1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#define SHOW_DEBUG_IMAGES 0
#include "opencv2/core.hpp"
#include "opencv2/calib3d.hpp"
#if SHOW_DEBUG_IMAGES
# include "opencv2/highgui.hpp"
#endif
#include <iostream>
#include <limits>
#if defined(HAVE_EIGEN) && EIGEN_WORLD_VERSION == 3
# ifdef ANDROID
template <typename Scalar> Scalar log2(Scalar v) { return std::log(v)/std::log(Scalar(2)); }
# endif
# if defined __GNUC__ && defined __APPLE__
# pragma GCC diagnostic ignored "-Wshadow"
# endif
# include <unsupported/Eigen/MatrixFunctions>
# include <Eigen/Dense>
#endif
using namespace cv;
inline static
void computeC_RigidBodyMotion( double* C, double dIdx, double dIdy, const Point3f& p3d, double fx, double fy )
{
double invz = 1. / p3d.z,
v0 = dIdx * fx * invz,
v1 = dIdy * fy * invz,
v2 = -(v0 * p3d.x + v1 * p3d.y) * invz;
C[0] = -p3d.z * v1 + p3d.y * v2;
C[1] = p3d.z * v0 - p3d.x * v2;
C[2] = -p3d.y * v0 + p3d.x * v1;
C[3] = v0;
C[4] = v1;
C[5] = v2;
}
inline static
void computeC_Rotation( double* C, double dIdx, double dIdy, const Point3f& p3d, double fx, double fy )
{
double invz = 1. / p3d.z,
v0 = dIdx * fx * invz,
v1 = dIdy * fy * invz,
v2 = -(v0 * p3d.x + v1 * p3d.y) * invz;
C[0] = -p3d.z * v1 + p3d.y * v2;
C[1] = p3d.z * v0 - p3d.x * v2;
C[2] = -p3d.y * v0 + p3d.x * v1;
}
inline static
void computeC_Translation( double* C, double dIdx, double dIdy, const Point3f& p3d, double fx, double fy )
{
double invz = 1. / p3d.z,
v0 = dIdx * fx * invz,
v1 = dIdy * fy * invz,
v2 = -(v0 * p3d.x + v1 * p3d.y) * invz;
C[0] = v0;
C[1] = v1;
C[2] = v2;
}
inline static
void computeProjectiveMatrix( const Mat& ksi, Mat& Rt )
{
CV_Assert( ksi.size() == Size(1,6) && ksi.type() == CV_64FC1 );
#if defined(HAVE_EIGEN) && EIGEN_WORLD_VERSION == 3
const double* ksi_ptr = reinterpret_cast<const double*>(ksi.ptr(0));
Eigen::Matrix<double,4,4> twist, g;
twist << 0., -ksi_ptr[2], ksi_ptr[1], ksi_ptr[3],
ksi_ptr[2], 0., -ksi_ptr[0], ksi_ptr[4],
-ksi_ptr[1], ksi_ptr[0], 0, ksi_ptr[5],
0., 0., 0., 0.;
g = twist.exp();
eigen2cv(g, Rt);
#else
// for infinitesimal transformation
Rt = Mat::eye(4, 4, CV_64FC1);
Mat R = Rt(Rect(0,0,3,3));
Mat rvec = ksi.rowRange(0,3);
Rodrigues( rvec, R );
Rt.at<double>(0,3) = ksi.at<double>(3);
Rt.at<double>(1,3) = ksi.at<double>(4);
Rt.at<double>(2,3) = ksi.at<double>(5);
#endif
}
static
void cvtDepth2Cloud( const Mat& depth, Mat& cloud, const Mat& cameraMatrix )
{
CV_Assert( cameraMatrix.type() == CV_64FC1 );
const double inv_fx = 1.f/cameraMatrix.at<double>(0,0);
const double inv_fy = 1.f/cameraMatrix.at<double>(1,1);
const double ox = cameraMatrix.at<double>(0,2);
const double oy = cameraMatrix.at<double>(1,2);
cloud.create( depth.size(), CV_32FC3 );
for( int y = 0; y < cloud.rows; y++ )
{
