match_template.cpp 19.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

using namespace cv;
using namespace cv::gpu;
using namespace std;

#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)

void cv::gpu::matchTemplate(const GpuMat&, const GpuMat&, GpuMat&, int, Stream&) { throw_nogpu(); }

#else

namespace cv { namespace gpu { namespace device
{
    namespace match_template
    {
        void matchTemplateNaive_CCORR_8U(const PtrStepSzb image, const PtrStepSzb templ, PtrStepSzf result, int cn, cudaStream_t stream);
        void matchTemplateNaive_CCORR_32F(const PtrStepSzb image, const PtrStepSzb templ, PtrStepSzf result, int cn, cudaStream_t stream);

        void matchTemplateNaive_SQDIFF_8U(const PtrStepSzb image, const PtrStepSzb templ, PtrStepSzf result, int cn, cudaStream_t stream);
        void matchTemplateNaive_SQDIFF_32F(const PtrStepSzb image, const PtrStepSzb templ, PtrStepSzf result, int cn, cudaStream_t stream);

        void matchTemplatePrepared_SQDIFF_8U(int w, int h, const PtrStepSz<unsigned long long> image_sqsum, unsigned long long templ_sqsum, PtrStepSzf result,
            int cn, cudaStream_t stream);

        void matchTemplatePrepared_SQDIFF_NORMED_8U(int w, int h, const PtrStepSz<unsigned long long> image_sqsum, unsigned long long templ_sqsum, PtrStepSzf result,
            int cn, cudaStream_t stream);

        void matchTemplatePrepared_CCOFF_8U(int w, int h, const PtrStepSz<unsigned int> image_sum, unsigned int templ_sum, PtrStepSzf result, cudaStream_t stream);
        void matchTemplatePrepared_CCOFF_8UC2(
            int w, int h,
            const PtrStepSz<unsigned int> image_sum_r,
            const PtrStepSz<unsigned int> image_sum_g,
            unsigned int templ_sum_r,
            unsigned int templ_sum_g,
            PtrStepSzf result, cudaStream_t stream);
        void matchTemplatePrepared_CCOFF_8UC3(
                int w, int h,
                const PtrStepSz<unsigned int> image_sum_r,
                const PtrStepSz<unsigned int> image_sum_g,
                const PtrStepSz<unsigned int> image_sum_b,
                unsigned int templ_sum_r,
                unsigned int templ_sum_g,
                unsigned int templ_sum_b,
                PtrStepSzf result, cudaStream_t stream);
        void matchTemplatePrepared_CCOFF_8UC4(
                int w, int h,
                const PtrStepSz<unsigned int> image_sum_r,
                const PtrStepSz<unsigned int> image_sum_g,
                const PtrStepSz<unsigned int> image_sum_b,
                const PtrStepSz<unsigned int> image_sum_a,
                unsigned int templ_sum_r,
                unsigned int templ_sum_g,
                unsigned int templ_sum_b,
                unsigned int templ_sum_a,
                PtrStepSzf result, cudaStream_t stream);


        void matchTemplatePrepared_CCOFF_NORMED_8U(
                int w, int h, const PtrStepSz<unsigned int> image_sum,
                const PtrStepSz<unsigned long long> image_sqsum,
                unsigned int templ_sum, unsigned long long templ_sqsum,
                PtrStepSzf result, cudaStream_t stream);
        void matchTemplatePrepared_CCOFF_NORMED_8UC2(
                int w, int h,
                const PtrStepSz<unsigned int> image_sum_r, const PtrStepSz<unsigned long long> image_sqsum_r,
                const PtrStepSz<unsigned int> image_sum_g, const PtrStepSz<unsigned long long> image_sqsum_g,
                unsigned int templ_sum_r, unsigned long long templ_sqsum_r,
                unsigned int templ_sum_g, unsigned long long templ_sqsum_g,
                PtrStepSzf result, cudaStream_t stream);
        void matchTemplatePrepared_CCOFF_NORMED_8UC3(
                int w, int h,
                const PtrStepSz<unsigned int> image_sum_r, const PtrStepSz<unsigned long long> image_sqsum_r,
                const PtrStepSz<unsigned int> image_sum_g, const PtrStepSz<unsigned long long> image_sqsum_g,
                const PtrStepSz<unsigned int> image_sum_b, const PtrStepSz<unsigned long long> image_sqsum_b,
                unsigned int templ_sum_r, unsigned long long templ_sqsum_r,
                unsigned int templ_sum_g, unsigned long long templ_sqsum_g,
                unsigned int templ_sum_b, unsigned long long templ_sqsum_b,
                PtrStepSzf result, cudaStream_t stream);
        void matchTemplatePrepared_CCOFF_NORMED_8UC4(
                int w, int h,
                const PtrStepSz<unsigned int> image_sum_r, const PtrStepSz<unsigned long long> image_sqsum_r,
                const PtrStepSz<unsigned int> image_sum_g, const PtrStepSz<unsigned long long> image_sqsum_g,
                const PtrStepSz<unsigned int> image_sum_b, const PtrStepSz<unsigned long long> image_sqsum_b,
                const PtrStepSz<unsigned int> image_sum_a, const PtrStepSz<unsigned long long> image_sqsum_a,
                unsigned int templ_sum_r, unsigned long long templ_sqsum_r,
                unsigned int templ_sum_g, unsigned long long templ_sqsum_g,
                unsigned int templ_sum_b, unsigned long long templ_sqsum_b,
                unsigned int templ_sum_a, unsigned long long templ_sqsum_a,
                PtrStepSzf result, cudaStream_t stream);

