1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2009, Intel Corporation and others, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencv2/calib3d/calib3d_c.h"
// cvCorrectMatches function is Copyright (C) 2009, Jostein Austvik Jacobsen.
// cvTriangulatePoints function is derived from icvReconstructPointsFor3View, originally by Valery Mosyagin.
// HZ, R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge Univ. Press, 2003.
// This method is the same as icvReconstructPointsFor3View, with only a few numbers adjusted for two-view geometry
CV_IMPL void
cvTriangulatePoints(CvMat* projMatr1, CvMat* projMatr2, CvMat* projPoints1, CvMat* projPoints2, CvMat* points4D)
{
if( projMatr1 == 0 || projMatr2 == 0 ||
projPoints1 == 0 || projPoints2 == 0 ||
points4D == 0)
CV_Error( CV_StsNullPtr, "Some of parameters is a NULL pointer" );
if( !CV_IS_MAT(projMatr1) || !CV_IS_MAT(projMatr2) ||
!CV_IS_MAT(projPoints1) || !CV_IS_MAT(projPoints2) ||
!CV_IS_MAT(points4D) )
CV_Error( CV_StsUnsupportedFormat, "Input parameters must be matrices" );
int numPoints = projPoints1->cols;
if( numPoints < 1 )
CV_Error( CV_StsOutOfRange, "Number of points must be more than zero" );
if( projPoints2->cols != numPoints || points4D->cols != numPoints )
CV_Error( CV_StsUnmatchedSizes, "Number of points must be the same" );
if( projPoints1->rows != 2 || projPoints2->rows != 2)
CV_Error( CV_StsUnmatchedSizes, "Number of proj points coordinates must be == 2" );
if( points4D->rows != 4 )
CV_Error( CV_StsUnmatchedSizes, "Number of world points coordinates must be == 4" );
if( projMatr1->cols != 4 || projMatr1->rows != 3 ||
projMatr2->cols != 4 || projMatr2->rows != 3)
CV_Error( CV_StsUnmatchedSizes, "Size of projection matrices must be 3x4" );
// preallocate SVD matrices on stack
cv::Matx<double, 4, 4> matrA;
cv::Matx<double, 4, 4> matrU;
cv::Matx<double, 4, 1> matrW;
cv::Matx<double, 4, 4> matrV;
CvMat* projPoints[2] = {projPoints1, projPoints2};
CvMat* projMatrs[2] = {projMatr1, projMatr2};
/* Solve system for each point */
for( int i = 0; i < numPoints; i++ )/* For each point */
{
/* Fill matrix for current point */
for( int j = 0; j < 2; j++ )/* For each view */
{
double x,y;
x = cvmGet(projPoints[j],0,i);
y = cvmGet(projPoints[j],1,i);
for( int k = 0; k < 4; k++ )
{
matrA(j*2+0, k) = x * cvmGet(projMatrs[j],2,k) - cvmGet(projMatrs[j],0,k);
matrA(j*2+1, k) = y * cvmGet(projMatrs[j],2,k) - cvmGet(projMatrs[j],1,k);
}
}
/* Solve system for current point */
cv::SVD::compute(matrA, matrW, matrU, matrV);
/* Copy computed point */
cvmSet(points4D,0,i,matrV(3,0));/* X */
cvmSet(points4D,1,i,matrV(3,1));/* Y */
cvmSet(points4D,2,i,matrV(3,2));/* Z */
cvmSet(points4D,3,i,matrV(3,3));/* W */
}
}
/*
* The Optimal Triangulation Method (see HZ for details)
* For each given point correspondence points1[i] <-> points2[i], and a fundamental matrix F,
* computes the corrected correspondences new_points1[i] <-> new_points2[i] that minimize the
* geometric error d(points1[i],new_points1[i])^2 + d(points2[i],new_points2[i])^2 (where d(a,b)
* is the geometric distance between points a and b) subject to the epipolar constraint
* new_points2' * F * new_points1 = 0.