Point3f* cloud_ptr = reinterpret_cast<Point3f*>(cloud.ptr(y));
const float* depth_prt = reinterpret_cast<const float*>(depth.ptr(y));
for( int x = 0; x < cloud.cols; x++ )
{
float z = depth_prt[x];
cloud_ptr[x].x = (float)((x - ox) * z * inv_fx);
cloud_ptr[x].y = (float)((y - oy) * z * inv_fy);
cloud_ptr[x].z = z;
}
}
}
#if SHOW_DEBUG_IMAGES
template<class ImageElemType>
static void warpImage( const Mat& image, const Mat& depth,
const Mat& Rt, const Mat& cameraMatrix, const Mat& distCoeff,
Mat& warpedImage )
{
const Rect rect = Rect(0, 0, image.cols, image.rows);
std::vector<Point2f> points2d;
Mat cloud, transformedCloud;
cvtDepth2Cloud( depth, cloud, cameraMatrix );
perspectiveTransform( cloud, transformedCloud, Rt );
projectPoints( transformedCloud.reshape(3,1), Mat::eye(3,3,CV_64FC1), Mat::zeros(3,1,CV_64FC1), cameraMatrix, distCoeff, points2d );
Mat pointsPositions( points2d );
pointsPositions = pointsPositions.reshape( 2, image.rows );
warpedImage.create( image.size(), image.type() );
warpedImage = Scalar::all(0);
Mat zBuffer( image.size(), CV_32FC1, FLT_MAX );
for( int y = 0; y < image.rows; y++ )
{
for( int x = 0; x < image.cols; x++ )
{
const Point3f p3d = transformedCloud.at<Point3f>(y,x);
const Point p2d = pointsPositions.at<Point2f>(y,x);
if( !cvIsNaN(cloud.at<Point3f>(y,x).z) && cloud.at<Point3f>(y,x).z > 0 &&
rect.contains(p2d) && zBuffer.at<float>(p2d) > p3d.z )
{
warpedImage.at<ImageElemType>(p2d) = image.at<ImageElemType>(y,x);
zBuffer.at<float>(p2d) = p3d.z;
}
}
}
}
#endif
static inline
void set2shorts( int& dst, int short_v1, int short_v2 )
{
unsigned short* ptr = reinterpret_cast<unsigned short*>(&dst);
ptr[0] = static_cast<unsigned short>(short_v1);
ptr[1] = static_cast<unsigned short>(short_v2);
}
static inline
void get2shorts( int src, int& short_v1, int& short_v2 )
{
typedef union { int vint32; unsigned short vuint16[2]; } s32tou16;
const unsigned short* ptr = (reinterpret_cast<s32tou16*>(&src))->vuint16;
short_v1 = ptr[0];
short_v2 = ptr[1];
}
static
int computeCorresp( const Mat& K, const Mat& K_inv, const Mat& Rt,
const Mat& depth0, const Mat& depth1, const Mat& texturedMask1, float maxDepthDiff,
Mat& corresps )
{
CV_Assert( K.type() == CV_64FC1 );
CV_Assert( K_inv.type() == CV_64FC1 );
CV_Assert( Rt.type() == CV_64FC1 );
corresps.create( depth1.size(), CV_32SC1 );
Mat R = Rt(Rect(0,0,3,3)).clone();
Mat KRK_inv = K * R * K_inv;
const double * KRK_inv_ptr = reinterpret_cast<const double *>(KRK_inv.ptr());
Mat Kt = Rt(Rect(3,0,1,3)).clone();
Kt = K * Kt;
const double * Kt_ptr = reinterpret_cast<const double *>(Kt.ptr());
Rect r(0, 0, depth1.cols, depth1.rows);
corresps = Scalar(-1);
int correspCount = 0;
for( int v1 = 0; v1 < depth1.rows; v1++ )
{
for( int u1 = 0; u1 < depth1.cols; u1++ )
{
float d1 = depth1.at<float>(v1,u1);
