1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::detail;
using namespace cv::gpu;
#ifdef HAVE_OPENCV_NONFREE
#include "opencv2/nonfree.hpp"
static bool makeUseOfNonfree = initModule_nonfree();
#endif
namespace {
struct DistIdxPair
{
bool operator<(const DistIdxPair &other) const { return dist < other.dist; }
double dist;
int idx;
};
struct MatchPairsBody : ParallelLoopBody
{
MatchPairsBody(FeaturesMatcher &_matcher, const std::vector<ImageFeatures> &_features,
std::vector<MatchesInfo> &_pairwise_matches, std::vector<std::pair<int,int> > &_near_pairs)
: matcher(_matcher), features(_features),
pairwise_matches(_pairwise_matches), near_pairs(_near_pairs) {}
void operator ()(const Range &r) const
{
const int num_images = static_cast<int>(features.size());
for (int i = r.start; i < r.end; ++i)
{
int from = near_pairs[i].first;
int to = near_pairs[i].second;
int pair_idx = from*num_images + to;
matcher(features[from], features[to], pairwise_matches[pair_idx]);
pairwise_matches[pair_idx].src_img_idx = from;
pairwise_matches[pair_idx].dst_img_idx = to;
size_t dual_pair_idx = to*num_images + from;
pairwise_matches[dual_pair_idx] = pairwise_matches[pair_idx];
pairwise_matches[dual_pair_idx].src_img_idx = to;
pairwise_matches[dual_pair_idx].dst_img_idx = from;
if (!pairwise_matches[pair_idx].H.empty())
pairwise_matches[dual_pair_idx].H = pairwise_matches[pair_idx].H.inv();
for (size_t j = 0; j < pairwise_matches[dual_pair_idx].matches.size(); ++j)
std::swap(pairwise_matches[dual_pair_idx].matches[j].queryIdx,
pairwise_matches[dual_pair_idx].matches[j].trainIdx);
LOG(".");
}
}
FeaturesMatcher &matcher;
const std::vector<ImageFeatures> &features;
std::vector<MatchesInfo> &pairwise_matches;
std::vector<std::pair<int,int> > &near_pairs;
private:
void operator =(const MatchPairsBody&);
};
//////////////////////////////////////////////////////////////////////////////
typedef std::set<std::pair<int,int> > MatchesSet;
// These two classes are aimed to find features matches only, not to
// estimate homography
class CpuMatcher : public FeaturesMatcher
{
public:
CpuMatcher(float match_conf) : FeaturesMatcher(true), match_conf_(match_conf) {}
void match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info);
private:
float match_conf_;
};
#ifdef HAVE_OPENCV_GPUFEATURES2D
class GpuMatcher : public FeaturesMatcher
{
public:
GpuMatcher(float match_conf) : match_conf_(match_conf) {}
void match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info);
void collectGarbage();
private:
float match_conf_;
GpuMat descriptors1_, descriptors2_;
GpuMat train_idx_, distance_, all_dist_;
std::vector< std::vector<DMatch> > pair_matches;
};
#endif
void CpuMatcher::match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info)
{
CV_Assert(features1.descriptors.type() == features2.descriptors.type());
CV_Assert(features2.descriptors.depth() == CV_8U || features2.descriptors.depth() == CV_32F);
#ifdef HAVE_TEGRA_OPTIMIZATION
if (tegra::match2nearest(features1, features2, matches_info, match_conf_))
return;
#endif
matches_info.matches.clear();
Ptr<flann::IndexParams> indexParams = new flann::KDTreeIndexParams();
Ptr<flann::SearchParams> searchParams = new flann::SearchParams();
if (features2.descriptors.depth() == CV_8U)
{
indexParams->setAlgorithm(cvflann::FLANN_INDEX_LSH);
searchParams->setAlgorithm(cvflann::FLANN_INDEX_LSH);
}
FlannBasedMatcher matcher(indexParams, searchParams);
std::vector< std::vector<DMatch> > pair_matches;
MatchesSet matches;
// Find 1->2 matches