*
* F_ : 3x3 fundamental matrix
* points1_ : 1xN matrix containing the first set of points
* points2_ : 1xN matrix containing the second set of points
* new_points1 : the optimized points1_. if this is NULL, the corrected points are placed back in points1_
* new_points2 : the optimized points2_. if this is NULL, the corrected points are placed back in points2_
*/
CV_IMPL void
cvCorrectMatches(CvMat *F_, CvMat *points1_, CvMat *points2_, CvMat *new_points1, CvMat *new_points2)
{
cv::Ptr<CvMat> tmp33;
cv::Ptr<CvMat> tmp31, tmp31_2;
cv::Ptr<CvMat> T1i, T2i;
cv::Ptr<CvMat> R1, R2;
cv::Ptr<CvMat> TFT, TFTt, RTFTR;
cv::Ptr<CvMat> U, S, V;
cv::Ptr<CvMat> e1, e2;
cv::Ptr<CvMat> polynomial;
cv::Ptr<CvMat> result;
cv::Ptr<CvMat> points1, points2;
cv::Ptr<CvMat> F;
if (!CV_IS_MAT(F_) || !CV_IS_MAT(points1_) || !CV_IS_MAT(points2_) )
CV_Error( CV_StsUnsupportedFormat, "Input parameters must be matrices" );
if (!( F_->cols == 3 && F_->rows == 3))
CV_Error( CV_StsUnmatchedSizes, "The fundamental matrix must be a 3x3 matrix");
if (!(((F_->type & CV_MAT_TYPE_MASK) >> 3) == 0 ))
CV_Error( CV_StsUnsupportedFormat, "The fundamental matrix must be a single-channel matrix" );
if (!(points1_->rows == 1 && points2_->rows == 1 && points1_->cols == points2_->cols))
CV_Error( CV_StsUnmatchedSizes, "The point-matrices must have one row, and an equal number of columns" );
if (((points1_->type & CV_MAT_TYPE_MASK) >> 3) != 1 )
CV_Error( CV_StsUnmatchedSizes, "The first set of points must contain two channels; one for x and one for y" );
if (((points2_->type & CV_MAT_TYPE_MASK) >> 3) != 1 )
CV_Error( CV_StsUnmatchedSizes, "The second set of points must contain two channels; one for x and one for y" );
if (new_points1 != NULL) {
CV_Assert(CV_IS_MAT(new_points1));
if (new_points1->cols != points1_->cols || new_points1->rows != 1)
CV_Error( CV_StsUnmatchedSizes, "The first output matrix must have the same dimensions as the input matrices" );
if (CV_MAT_CN(new_points1->type) != 2)
CV_Error( CV_StsUnsupportedFormat, "The first output matrix must have two channels; one for x and one for y" );
}
if (new_points2 != NULL) {
CV_Assert(CV_IS_MAT(new_points2));
if (new_points2->cols != points2_->cols || new_points2->rows != 1)
CV_Error( CV_StsUnmatchedSizes, "The second output matrix must have the same dimensions as the input matrices" );
if (CV_MAT_CN(new_points2->type) != 2)
CV_Error( CV_StsUnsupportedFormat, "The second output matrix must have two channels; one for x and one for y" );