if( !cvIsNaN(d1) && texturedMask1.at<uchar>(v1,u1) )
{
float transformed_d1 = (float)(d1 * (KRK_inv_ptr[6] * u1 + KRK_inv_ptr[7] * v1 + KRK_inv_ptr[8]) + Kt_ptr[2]);
int u0 = cvRound((d1 * (KRK_inv_ptr[0] * u1 + KRK_inv_ptr[1] * v1 + KRK_inv_ptr[2]) + Kt_ptr[0]) / transformed_d1);
int v0 = cvRound((d1 * (KRK_inv_ptr[3] * u1 + KRK_inv_ptr[4] * v1 + KRK_inv_ptr[5]) + Kt_ptr[1]) / transformed_d1);
if( r.contains(Point(u0,v0)) )
{
float d0 = depth0.at<float>(v0,u0);
if( !cvIsNaN(d0) && std::abs(transformed_d1 - d0) <= maxDepthDiff )
{
int c = corresps.at<int>(v0,u0);
if( c != -1 )
{
int exist_u1, exist_v1;
get2shorts( c, exist_u1, exist_v1);
float exist_d1 = (float)(depth1.at<float>(exist_v1,exist_u1) * (KRK_inv_ptr[6] * exist_u1 + KRK_inv_ptr[7] * exist_v1 + KRK_inv_ptr[8]) + Kt_ptr[2]);
if( transformed_d1 > exist_d1 )
continue;
}
else
correspCount++;
set2shorts( corresps.at<int>(v0,u0), u1, v1 );
}
}
}
}
}
return correspCount;
}
static inline
void preprocessDepth( Mat depth0, Mat depth1,
const Mat& validMask0, const Mat& validMask1,
float minDepth, float maxDepth )
{
CV_DbgAssert( depth0.size() == depth1.size() );
for( int y = 0; y < depth0.rows; y++ )
{
for( int x = 0; x < depth0.cols; x++ )
{
float& d0 = depth0.at<float>(y,x);
if( !cvIsNaN(d0) && (d0 > maxDepth || d0 < minDepth || d0 <= 0 || (!validMask0.empty() && !validMask0.at<uchar>(y,x))) )
d0 = std::numeric_limits<float>::quiet_NaN();
float& d1 = depth1.at<float>(y,x);
if( !cvIsNaN(d1) && (d1 > maxDepth || d1 < minDepth || d1 <= 0 || (!validMask1.empty() && !validMask1.at<uchar>(y,x))) )
d1 = std::numeric_limits<float>::quiet_NaN();
}
}
}
static
void buildPyramids( const Mat& image0, const Mat& image1,
const Mat& depth0, const Mat& depth1,
const Mat& cameraMatrix, int sobelSize, double sobelScale,
const std::vector<float>& minGradMagnitudes,
std::vector<Mat>& pyramidImage0, std::vector<Mat>& pyramidDepth0,
std::vector<Mat>& pyramidImage1, std::vector<Mat>& pyramidDepth1,
std::vector<Mat>& pyramid_dI_dx1, std::vector<Mat>& pyramid_dI_dy1,
std::vector<Mat>& pyramidTexturedMask1, std::vector<Mat>& pyramidCameraMatrix )
{
const int pyramidMaxLevel = (int)minGradMagnitudes.size() - 1;
buildPyramid( image0, pyramidImage0, pyramidMaxLevel );
buildPyramid( image1, pyramidImage1, pyramidMaxLevel );
pyramid_dI_dx1.resize( pyramidImage1.size() );
pyramid_dI_dy1.resize( pyramidImage1.size() );
pyramidTexturedMask1.resize( pyramidImage1.size() );
pyramidCameraMatrix.reserve( pyramidImage1.size() );
Mat cameraMatrix_dbl;
cameraMatrix.convertTo( cameraMatrix_dbl, CV_64FC1 );
for( size_t i = 0; i < pyramidImage1.size(); i++ )
{
Sobel( pyramidImage1[i], pyramid_dI_dx1[i], CV_16S, 1, 0, sobelSize );
Sobel( pyramidImage1[i], pyramid_dI_dy1[i], CV_16S, 0, 1, sobelSize );
