, std::vector<int> > >& allIndices
    )
    {
        std::map<int, std::vector<int> > indices;
        size_t numDetections = 0;
        for (int c = 0; c < (int)_numClasses; ++c)
        {
            if (c == _backgroundLabelId)
                continue; // Ignore background class.
            if (c >= confidenceScores.rows)
                CV_Error_(cv::Error::StsError, ("Could not find confidence predictions for label %d", c));

            const std::vector<float> scores = confidenceScores.row(c);
            int label = _shareLocation ? -1 : c;

            LabelBBox::const_iterator label_bboxes = decodeBBoxes.find(label);
            if (label_bboxes == decodeBBoxes.end())
                CV_Error_(cv::Error::StsError, ("Could not find location predictions for label %d", label));
            if (_bboxesNormalized)
                NMSFast_(label_bboxes->second, scores, _confidenceThreshold, _nmsThreshold, 1.0, _topK,
                         indices[c], util::caffe_norm_box_overlap);
            else
                NMSFast_(label_bboxes->second, scores, _confidenceThreshold, _nmsThreshold, 1.0, _topK,
                         indices[c], util::caffe_box_overlap);
            numDetections += indices[c].size();
        }
        if (_keepTopK > -1 && numDetections > (size_t)_keepTopK)
        {
            std::vector<std::pair<float, std::pair<int, int> > > scoreIndexPairs;
            for (std::map<int, std::vector<int> >::iterator it = indices.begin();
                 it != indices.end(); ++it)
            {
                int label = it->first;
                const std::vector<int>& labelIndices = it->second;
                if (label >= confidenceScores.rows)
                    CV_Error_(cv::Error::StsError, ("Could not find location predictions for label %d", label));
                const std::vector<float>& scores = confidenceScores.row(label);
                for (size_t j = 0; j < labelIndices.size(); ++j)
                {
                    size_t idx = labelIndices[j];
                    CV_Assert(idx < scores.size());
                    scoreIndexPairs.push_back(std::make_pair(scores[idx], std::make_pair(label, idx)));
                }
            }
            // Keep outputs k results per image.
            std::sort(scoreIndexPairs.begin(), scoreIndexPairs.end(),
                      util::SortScorePairDescend<std::pair<int, int> >);
            scoreIndexPairs.resize(_keepTopK);

            std::map<int, std::vector<int> > newIndices;
            for (size_t j = 0; j < scoreIndexPairs.size(); ++j)
            {
                int label = scoreIndexPairs[j].second.first;
                int idx = scoreIndexPairs[j].second.second;
                newIndices[label].push_back(idx);
            }
            allIndices.push_back(newIndices);
            return (size_t)_keepTopK;
        }
        else
        {
            allIndices.push_back(indices);
            return numDetections;
        }
    }


    // **************************************************************
    // Utility functions
    // **************************************************************

    // Compute bbox size
    static float BBoxSize(const util::NormalizedBBox& bbox, bool normalized)
    {
        if (bbox.xmax < bbox.xmin || bbox.ymax < bbox.ymin)
        {
            return 0; // If bbox is invalid (e.g. xmax < xmin or ymax < ymin), return 0.
        }
        else
        {
            if (bbox.has_size())
            {
                return bbox.size();
            }
            else
            {
                float width = bbox.xmax - bbox.xmin;
                float height = bbox.ymax - bbox.ymin;
                if (normalized)
                {
                    return width * height;
                }
                else
                {
                    // If bbox is not within range [0, 1].
                    return (width + 1) * (height + 1);
                }
            }
        }
    }