}
// Make sure F uses double precision
F.reset(cvCreateMat(3,3,CV_64FC1));
cvConvert(F_, F);
// Make sure points1 uses double precision
points1.reset(cvCreateMat(points1_->rows,points1_->cols,CV_64FC2));
cvConvert(points1_, points1);
// Make sure points2 uses double precision
points2.reset(cvCreateMat(points2_->rows,points2_->cols,CV_64FC2));
cvConvert(points2_, points2);
tmp33.reset(cvCreateMat(3,3,CV_64FC1));
tmp31.reset(cvCreateMat(3,1,CV_64FC1)), tmp31_2.reset(cvCreateMat(3,1,CV_64FC1));
T1i.reset(cvCreateMat(3,3,CV_64FC1)), T2i.reset(cvCreateMat(3,3,CV_64FC1));
R1.reset(cvCreateMat(3,3,CV_64FC1)), R2.reset(cvCreateMat(3,3,CV_64FC1));
TFT.reset(cvCreateMat(3,3,CV_64FC1)), TFTt.reset(cvCreateMat(3,3,CV_64FC1)), RTFTR.reset(cvCreateMat(3,3,CV_64FC1));
U.reset(cvCreateMat(3,3,CV_64FC1));
S.reset(cvCreateMat(3,3,CV_64FC1));
V.reset(cvCreateMat(3,3,CV_64FC1));
e1.reset(cvCreateMat(3,1,CV_64FC1)), e2.reset(cvCreateMat(3,1,CV_64FC1));
double x1, y1, x2, y2;
double scale;
double f1, f2, a, b, c, d;
polynomial.reset(cvCreateMat(1,7,CV_64FC1));
result.reset(cvCreateMat(1,6,CV_64FC2));
double t_min, s_val, t, s;
for (int p = 0; p < points1->cols; ++p) {
// Replace F by T2-t * F * T1-t
x1 = points1->data.db[p*2];
y1 = points1->data.db[p*2+1];
x2 = points2->data.db[p*2];
y2 = points2->data.db[p*2+1];
cvSetZero(T1i);
cvSetReal2D(T1i,0,0,1);
cvSetReal2D(T1i,1,1,1);
cvSetReal2D(T1i,2,2,1);
cvSetReal2D(T1i,0,2,x1);
cvSetReal2D(T1i,1,2,y1);
cvSetZero(T2i);
cvSetReal2D(T2i,0,0,1);
cvSetReal2D(T2i,1,1,1);
cvSetReal2D(T2i,2,2,1);
cvSetReal2D(T2i,0,2,x2);
cvSetReal2D(T2i,1,2,y2);
cvGEMM(T2i,F,1,0,0,tmp33,CV_GEMM_A_T);
cvSetZero(TFT);
cvGEMM(tmp33,T1i,1,0,0,TFT);
// Compute the right epipole e1 from F * e1 = 0
cvSetZero(U);
cvSetZero(S);
cvSetZero(V);
cvSVD(TFT,S,U,V);
scale = sqrt(cvGetReal2D(V,0,2)*cvGetReal2D(V,0,2) + cvGetReal2D(V,1,2)*cvGetReal2D(V,1,2));
cvSetReal2D(e1,0,0,cvGetReal2D(V,0,2)/scale);
cvSetReal2D(e1,1,0,cvGetReal2D(V,1,2)/scale);
cvSetReal2D(e1,2,0,cvGetReal2D(V,2,2)/scale);
if (cvGetReal2D(e1,2,0) < 0) {
cvSetReal2D(e1,0,0,-cvGetReal2D(e1,0,0));
cvSetReal2D(e1,1,0,-cvGetReal2D(e1,1,0));
cvSetReal2D(e1,2,0,-cvGetReal2D(e1,2,0));
}
// Compute the left epipole e2 from e2' * F = 0 => F' * e2 = 0
cvSetZero(TFTt);
cvTranspose(TFT, TFTt);
cvSetZero(U);
cvSetZero(S);
cvSetZero(V);
cvSVD(TFTt,S,U,V);
cvSetZero(e2);
scale = sqrt(cvGetReal2D(V,0,2)*cvGetReal2D(V,0,2) + cvGetReal2D(V,1,2)*cvGetReal2D(V,1,2));