matcher.knnMatch(features1.descriptors, features2.descriptors, pair_matches, 2);
for (size_t i = 0; i < pair_matches.size(); ++i)
{
if (pair_matches[i].size() < 2)
continue;
const DMatch& m0 = pair_matches[i][0];
const DMatch& m1 = pair_matches[i][1];
if (m0.distance < (1.f - match_conf_) * m1.distance)
{
matches_info.matches.push_back(m0);
matches.insert(std::make_pair(m0.queryIdx, m0.trainIdx));
}
}
LOG("\n1->2 matches: " << matches_info.matches.size() << endl);
// Find 2->1 matches
pair_matches.clear();
matcher.knnMatch(features2.descriptors, features1.descriptors, pair_matches, 2);
for (size_t i = 0; i < pair_matches.size(); ++i)
{
if (pair_matches[i].size() < 2)
continue;
const DMatch& m0 = pair_matches[i][0];
const DMatch& m1 = pair_matches[i][1];
if (m0.distance < (1.f - match_conf_) * m1.distance)
if (matches.find(std::make_pair(m0.trainIdx, m0.queryIdx)) == matches.end())
matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance));
}
LOG("1->2 & 2->1 matches: " << matches_info.matches.size() << endl);
}
#ifdef HAVE_OPENCV_GPUFEATURES2D
void GpuMatcher::match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info)
{
matches_info.matches.clear();
ensureSizeIsEnough(features1.descriptors.size(), features1.descriptors.type(), descriptors1_);
ensureSizeIsEnough(features2.descriptors.size(), features2.descriptors.type(), descriptors2_);
descriptors1_.upload(features1.descriptors);
descriptors2_.upload(features2.descriptors);
BFMatcher_GPU matcher(NORM_L2);
MatchesSet matches;
// Find 1->2 matches
pair_matches.clear();
matcher.knnMatchSingle(descriptors1_, descriptors2_, train_idx_, distance_, all_dist_, 2);
matcher.knnMatchDownload(train_idx_, distance_, pair_matches);
for (size_t i = 0; i < pair_matches.size(); ++i)
{
if (pair_matches[i].size() < 2)
continue;
const DMatch& m0 = pair_matches[i][0];
const DMatch& m1 = pair_matches[i][1];
if (m0.distance < (1.f - match_conf_) * m1.distance)
{
matches_info.matches.push_back(m0);
matches.insert(std::make_pair(m0.queryIdx, m0.trainIdx));
}
}
// Find 2->1 matches
pair_matches.clear();
matcher.knnMatchSingle(descriptors2_, descriptors1_, train_idx_, distance_, all_dist_, 2);
matcher.knnMatchDownload(train_idx_, distance_, pair_matches);
for (size_t i = 0; i < pair_matches.size(); ++i)
{
if (pair_matches[i].size() < 2)
continue;
const DMatch& m0 = pair_matches[i][0];
const DMatch& m1 = pair_matches[i][1];
if (m0.distance < (1.f - match_conf_) * m1.distance)
if (matches.find(std::make_pair(m0.trainIdx, m0.queryIdx)) == matches.end())
matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance));
}
}
void GpuMatcher::collectGarbage()
{
descriptors1_.release();
descriptors2_.release();
train_idx_.release();
distance_.release();
all_dist_.release();
std::vector< std::vector<DMatch> >().swap(pair_matches);
}
#endif
} // namespace
namespace cv {
namespace detail {
void FeaturesFinder::operator ()(const Mat &image, ImageFeatures &features)
{
find(image, features);
features.img_size = image.size();
}
void FeaturesFinder::operator ()(const Mat &image, ImageFeatures &features, const std::vector<Rect> &rois)
{
std::vector<ImageFeatures> roi_features(rois.size());
size_t total_kps_count = 0;
int total_descriptors_height = 0;
for (size_t i = 0; i < rois.size(); ++i)
{
find(image(rois[i]), roi_features[i]);
total_kps_count += roi_features[i].keypoints.size();
total_descriptors_height += roi_features[i].descriptors.rows;
}
features.img_size = image.size();
features.keypoints.resize(total_kps_count);