    // Decode a bbox according to a prior bbox
    template<bool variance_encoded_in_target>
    static void DecodeBBox(
        const util::NormalizedBBox& prior_bbox, const std::vector<float>& prior_variance,
        const cv::String& code_type,
        const bool clip_bbox, const util::NormalizedBBox& clip_bounds,
        const bool normalized_bbox, const util::NormalizedBBox& bbox,
        util::NormalizedBBox& decode_bbox)
    {
        float bbox_xmin = variance_encoded_in_target ? bbox.xmin : prior_variance[0] * bbox.xmin;
        float bbox_ymin = variance_encoded_in_target ? bbox.ymin : prior_variance[1] * bbox.ymin;
        float bbox_xmax = variance_encoded_in_target ? bbox.xmax : prior_variance[2] * bbox.xmax;
        float bbox_ymax = variance_encoded_in_target ? bbox.ymax : prior_variance[3] * bbox.ymax;
        if (code_type == "CORNER")
        {
            decode_bbox.xmin = prior_bbox.xmin + bbox_xmin;
            decode_bbox.ymin = prior_bbox.ymin + bbox_ymin;
            decode_bbox.xmax = prior_bbox.xmax + bbox_xmax;
            decode_bbox.ymax = prior_bbox.ymax + bbox_ymax;
        }
        else if (code_type == "CENTER_SIZE")
        {
            float prior_width = prior_bbox.xmax - prior_bbox.xmin;
            float prior_height = prior_bbox.ymax - prior_bbox.ymin;
            if (!normalized_bbox)
            {
                prior_width += 1.0f;
                prior_height += 1.0f;
            }
            CV_Assert(prior_width > 0);
            CV_Assert(prior_height > 0);
            float prior_center_x = prior_bbox.xmin + prior_width * .5;
            float prior_center_y = prior_bbox.ymin + prior_height * .5;

            float decode_bbox_center_x, decode_bbox_center_y;
            float decode_bbox_width, decode_bbox_height;
            decode_bbox_center_x = bbox_xmin * prior_width + prior_center_x;
            decode_bbox_center_y = bbox_ymin * prior_height + prior_center_y;
            decode_bbox_width = exp(bbox_xmax) * prior_width;
            decode_bbox_height = exp(bbox_ymax) * prior_height;
            decode_bbox.xmin = decode_bbox_center_x - decode_bbox_width * .5;
            decode_bbox.ymin = decode_bbox_center_y - decode_bbox_height * .5;
            decode_bbox.xmax = decode_bbox_center_x + decode_bbox_width * .5;
            decode_bbox.ymax = decode_bbox_center_y + decode_bbox_height * .5;
        }
        else
            CV_Error(Error::StsBadArg, "Unknown type.");

        if (clip_bbox)
        {
            // Clip the util::NormalizedBBox.
            decode_bbox.xmin = std::max(std::min(decode_bbox.xmin, clip_bounds.xmax), clip_bounds.xmin);
            decode_bbox.ymin = std::max(std::min(decode_bbox.ymin, clip_bounds.ymax), clip_bounds.ymin);
            decode_bbox.xmax = std::max(std::min(decode_bbox.xmax, clip_bounds.xmax), clip_bounds.xmin);
            decode_bbox.ymax = std::max(std::min(decode_bbox.ymax, clip_bounds.ymax), clip_bounds.ymin);
        }
        decode_bbox.clear_size();
        decode_bbox.set_size(BBoxSize(decode_bbox, normalized_bbox));
    }

    // Decode a set of bboxes according to a set of prior bboxes
    static void DecodeBBoxes(
        const std::vector<util::NormalizedBBox>& prior_bboxes,
        const std::vector<std::vector<float> >& prior_variances,
        const cv::String& code_type, const bool variance_encoded_in_target,
        const bool clip_bbox, const util::NormalizedBBox& clip_bounds,
        const bool normalized_bbox, const std::vector<util::NormalizedBBox>& bboxes,
        std::vector<util::NormalizedBBox>& decode_bboxes)
    {
        CV_Assert(prior_bboxes.size() == prior_variances.size());
        CV_Assert(prior_bboxes.size() == bboxes.size());
        size_t num_bboxes = prior_bboxes.size();
        CV_Assert(num_bboxes == 0 || prior_variances[0].size() == 4);
        decode_bboxes.clear(); decode_bboxes.resize(num_bboxes);
        if(variance_encoded_in_target)
        {
            for (int i = 0; i < num_bboxes; ++i)
                DecodeBBox<true>(prior_bboxes[i], prior_variances[i], code_type,
                                 clip_bbox, clip_bounds, normalized_bbox,
                                 bboxes[i], decode_bboxes[i]);
        }
        else
        {
            for (int i = 0; i < num_bboxes; ++i)
                DecodeBBox<false>(prior_bboxes[i], prior_variances[i], code_type,
                                  clip_bbox, clip_bounds, normalized_bbox,
                                  bboxes[i], decode_bboxes[i]);
        }
    }