const Mat& dx = pyramid_dI_dx1[i];
const Mat& dy = pyramid_dI_dy1[i];
Mat texturedMask( dx.size(), CV_8UC1, Scalar(0) );
const float minScalesGradMagnitude2 = (float)((minGradMagnitudes[i] * minGradMagnitudes[i]) / (sobelScale * sobelScale));
for( int y = 0; y < dx.rows; y++ )
{
for( int x = 0; x < dx.cols; x++ )
{
float m2 = (float)(dx.at<short>(y,x)*dx.at<short>(y,x) + dy.at<short>(y,x)*dy.at<short>(y,x));
if( m2 >= minScalesGradMagnitude2 )
texturedMask.at<uchar>(y,x) = 255;
}
}
pyramidTexturedMask1[i] = texturedMask;
Mat levelCameraMatrix = i == 0 ? cameraMatrix_dbl : 0.5f * pyramidCameraMatrix[i-1];
levelCameraMatrix.at<double>(2,2) = 1.;
pyramidCameraMatrix.push_back( levelCameraMatrix );
}
buildPyramid( depth0, pyramidDepth0, pyramidMaxLevel );
buildPyramid( depth1, pyramidDepth1, pyramidMaxLevel );
}
static
bool solveSystem( const Mat& C, const Mat& dI_dt, double detThreshold, Mat& ksi )
{
#if defined(HAVE_EIGEN) && EIGEN_WORLD_VERSION == 3
Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> eC, eCt, edI_dt;
cv2eigen(C, eC);
cv2eigen(dI_dt, edI_dt);
eCt = eC.transpose();
Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> A, B, eksi;
A = eCt * eC;
double det = A.determinant();
if( fabs (det) < detThreshold || cvIsNaN(det) || cvIsInf(det) )
return false;
B = -eCt * edI_dt;
eksi = A.ldlt().solve(B);
eigen2cv( eksi, ksi );
#else
Mat A = C.t() * C;
double det = cv::determinant(A);
if( fabs (det) < detThreshold || cvIsNaN(det) || cvIsInf(det) )
return false;
Mat B = -C.t() * dI_dt;
cv::solve( A, B, ksi, DECOMP_CHOLESKY );
#endif
return true;
}
typedef void (*ComputeCFuncPtr)( double* C, double dIdx, double dIdy, const Point3f& p3d, double fx, double fy );
static
bool computeKsi( int transformType,
const Mat& image0, const Mat& cloud0,
const Mat& image1, const Mat& dI_dx1, const Mat& dI_dy1,
const Mat& corresps, int correspsCount,
double fx, double fy, double sobelScale, double determinantThreshold,
Mat& ksi )
{
int Cwidth = -1;
ComputeCFuncPtr computeCFuncPtr = 0;
if( transformType == RIGID_BODY_MOTION )
{
Cwidth = 6;
computeCFuncPtr = computeC_RigidBodyMotion;
}
else if( transformType == ROTATION )
{
Cwidth = 3;
computeCFuncPtr = computeC_Rotation;
}
else if( transformType == TRANSLATION )
{
Cwidth = 3;
computeCFuncPtr = computeC_Translation;
}
else
CV_Error(Error::StsBadFlag, "Unsupported value of transformation type flag.");
Mat C( correspsCount, Cwidth, CV_64FC1 );
Mat dI_dt( correspsCount, 1, CV_64FC1 );
double sigma = 0;
int pointCount = 0;
for( int v0 = 0; v0 < corresps.rows; v0++ )
{
for( int u0 = 0; u0 < corresps.cols; u0++ )
{
if( corresps.at<int>(v0,u0) != -1 )
{
int u1, v1;
get2shorts( corresps.at<int>(v0,u0), u1, v1 );
double diff = static_cast<double>(image1.at<uchar>(v1,u1)) -
static_cast<double>(image0.at<uchar>(v0,u0));