        void normalize_8U(int w, int h, const PtrStepSz<unsigned long long> image_sqsum,
                          unsigned long long templ_sqsum, PtrStepSzf result, int cn, cudaStream_t stream);

        void extractFirstChannel_32F(const PtrStepSzb image, PtrStepSzf result, int cn, cudaStream_t stream);
    }
}}}

using namespace ::cv::gpu::device::match_template;

namespace
{

    // Evaluates optimal template's area threshold. If
    // template's area is less  than the threshold, we use naive match
    // template version, otherwise FFT-based (if available)
    int getTemplateThreshold(int method, int depth)
    {
        switch (method)
        {
        case CV_TM_CCORR:
            if (depth == CV_32F) return 250;
            if (depth == CV_8U) return 300;
            break;
        case CV_TM_SQDIFF:
            if (depth == CV_8U) return 300;
            break;
        }
        CV_Error(CV_StsBadArg, "getTemplateThreshold: unsupported match template mode");
        return 0;
    }


    void matchTemplate_CCORR_32F(
            const GpuMat& image, const GpuMat& templ, GpuMat& result, MatchTemplateBuf &buf, Stream& stream)
    {
        result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F);
        if (templ.size().area() < getTemplateThreshold(CV_TM_CCORR, CV_32F))
        {
            matchTemplateNaive_CCORR_32F(image, templ, result, image.channels(), StreamAccessor::getStream(stream));
            return;
        }

        ConvolveBuf convolve_buf;
        convolve_buf.user_block_size = buf.user_block_size;

        if (image.channels() == 1)
            convolve(image.reshape(1), templ.reshape(1), result, true, convolve_buf, stream);
        else
        {
            GpuMat result_;
            convolve(image.reshape(1), templ.reshape(1), result_, true, convolve_buf, stream);
            extractFirstChannel_32F(result_, result, image.channels(), StreamAccessor::getStream(stream));
        }
    }


    void matchTemplate_CCORR_8U(
            const GpuMat& image, const GpuMat& templ, GpuMat& result, MatchTemplateBuf &buf, Stream& stream)
    {
        if (templ.size().area() < getTemplateThreshold(CV_TM_CCORR, CV_8U))
        {
            result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F);
            matchTemplateNaive_CCORR_8U(image, templ, result, image.channels(), StreamAccessor::getStream(stream));
            return;
        }

        if (stream)
        {
            stream.enqueueConvert(image, buf.imagef, CV_32F);
            stream.enqueueConvert(templ, buf.templf, CV_32F);
        }
        else
        {
            image.convertTo(buf.imagef, CV_32F);
            templ.convertTo(buf.templf, CV_32F);
        }
        matchTemplate_CCORR_32F(buf.imagef, buf.templf, result, buf, stream);
    }


    void matchTemplate_CCORR_NORMED_8U(
            const GpuMat& image, const GpuMat& templ, GpuMat& result, MatchTemplateBuf &buf, Stream& stream)
    {
        matchTemplate_CCORR_8U(image, templ, result, buf, stream);

        buf.image_sqsums.resize(1);
        sqrIntegral(image.reshape(1), buf.image_sqsums[0], stream);

        unsigned long long templ_sqsum = (unsigned long long)sqrSum(templ.reshape(1))[0];
        normalize_8U(templ.cols, templ.rows, buf.image_sqsums[0], templ_sqsum, result, image.channels(), StreamAccessor::getStream(stream));
    }


    void matchTemplate_SQDIFF_32F(
            const GpuMat& image, const GpuMat& templ, GpuMat& result, MatchTemplateBuf &buf, Stream& stream)
    {
        (void)buf;
        result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F);
        matchTemplateNaive_SQDIFF_32F(image, templ, result, image.channels(), StreamAccessor::getStream(stream));
    }