    // Decode all bboxes in a batch
    static void DecodeBBoxesAll(const std::vector<LabelBBox>& all_loc_preds,
        const std::vector<util::NormalizedBBox>& prior_bboxes,
        const std::vector<std::vector<float> >& prior_variances,
        const int num, const bool share_location,
        const int num_loc_classes, const int background_label_id,
        const cv::String& code_type, const bool variance_encoded_in_target,
        const bool clip, const util::NormalizedBBox& clip_bounds,
        const bool normalized_bbox, std::vector<LabelBBox>& all_decode_bboxes)
    {
        CV_Assert(all_loc_preds.size() == num);
        all_decode_bboxes.clear();
        all_decode_bboxes.resize(num);
        for (int i = 0; i < num; ++i)
        {
            // Decode predictions into bboxes.
            const LabelBBox& loc_preds = all_loc_preds[i];
            LabelBBox& decode_bboxes = all_decode_bboxes[i];
            for (int c = 0; c < num_loc_classes; ++c)
            {
                int label = share_location ? -1 : c;
                if (label == background_label_id)
                    continue; // Ignore background class.
                LabelBBox::const_iterator label_loc_preds = loc_preds.find(label);
                if (label_loc_preds == loc_preds.end())
                    CV_Error_(cv::Error::StsError, ("Could not find location predictions for label %d", label));
                DecodeBBoxes(prior_bboxes, prior_variances,
                             code_type, variance_encoded_in_target, clip, clip_bounds,
                             normalized_bbox, label_loc_preds->second, decode_bboxes[label]);
            }
        }
    }

    // Get prior bounding boxes from prior_data
    //    prior_data: 1 x 2 x num_priors * 4 x 1 blob.
    //    num_priors: number of priors.
    //    prior_bboxes: stores all the prior bboxes in the format of util::NormalizedBBox.
    //    prior_variances: stores all the variances needed by prior bboxes.
    static void GetPriorBBoxes(const float* priorData, const int& numPriors,
                        bool normalized_bbox, std::vector<util::NormalizedBBox>& priorBBoxes,
                        std::vector<std::vector<float> >& priorVariances)
    {
        priorBBoxes.clear(); priorBBoxes.resize(numPriors);
        priorVariances.clear(); priorVariances.resize(numPriors);
        for (int i = 0; i < numPriors; ++i)
        {
            int startIdx = i * 4;
            util::NormalizedBBox& bbox = priorBBoxes[i];
            bbox.xmin = priorData[startIdx];
            bbox.ymin = priorData[startIdx + 1];
            bbox.xmax = priorData[startIdx + 2];
            bbox.ymax = priorData[startIdx + 3];
            bbox.set_size(BBoxSize(bbox, normalized_bbox));
        }

        for (int i = 0; i < numPriors; ++i)
        {
            int startIdx = (numPriors + i) * 4;
            // not needed here: priorVariances[i].clear();
            for (int j = 0; j < 4; ++j)
            {
                priorVariances[i].push_back(priorData[startIdx + j]);
            }
        }
    }

    // Get location predictions from loc_data.
    //    loc_data: num x num_preds_per_class * num_loc_classes * 4 blob.
    //    num: the number of images.
    //    num_preds_per_class: number of predictions per class.
    //    num_loc_classes: number of location classes. It is 1 if share_location is
    //      true; and is equal to number of classes needed to predict otherwise.
    //    share_location: if true, all classes share the same location prediction.
    //    loc_pred_transposed: if true, represent four bounding box values as
    //                         [y,x,height,width] or [x,y,width,height] otherwise.
    //    loc_preds: stores the location prediction, where each item contains
    //      location prediction for an image.
    static void GetLocPredictions(const float* locData, const int num,
                           const int numPredsPerClass, const int numLocClasses,
                           const bool shareLocation, const bool locPredTransposed,
                           std::vector<LabelBBox>& locPreds)
    {
        locPreds.clear();
        if (shareLocation)
        {
            CV_Assert(numLocClasses == 1);
        }
        locPreds.resize(num);
        for (int i = 0; i < num; ++i, locData += numPredsPerClass * numLocClasses * 4)
        {
            LabelBBox& labelBBox = locPreds[i];
            for (int p = 0; p < numPredsPerClass; ++p)
            {
                int startIdx = p * numLocClasses * 4;
                for (int c = 0; c < numLocClasses; ++c)
                {
                    int label = shareLocation ? -1 : c;
                    if (labelBBox.find(label) == labelBBox.end())
                    {
                        labelBBox[label].resize(numPredsPerClass);
                    }
                    util::NormalizedBBox& bbox = labelBBox[label][p];
                    if (locPredTransposed)
                    {
                        bbox.ymin = locData[startIdx + c * 4];
                        bbox.xmin = locData[startIdx + c * 4 + 1];
                        bbox.ymax = locData[startIdx + c * 4 + 2];
                        bbox.xmax = locData[startIdx + c * 4 + 3];
                    }
                    else
                    {
                        bbox.xmin = locData[startIdx + c * 4];
                        bbox.ymin = locData[startIdx + c * 4 + 1];
                        bbox.xmax = locData[startIdx + c * 4 + 2];
                        bbox.ymax = locData[startIdx + c * 4 + 3];
                    }
                }
            }
        }
    }