features.descriptors.create(total_descriptors_height,
roi_features[0].descriptors.cols,
roi_features[0].descriptors.type());
int kp_idx = 0;
int descr_offset = 0;
for (size_t i = 0; i < rois.size(); ++i)
{
for (size_t j = 0; j < roi_features[i].keypoints.size(); ++j, ++kp_idx)
{
features.keypoints[kp_idx] = roi_features[i].keypoints[j];
features.keypoints[kp_idx].pt.x += (float)rois[i].x;
features.keypoints[kp_idx].pt.y += (float)rois[i].y;
}
Mat subdescr = features.descriptors.rowRange(
descr_offset, descr_offset + roi_features[i].descriptors.rows);
roi_features[i].descriptors.copyTo(subdescr);
descr_offset += roi_features[i].descriptors.rows;
}
}
SurfFeaturesFinder::SurfFeaturesFinder(double hess_thresh, int num_octaves, int num_layers,
int num_octaves_descr, int num_layers_descr)
{
if (num_octaves_descr == num_octaves && num_layers_descr == num_layers)
{
surf = Algorithm::create<Feature2D>("Feature2D.SURF");
if( surf.empty() )
CV_Error( Error::StsNotImplemented, "OpenCV was built without SURF support" );
surf->set("hessianThreshold", hess_thresh);
surf->set("nOctaves", num_octaves);
surf->set("nOctaveLayers", num_layers);
}
else
{
detector_ = Algorithm::create<FeatureDetector>("Feature2D.SURF");
extractor_ = Algorithm::create<DescriptorExtractor>("Feature2D.SURF");
if( detector_.empty() || extractor_.empty() )
CV_Error( Error::StsNotImplemented, "OpenCV was built without SURF support" );
detector_->set("hessianThreshold", hess_thresh);
detector_->set("nOctaves", num_octaves);
detector_->set("nOctaveLayers", num_layers);
extractor_->set("nOctaves", num_octaves_descr);
extractor_->set("nOctaveLayers", num_layers_descr);
}
}
void SurfFeaturesFinder::find(const Mat &image, ImageFeatures &features)
{
Mat gray_image;
CV_Assert((image.type() == CV_8UC3) || (image.type() == CV_8UC1));
if(image.type() == CV_8UC3)
{
cvtColor(image, gray_image, COLOR_BGR2GRAY);
}
else
{
gray_image = image;
}
if (surf.empty())
{
detector_->detect(gray_image, features.keypoints);
extractor_->compute(gray_image, features.keypoints, features.descriptors);
}
else
{
Mat descriptors;
(*surf)(gray_image, Mat(), features.keypoints, descriptors);
features.descriptors = descriptors.reshape(1, (int)features.keypoints.size());
}
}
OrbFeaturesFinder::OrbFeaturesFinder(Size _grid_size, int n_features, float scaleFactor, int nlevels)
{
grid_size = _grid_size;
orb = new ORB(n_features * (99 + grid_size.area())/100/grid_size.area(), scaleFactor, nlevels);
}
void OrbFeaturesFinder::find(const Mat &image, ImageFeatures &features)
{
Mat gray_image;
CV_Assert((image.type() == CV_8UC3) || (image.type() == CV_8UC4) || (image.type() == CV_8UC1));
if (image.type() == CV_8UC3) {
cvtColor(image, gray_image, COLOR_BGR2GRAY);
} else if (image.type() == CV_8UC4) {
cvtColor(image, gray_image, COLOR_BGRA2GRAY);
} else if (image.type() == CV_8UC1) {
gray_image=image;
} else {
CV_Error(Error::StsUnsupportedFormat, "");
}
if (grid_size.area() == 1)
(*orb)(gray_image, Mat(), features.keypoints, features.descriptors);
else
{
features.keypoints.clear();
features.descriptors.release();
std::vector<KeyPoint> points;
Mat descriptors;
for (int r = 0; r < grid_size.height; ++r)
for (int c = 0; c < grid_size.width; ++c)
{
int xl = c * gray_image.cols / grid_size.width;
int yl = r * gray_image.rows / grid_size.height;
int xr = (c+1) * gray_image.cols / grid_size.width;
int yr = (r+1) * gray_image.rows / grid_size.height;
// LOGLN("OrbFeaturesFinder::find: gray_image.empty=" << (gray_image.empty()?"true":"false") << ", "