sigma += diff * diff;
pointCount++;
}
}
}
sigma = std::sqrt(sigma/pointCount);
pointCount = 0;
for( int v0 = 0; v0 < corresps.rows; v0++ )
{
for( int u0 = 0; u0 < corresps.cols; u0++ )
{
if( corresps.at<int>(v0,u0) != -1 )
{
int u1, v1;
get2shorts( corresps.at<int>(v0,u0), u1, v1 );
double diff = static_cast<double>(image1.at<uchar>(v1,u1)) -
static_cast<double>(image0.at<uchar>(v0,u0));
double w = sigma + std::abs(diff);
w = w > DBL_EPSILON ? 1./w : 1.;
(*computeCFuncPtr)( (double*)C.ptr(pointCount),
w * sobelScale * dI_dx1.at<short int>(v1,u1),
w * sobelScale * dI_dy1.at<short int>(v1,u1),
cloud0.at<Point3f>(v0,u0), fx, fy);
dI_dt.at<double>(pointCount) = w * diff;
pointCount++;
}
}
}
Mat sln;
bool solutionExist = solveSystem( C, dI_dt, determinantThreshold, sln );
if( solutionExist )
{
ksi.create(6,1,CV_64FC1);
ksi = Scalar(0);
Mat subksi;
if( transformType == RIGID_BODY_MOTION )
{
subksi = ksi;
}
else if( transformType == ROTATION )
{
subksi = ksi.rowRange(0,3);
}
else if( transformType == TRANSLATION )
{
subksi = ksi.rowRange(3,6);
}
sln.copyTo( subksi );
}
return solutionExist;
}
bool cv::RGBDOdometry( cv::Mat& Rt, const Mat& initRt,
const cv::Mat& image0, const cv::Mat& _depth0, const cv::Mat& validMask0,
const cv::Mat& image1, const cv::Mat& _depth1, const cv::Mat& validMask1,
const cv::Mat& cameraMatrix, float minDepth, float maxDepth, float maxDepthDiff,
const std::vector<int>& iterCounts, const std::vector<float>& minGradientMagnitudes,
int transformType )
{
const int sobelSize = 3;
const double sobelScale = 1./8;
Mat depth0 = _depth0.clone(),
depth1 = _depth1.clone();
// check RGB-D input data
CV_Assert( !image0.empty() );
CV_Assert( image0.type() == CV_8UC1 );
CV_Assert( depth0.type() == CV_32FC1 && depth0.size() == image0.size() );
CV_Assert( image1.size() == image0.size() );
CV_Assert( image1.type() == CV_8UC1 );
CV_Assert( depth1.type() == CV_32FC1 && depth1.size() == image0.size() );
// check masks
CV_Assert( validMask0.empty() || (validMask0.type() == CV_8UC1 && validMask0.size() == image0.size()) );
CV_Assert( validMask1.empty() || (validMask1.type() == CV_8UC1 && validMask1.size() == image0.size()) );
// check camera params
CV_Assert( cameraMatrix.type() == CV_32FC1 && cameraMatrix.size() == Size(3,3) );
// other checks
CV_Assert( iterCounts.empty() || minGradientMagnitudes.empty() ||
minGradientMagnitudes.size() == iterCounts.size() );
CV_Assert( initRt.empty() || (initRt.type()==CV_64FC1 && initRt.size()==Size(4,4) ) );
std::vector<int> defaultIterCounts;
std::vector<float> defaultMinGradMagnitudes;
std::vector<int> const* iterCountsPtr = &iterCounts;
std::vector<float> const* minGradientMagnitudesPtr = &minGradientMagnitudes;
if( iterCounts.empty() || minGradientMagnitudes.empty() )
{