    void matchTemplate_SQDIFF_8U(
            const GpuMat& image, const GpuMat& templ, GpuMat& result, MatchTemplateBuf &buf, Stream& stream)
    {
        if (templ.size().area() < getTemplateThreshold(CV_TM_SQDIFF, CV_8U))
        {
            result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F);
            matchTemplateNaive_SQDIFF_8U(image, templ, result, image.channels(), StreamAccessor::getStream(stream));
            return;
        }

        buf.image_sqsums.resize(1);
        sqrIntegral(image.reshape(1), buf.image_sqsums[0], stream);

        unsigned long long templ_sqsum = (unsigned long long)sqrSum(templ.reshape(1))[0];

        matchTemplate_CCORR_8U(image, templ, result, buf, stream);
        matchTemplatePrepared_SQDIFF_8U(templ.cols, templ.rows, buf.image_sqsums[0], templ_sqsum, result, image.channels(), StreamAccessor::getStream(stream));
    }


    void matchTemplate_SQDIFF_NORMED_8U(
            const GpuMat& image, const GpuMat& templ, GpuMat& result, MatchTemplateBuf &buf, Stream& stream)
    {
        buf.image_sqsums.resize(1);
        sqrIntegral(image.reshape(1), buf.image_sqsums[0], stream);

        unsigned long long templ_sqsum = (unsigned long long)sqrSum(templ.reshape(1))[0];

        matchTemplate_CCORR_8U(image, templ, result, buf, stream);
        matchTemplatePrepared_SQDIFF_NORMED_8U(templ.cols, templ.rows, buf.image_sqsums[0], templ_sqsum, result, image.channels(), StreamAccessor::getStream(stream));
    }


    void matchTemplate_CCOFF_8U(
            const GpuMat& image, const GpuMat& templ, GpuMat& result, MatchTemplateBuf &buf, Stream& stream)
    {
        matchTemplate_CCORR_8U(image, templ, result, buf, stream);

        if (image.channels() == 1)
        {
            buf.image_sums.resize(1);
            integral(image, buf.image_sums[0], stream);

            unsigned int templ_sum = (unsigned int)sum(templ)[0];
            matchTemplatePrepared_CCOFF_8U(templ.cols, templ.rows, buf.image_sums[0], templ_sum, result, StreamAccessor::getStream(stream));
        }
        else
        {
            split(image, buf.images);
            buf.image_sums.resize(buf.images.size());
            for (int i = 0; i < image.channels(); ++i)
                integral(buf.images[i], buf.image_sums[i], stream);

            Scalar templ_sum = sum(templ);

            switch (image.channels())
            {
            case 2:
                matchTemplatePrepared_CCOFF_8UC2(
                        templ.cols, templ.rows, buf.image_sums[0], buf.image_sums[1],
                        (unsigned int)templ_sum[0], (unsigned int)templ_sum[1],
                        result, StreamAccessor::getStream(stream));
                break;
            case 3:
                matchTemplatePrepared_CCOFF_8UC3(
                        templ.cols, templ.rows, buf.image_sums[0], buf.image_sums[1], buf.image_sums[2],
                        (unsigned int)templ_sum[0], (unsigned int)templ_sum[1], (unsigned int)templ_sum[2],
                        result, StreamAccessor::getStream(stream));
                break;
            case 4:
                matchTemplatePrepared_CCOFF_8UC4(
                        templ.cols, templ.rows, buf.image_sums[0], buf.image_sums[1], buf.image_sums[2], buf.image_sums[3],
                        (unsigned int)templ_sum[0], (unsigned int)templ_sum[1], (unsigned int)templ_sum[2],
                        (unsigned int)templ_sum[3], result, StreamAccessor::getStream(stream));
                break;
            default:
                CV_Error(CV_StsBadArg, "matchTemplate: unsupported number of channels");
            }
        }
    }


    void matchTemplate_CCOFF_NORMED_8U(
            const GpuMat& image, const GpuMat& templ, GpuMat& result, MatchTemplateBuf &buf, Stream& stream)
    {
        if (stream)
        {
            stream.enqueueConvert(image, buf.imagef, CV_32F);
            stream.enqueueConvert(templ, buf.templf, CV_32F);
        }
        else
        {
            image.convertTo(buf.imagef, CV_32F);
            templ.convertTo(buf.templf, CV_32F);
        }

        matchTemplate_CCORR_32F(buf.imagef, buf.templf, result, buf, stream);