// << " gray_image.size()=(" << gray_image.size().width << "x" << gray_image.size().height << "), "
// << " yl=" << yl << ", yr=" << yr << ", "
// << " xl=" << xl << ", xr=" << xr << ", gray_image.data=" << ((size_t)gray_image.data) << ", "
// << "gray_image.dims=" << gray_image.dims << "\n");
Mat gray_image_part=gray_image(Range(yl, yr), Range(xl, xr));
// LOGLN("OrbFeaturesFinder::find: gray_image_part.empty=" << (gray_image_part.empty()?"true":"false") << ", "
// << " gray_image_part.size()=(" << gray_image_part.size().width << "x" << gray_image_part.size().height << "), "
// << " gray_image_part.dims=" << gray_image_part.dims << ", "
// << " gray_image_part.data=" << ((size_t)gray_image_part.data) << "\n");
(*orb)(gray_image_part, Mat(), points, descriptors);
features.keypoints.reserve(features.keypoints.size() + points.size());
for (std::vector<KeyPoint>::iterator kp = points.begin(); kp != points.end(); ++kp)
{
kp->pt.x += xl;
kp->pt.y += yl;
features.keypoints.push_back(*kp);
}
features.descriptors.push_back(descriptors);
}
}
}
#ifdef HAVE_OPENCV_NONFREE
SurfFeaturesFinderGpu::SurfFeaturesFinderGpu(double hess_thresh, int num_octaves, int num_layers,
int num_octaves_descr, int num_layers_descr)
{
surf_.keypointsRatio = 0.1f;
surf_.hessianThreshold = hess_thresh;
surf_.extended = false;
num_octaves_ = num_octaves;
num_layers_ = num_layers;
num_octaves_descr_ = num_octaves_descr;
num_layers_descr_ = num_layers_descr;
}
void SurfFeaturesFinderGpu::find(const Mat &image, ImageFeatures &features)
{
CV_Assert(image.depth() == CV_8U);
ensureSizeIsEnough(image.size(), image.type(), image_);
image_.upload(image);
ensureSizeIsEnough(image.size(), CV_8UC1, gray_image_);
cvtColor(image_, gray_image_, COLOR_BGR2GRAY);
surf_.nOctaves = num_octaves_;
surf_.nOctaveLayers = num_layers_;
surf_.upright = false;
surf_(gray_image_, GpuMat(), keypoints_);
surf_.nOctaves = num_octaves_descr_;
surf_.nOctaveLayers = num_layers_descr_;
surf_.upright = true;
surf_(gray_image_, GpuMat(), keypoints_, descriptors_, true);
surf_.downloadKeypoints(keypoints_, features.keypoints);
descriptors_.download(features.descriptors);
}
void SurfFeaturesFinderGpu::collectGarbage()
{
surf_.releaseMemory();
image_.release();
gray_image_.release();
keypoints_.release();
descriptors_.release();
}
#endif
//////////////////////////////////////////////////////////////////////////////
MatchesInfo::MatchesInfo() : src_img_idx(-1), dst_img_idx(-1), num_inliers(0), confidence(0) {}
MatchesInfo::MatchesInfo(const MatchesInfo &other) { *this = other; }
const MatchesInfo& MatchesInfo::operator =(const MatchesInfo &other)
{
src_img_idx = other.src_img_idx;
dst_img_idx = other.dst_img_idx;
matches = other.matches;
inliers_mask = other.inliers_mask;
num_inliers = other.num_inliers;
H = other.H.clone();
confidence = other.confidence;
return *this;
}
//////////////////////////////////////////////////////////////////////////////
void FeaturesMatcher::operator ()(const std::vector<ImageFeatures> &features, std::vector<MatchesInfo> &pairwise_matches,
const Mat &mask)
{
const int num_images = static_cast<int>(features.size());
CV_Assert(mask.empty() || (mask.type() == CV_8U && mask.cols == num_images && mask.rows));
Mat_<uchar> mask_(mask);
if (mask_.empty())
mask_ = Mat::ones(num_images, num_images, CV_8U);
std::vector<std::pair<int,int> > near_pairs;
for (int i = 0; i < num_images - 1; ++i)
for (int j = i + 1; j < num_images; ++j)