cvSetReal2D(e2,0,0,cvGetReal2D(V,0,2)/scale);
cvSetReal2D(e2,1,0,cvGetReal2D(V,1,2)/scale);
cvSetReal2D(e2,2,0,cvGetReal2D(V,2,2)/scale);
if (cvGetReal2D(e2,2,0) < 0) {
cvSetReal2D(e2,0,0,-cvGetReal2D(e2,0,0));
cvSetReal2D(e2,1,0,-cvGetReal2D(e2,1,0));
cvSetReal2D(e2,2,0,-cvGetReal2D(e2,2,0));
}
// Replace F by R2 * F * R1'
cvSetZero(R1);
cvSetReal2D(R1,0,0,cvGetReal2D(e1,0,0));
cvSetReal2D(R1,0,1,cvGetReal2D(e1,1,0));
cvSetReal2D(R1,1,0,-cvGetReal2D(e1,1,0));
cvSetReal2D(R1,1,1,cvGetReal2D(e1,0,0));
cvSetReal2D(R1,2,2,1);
cvSetZero(R2);
cvSetReal2D(R2,0,0,cvGetReal2D(e2,0,0));
cvSetReal2D(R2,0,1,cvGetReal2D(e2,1,0));
cvSetReal2D(R2,1,0,-cvGetReal2D(e2,1,0));
cvSetReal2D(R2,1,1,cvGetReal2D(e2,0,0));
cvSetReal2D(R2,2,2,1);
cvGEMM(R2,TFT,1,0,0,tmp33);
cvGEMM(tmp33,R1,1,0,0,RTFTR,CV_GEMM_B_T);
// Set f1 = e1(3), f2 = e2(3), a = F22, b = F23, c = F32, d = F33
f1 = cvGetReal2D(e1,2,0);
f2 = cvGetReal2D(e2,2,0);
a = cvGetReal2D(RTFTR,1,1);
b = cvGetReal2D(RTFTR,1,2);
c = cvGetReal2D(RTFTR,2,1);
d = cvGetReal2D(RTFTR,2,2);
// Form the polynomial g(t) = k6*t^6 + k5*t^5 + k4*t^4 + k3*t^3 + k2*t^2 + k1*t + k0
// from f1, f2, a, b, c and d
cvSetReal2D(polynomial,0,6,( +b*c*c*f1*f1*f1*f1*a-a*a*d*f1*f1*f1*f1*c ));
cvSetReal2D(polynomial,0,5,( +f2*f2*f2*f2*c*c*c*c+2*a*a*f2*f2*c*c-a*a*d*d*f1*f1*f1*f1+b*b*c*c*f1*f1*f1*f1+a*a*a*a ));
cvSetReal2D(polynomial,0,4,( +4*a*a*a*b+2*b*c*c*f1*f1*a+4*f2*f2*f2*f2*c*c*c*d+4*a*b*f2*f2*c*c+4*a*a*f2*f2*c*d-2*a*a*d*f1*f1*c-a*d*d*f1*f1*f1*f1*b+b*b*c*f1*f1*f1*f1*d ));
cvSetReal2D(polynomial,0,3,( +6*a*a*b*b+6*f2*f2*f2*f2*c*c*d*d+2*b*b*f2*f2*c*c+2*a*a*f2*f2*d*d-2*a*a*d*d*f1*f1+2*b*b*c*c*f1*f1+8*a*b*f2*f2*c*d ));
cvSetReal2D(polynomial,0,2,( +4*a*b*b*b+4*b*b*f2*f2*c*d+4*f2*f2*f2*f2*c*d*d*d-a*a*d*c+b*c*c*a+4*a*b*f2*f2*d*d-2*a*d*d*f1*f1*b+2*b*b*c*f1*f1*d ));
cvSetReal2D(polynomial,0,1,( +f2*f2*f2*f2*d*d*d*d+b*b*b*b+2*b*b*f2*f2*d*d-a*a*d*d+b*b*c*c ));
cvSetReal2D(polynomial,0,0,( -a*d*d*b+b*b*c*d ));
// Solve g(t) for t to get 6 roots
cvSetZero(result);
cvSolvePoly(polynomial, result, 100, 20);
// Evaluate the cost function s(t) at the real part of the 6 roots
t_min = DBL_MAX;
s_val = 1./(f1*f1) + (c*c)/(a*a+f2*f2*c*c);
for (int ti = 0; ti < 6; ++ti) {
t = result->data.db[2*ti];
s = (t*t)/(1 + f1*f1*t*t) + ((c*t + d)*(c*t + d))/((a*t + b)*(a*t + b) + f2*f2*(c*t + d)*(c*t + d));
if (s < s_val) {
s_val = s;
t_min = t;
}
}
// find the optimal x1 and y1 as the points on l1 and l2 closest to the origin