        if (image.channels() == 1)
        {
            buf.image_sums.resize(1);
            integral(image, buf.image_sums[0], stream);
            buf.image_sqsums.resize(1);
            sqrIntegral(image, buf.image_sqsums[0], stream);

            unsigned int templ_sum = (unsigned int)sum(templ)[0];
            unsigned long long templ_sqsum = (unsigned long long)sqrSum(templ)[0];

            matchTemplatePrepared_CCOFF_NORMED_8U(
                    templ.cols, templ.rows, buf.image_sums[0], buf.image_sqsums[0],
                    templ_sum, templ_sqsum, result, StreamAccessor::getStream(stream));
        }
        else
        {
            split(image, buf.images);
            buf.image_sums.resize(buf.images.size());
            buf.image_sqsums.resize(buf.images.size());
            for (int i = 0; i < image.channels(); ++i)
            {
                integral(buf.images[i], buf.image_sums[i], stream);
                sqrIntegral(buf.images[i], buf.image_sqsums[i], stream);
            }

            Scalar templ_sum = sum(templ);
            Scalar templ_sqsum = sqrSum(templ);

            switch (image.channels())
            {
            case 2:
                matchTemplatePrepared_CCOFF_NORMED_8UC2(
                        templ.cols, templ.rows,
                        buf.image_sums[0], buf.image_sqsums[0],
                        buf.image_sums[1], buf.image_sqsums[1],
                        (unsigned int)templ_sum[0], (unsigned long long)templ_sqsum[0],
                        (unsigned int)templ_sum[1], (unsigned long long)templ_sqsum[1],
                        result, StreamAccessor::getStream(stream));
                break;
            case 3:
                matchTemplatePrepared_CCOFF_NORMED_8UC3(
                        templ.cols, templ.rows,
                        buf.image_sums[0], buf.image_sqsums[0],
                        buf.image_sums[1], buf.image_sqsums[1],
                        buf.image_sums[2], buf.image_sqsums[2],
                        (unsigned int)templ_sum[0], (unsigned long long)templ_sqsum[0],
                        (unsigned int)templ_sum[1], (unsigned long long)templ_sqsum[1],
                        (unsigned int)templ_sum[2], (unsigned long long)templ_sqsum[2],
                        result, StreamAccessor::getStream(stream));
                break;
            case 4:
                matchTemplatePrepared_CCOFF_NORMED_8UC4(
                        templ.cols, templ.rows,
                        buf.image_sums[0], buf.image_sqsums[0],
                        buf.image_sums[1], buf.image_sqsums[1],
                        buf.image_sums[2], buf.image_sqsums[2],
                        buf.image_sums[3], buf.image_sqsums[3],
                        (unsigned int)templ_sum[0], (unsigned long long)templ_sqsum[0],
                        (unsigned int)templ_sum[1], (unsigned long long)templ_sqsum[1],
                        (unsigned int)templ_sum[2], (unsigned long long)templ_sqsum[2],
                        (unsigned int)templ_sum[3], (unsigned long long)templ_sqsum[3],
                        result, StreamAccessor::getStream(stream));
                break;
            default:
                CV_Error(CV_StsBadArg, "matchTemplate: unsupported number of channels");
            }
        }
    }
}


void cv::gpu::matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& result, int method, Stream& stream)
{
    MatchTemplateBuf buf;
    matchTemplate(image, templ, result, method, buf, stream);
}


void cv::gpu::matchTemplate(
        const GpuMat& image, const GpuMat& templ, GpuMat& result, int method,
        MatchTemplateBuf &buf, Stream& stream)
{
    CV_Assert(image.type() == templ.type());
    CV_Assert(image.cols >= templ.cols && image.rows >= templ.rows);

    typedef void (*Caller)(const GpuMat&, const GpuMat&, GpuMat&, MatchTemplateBuf&, Stream& stream);

    static const Caller callers8U[] = { ::matchTemplate_SQDIFF_8U, ::matchTemplate_SQDIFF_NORMED_8U,
                                        ::matchTemplate_CCORR_8U, ::matchTemplate_CCORR_NORMED_8U,
                                        ::matchTemplate_CCOFF_8U, ::matchTemplate_CCOFF_NORMED_8U };
    static const Caller callers32F[] = { ::matchTemplate_SQDIFF_32F, 0,
                                         ::matchTemplate_CCORR_32F, 0, 0, 0 };

    const Caller* callers = 0;
    switch (image.depth())
    {
        case CV_8U: callers = callers8U; break;
        case CV_32F: callers = callers32F; break;
        default: CV_Error(CV_StsBadArg, "matchTemplate: unsupported data type");
    }

    Caller caller = callers[method];
    CV_Assert(caller);
    caller(image, templ, result, buf, stream);
}

#endif