defaultIterCounts.resize(4);
defaultIterCounts[0] = 7;
defaultIterCounts[1] = 7;
defaultIterCounts[2] = 7;
defaultIterCounts[3] = 10;
defaultMinGradMagnitudes.resize(4);
defaultMinGradMagnitudes[0] = 12;
defaultMinGradMagnitudes[1] = 5;
defaultMinGradMagnitudes[2] = 3;
defaultMinGradMagnitudes[3] = 1;
iterCountsPtr = &defaultIterCounts;
minGradientMagnitudesPtr = &defaultMinGradMagnitudes;
}
preprocessDepth( depth0, depth1, validMask0, validMask1, minDepth, maxDepth );
std::vector<Mat> pyramidImage0, pyramidDepth0,
pyramidImage1, pyramidDepth1, pyramid_dI_dx1, pyramid_dI_dy1, pyramidTexturedMask1,
pyramidCameraMatrix;
buildPyramids( image0, image1, depth0, depth1, cameraMatrix, sobelSize, sobelScale, *minGradientMagnitudesPtr,
pyramidImage0, pyramidDepth0, pyramidImage1, pyramidDepth1,
pyramid_dI_dx1, pyramid_dI_dy1, pyramidTexturedMask1, pyramidCameraMatrix );
Mat resultRt = initRt.empty() ? Mat::eye(4,4,CV_64FC1) : initRt.clone();
Mat currRt, ksi;
for( int level = (int)iterCountsPtr->size() - 1; level >= 0; level-- )
{
const Mat& levelCameraMatrix = pyramidCameraMatrix[level];
const Mat& levelImage0 = pyramidImage0[level];
const Mat& levelDepth0 = pyramidDepth0[level];
Mat levelCloud0;
cvtDepth2Cloud( pyramidDepth0[level], levelCloud0, levelCameraMatrix );
const Mat& levelImage1 = pyramidImage1[level];
const Mat& levelDepth1 = pyramidDepth1[level];
const Mat& level_dI_dx1 = pyramid_dI_dx1[level];
const Mat& level_dI_dy1 = pyramid_dI_dy1[level];
CV_Assert( level_dI_dx1.type() == CV_16S );
CV_Assert( level_dI_dy1.type() == CV_16S );
const double fx = levelCameraMatrix.at<double>(0,0);
const double fy = levelCameraMatrix.at<double>(1,1);
const double determinantThreshold = 1e-6;
Mat corresps( levelImage0.size(), levelImage0.type() );
// Run transformation search on current level iteratively.
for( int iter = 0; iter < (*iterCountsPtr)[level]; iter ++ )
{
int correspsCount = computeCorresp( levelCameraMatrix, levelCameraMatrix.inv(), resultRt.inv(DECOMP_SVD),
levelDepth0, levelDepth1, pyramidTexturedMask1[level], maxDepthDiff,
corresps );
if( correspsCount == 0 )
break;
bool solutionExist = computeKsi( transformType,
levelImage0, levelCloud0,
levelImage1, level_dI_dx1, level_dI_dy1,
corresps, correspsCount,
fx, fy, sobelScale, determinantThreshold,
ksi );
if( !solutionExist )
break;
computeProjectiveMatrix( ksi, currRt );
resultRt = currRt * resultRt;
#if SHOW_DEBUG_IMAGES
std::cout << "currRt " << currRt << std::endl;
Mat warpedImage0;
const Mat distCoeff(1,5,CV_32FC1,Scalar(0));
warpImage<uchar>( levelImage0, levelDepth0, resultRt, levelCameraMatrix, distCoeff, warpedImage0 );
imshow( "im0", levelImage0 );
imshow( "wim0", warpedImage0 );
imshow( "im1", levelImage1 );
waitKey();
#endif
}
}
Rt = resultRt;
return !Rt.empty();
}