tmp31->data.db[0] = t_min*t_min*f1;
tmp31->data.db[1] = t_min;
tmp31->data.db[2] = t_min*t_min*f1*f1+1;
tmp31->data.db[0] /= tmp31->data.db[2];
tmp31->data.db[1] /= tmp31->data.db[2];
tmp31->data.db[2] /= tmp31->data.db[2];
cvGEMM(T1i,R1,1,0,0,tmp33,CV_GEMM_B_T);
cvGEMM(tmp33,tmp31,1,0,0,tmp31_2);
x1 = tmp31_2->data.db[0];
y1 = tmp31_2->data.db[1];
tmp31->data.db[0] = f2*pow(c*t_min+d,2);
tmp31->data.db[1] = -(a*t_min+b)*(c*t_min+d);
tmp31->data.db[2] = f2*f2*pow(c*t_min+d,2) + pow(a*t_min+b,2);
tmp31->data.db[0] /= tmp31->data.db[2];
tmp31->data.db[1] /= tmp31->data.db[2];
tmp31->data.db[2] /= tmp31->data.db[2];
cvGEMM(T2i,R2,1,0,0,tmp33,CV_GEMM_B_T);
cvGEMM(tmp33,tmp31,1,0,0,tmp31_2);
x2 = tmp31_2->data.db[0];
y2 = tmp31_2->data.db[1];
// Return the points in the matrix format that the user wants
points1->data.db[p*2] = x1;
points1->data.db[p*2+1] = y1;
points2->data.db[p*2] = x2;
points2->data.db[p*2+1] = y2;
}
if( new_points1 )
cvConvert( points1, new_points1 );
if( new_points2 )
cvConvert( points2, new_points2 );
}
void cv::triangulatePoints( InputArray _projMatr1, InputArray _projMatr2,
InputArray _projPoints1, InputArray _projPoints2,
OutputArray _points4D )
{
CV_INSTRUMENT_REGION()
Mat matr1 = _projMatr1.getMat(), matr2 = _projMatr2.getMat();
Mat points1 = _projPoints1.getMat(), points2 = _projPoints2.getMat();
if((points1.rows == 1 || points1.cols == 1) && points1.channels() == 2)
points1 = points1.reshape(1, static_cast<int>(points1.total())).t();
if((points2.rows == 1 || points2.cols == 1) && points2.channels() == 2)
points2 = points2.reshape(1, static_cast<int>(points2.total())).t();
CvMat cvMatr1 = matr1, cvMatr2 = matr2;
CvMat cvPoints1 = points1, cvPoints2 = points2;
_points4D.create(4, points1.cols, points1.type());
CvMat cvPoints4D = _points4D.getMat();
cvTriangulatePoints(&cvMatr1, &cvMatr2, &cvPoints1, &cvPoints2, &cvPoints4D);
}
void cv::correctMatches( InputArray _F, InputArray _points1, InputArray _points2,
OutputArray _newPoints1, OutputArray _newPoints2 )
{
CV_INSTRUMENT_REGION()
Mat F = _F.getMat();
Mat points1 = _points1.getMat(), points2 = _points2.getMat();
CvMat cvPoints1 = points1, cvPoints2 = points2;
CvMat cvF = F;
_newPoints1.create(points1.size(), points1.type());
_newPoints2.create(points2.size(), points2.type());
CvMat cvNewPoints1 = _newPoints1.getMat(), cvNewPoints2 = _newPoints2.getMat();
cvCorrectMatches(&cvF, &cvPoints1, &cvPoints2, &cvNewPoints1, &cvNewPoints2);
}