    // Get confidence predictions from conf_data.
    //    conf_data: num x num_preds_per_class * num_classes blob.
    //    num: the number of images.
    //    num_preds_per_class: number of predictions per class.
    //    num_classes: number of classes.
    //    conf_preds: stores the confidence prediction, where each item contains
    //      confidence prediction for an image.
    static void GetConfidenceScores(const float* confData, const int num,
                             const int numPredsPerClass, const int numClasses,
                             std::vector<Mat>& confPreds)
    {
        int shape[] = { numClasses, numPredsPerClass };
        for (int i = 0; i < num; i++)
            confPreds.push_back(Mat(2, shape, CV_32F));

        for (int i = 0; i < num; ++i, confData += numPredsPerClass * numClasses)
        {
            Mat labelScores = confPreds[i];
            for (int c = 0; c < numClasses; ++c)
            {
                for (int p = 0; p < numPredsPerClass; ++p)
                {
                    labelScores.at<float>(c, p) = confData[p * numClasses + c];
                }
            }
        }
    }

    // Compute the jaccard (intersection over union IoU) overlap between two bboxes.
    template<bool normalized>
    static float JaccardOverlap(const util::NormalizedBBox& bbox1,
                         const util::NormalizedBBox& bbox2)
    {
        util::NormalizedBBox intersect_bbox;
        intersect_bbox.xmin = std::max(bbox1.xmin, bbox2.xmin);
        intersect_bbox.ymin = std::max(bbox1.ymin, bbox2.ymin);
        intersect_bbox.xmax = std::min(bbox1.xmax, bbox2.xmax);
        intersect_bbox.ymax = std::min(bbox1.ymax, bbox2.ymax);

        float intersect_size = BBoxSize(intersect_bbox, normalized);
        if (intersect_size > 0)
        {
            float bbox1_size = BBoxSize(bbox1, normalized);
            float bbox2_size = BBoxSize(bbox2, normalized);
            return intersect_size / (bbox1_size + bbox2_size - intersect_size);
        }
        else
        {
            return 0.;
        }
    }

    virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE
    {
#ifdef HAVE_INF_ENGINE
        InferenceEngine::LayerParams lp;
        lp.name = name;
        lp.type = "DetectionOutput";
        lp.precision = InferenceEngine::Precision::FP32;
        std::shared_ptr<InferenceEngine::CNNLayer> ieLayer(new InferenceEngine::CNNLayer(lp));

        ieLayer->params["num_classes"] = format("%d", _numClasses);
        ieLayer->params["share_location"] = _shareLocation ? "1" : "0";
        ieLayer->params["background_label_id"] = format("%d", _backgroundLabelId);
        ieLayer->params["nms_threshold"] = format("%f", _nmsThreshold);
        ieLayer->params["top_k"] = format("%d", _topK);
        ieLayer->params["keep_top_k"] = format("%d", _keepTopK);
        ieLayer->params["eta"] = "1.0";
        ieLayer->params["confidence_threshold"] = format("%f", _confidenceThreshold);
        ieLayer->params["variance_encoded_in_target"] = _varianceEncodedInTarget ? "1" : "0";
        ieLayer->params["code_type"] = "caffe.PriorBoxParameter." + _codeType;
        return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
#endif  // HAVE_INF_ENGINE
        return Ptr<BackendNode>();
    }
};

float util::caffe_box_overlap(const util::NormalizedBBox& a, const util::NormalizedBBox& b)
{
    return DetectionOutputLayerImpl::JaccardOverlap<false>(a, b);
}

float util::caffe_norm_box_overlap(const util::NormalizedBBox& a, const util::NormalizedBBox& b)
{
    return DetectionOutputLayerImpl::JaccardOverlap<true>(a, b);
}

const std::string DetectionOutputLayerImpl::_layerName = std::string("DetectionOutput");

Ptr<DetectionOutputLayer> DetectionOutputLayer::create(const LayerParams &params)
{
    return Ptr<DetectionOutputLayer>(new DetectionOutputLayerImpl(params));
}

}
}