if (features[i].keypoints.size() > 0 && features[j].keypoints.size() > 0 && mask_(i, j))
near_pairs.push_back(std::make_pair(i, j));
pairwise_matches.resize(num_images * num_images);
MatchPairsBody body(*this, features, pairwise_matches, near_pairs);
if (is_thread_safe_)
parallel_for_(Range(0, static_cast<int>(near_pairs.size())), body);
else
body(Range(0, static_cast<int>(near_pairs.size())));
LOGLN_CHAT("");
}
//////////////////////////////////////////////////////////////////////////////
BestOf2NearestMatcher::BestOf2NearestMatcher(bool try_use_gpu, float match_conf, int num_matches_thresh1, int num_matches_thresh2)
{
(void)try_use_gpu;
#ifdef HAVE_OPENCV_GPUFEATURES2D
if (try_use_gpu && getCudaEnabledDeviceCount() > 0)
{
impl_ = new GpuMatcher(match_conf);
}
else
#endif
{
impl_ = new CpuMatcher(match_conf);
}
is_thread_safe_ = impl_->isThreadSafe();
num_matches_thresh1_ = num_matches_thresh1;
num_matches_thresh2_ = num_matches_thresh2;
}
void BestOf2NearestMatcher::match(const ImageFeatures &features1, const ImageFeatures &features2,
MatchesInfo &matches_info)
{
(*impl_)(features1, features2, matches_info);
// Check if it makes sense to find homography
if (matches_info.matches.size() < static_cast<size_t>(num_matches_thresh1_))
return;
// Construct point-point correspondences for homography estimation
Mat src_points(1, static_cast<int>(matches_info.matches.size()), CV_32FC2);
Mat dst_points(1, static_cast<int>(matches_info.matches.size()), CV_32FC2);
for (size_t i = 0; i < matches_info.matches.size(); ++i)
{
const DMatch& m = matches_info.matches[i];
Point2f p = features1.keypoints[m.queryIdx].pt;
p.x -= features1.img_size.width * 0.5f;
p.y -= features1.img_size.height * 0.5f;
src_points.at<Point2f>(0, static_cast<int>(i)) = p;
p = features2.keypoints[m.trainIdx].pt;
p.x -= features2.img_size.width * 0.5f;
p.y -= features2.img_size.height * 0.5f;
dst_points.at<Point2f>(0, static_cast<int>(i)) = p;
}
// Find pair-wise motion
matches_info.H = findHomography(src_points, dst_points, matches_info.inliers_mask, RANSAC);
if (matches_info.H.empty() || std::abs(determinant(matches_info.H)) < std::numeric_limits<double>::epsilon())
return;
// Find number of inliers
matches_info.num_inliers = 0;
for (size_t i = 0; i < matches_info.inliers_mask.size(); ++i)
if (matches_info.inliers_mask[i])
matches_info.num_inliers++;
// These coeffs are from paper M. Brown and D. Lowe. "Automatic Panoramic Image Stitching
// using Invariant Features"
matches_info.confidence = matches_info.num_inliers / (8 + 0.3 * matches_info.matches.size());
// Set zero confidence to remove matches between too close images, as they don't provide
// additional information anyway. The threshold was set experimentally.
matches_info.confidence = matches_info.confidence > 3. ? 0. : matches_info.confidence;
// Check if we should try to refine motion
if (matches_info.num_inliers < num_matches_thresh2_)
return;
// Construct point-point correspondences for inliers only
src_points.create(1, matches_info.num_inliers, CV_32FC2);
dst_points.create(1, matches_info.num_inliers, CV_32FC2);
int inlier_idx = 0;
for (size_t i = 0; i < matches_info.matches.size(); ++i)
{
if (!matches_info.inliers_mask[i])
continue;
const DMatch& m = matches_info.matches[i];
Point2f p = features1.keypoints[m.queryIdx].pt;
p.x -= features1.img_size.width * 0.5f;
p.y -= features1.img_size.height * 0.5f;
src_points.at<Point2f>(0, inlier_idx) = p;
p = features2.keypoints[m.trainIdx].pt;
p.x -= features2.img_size.width * 0.5f;
p.y -= features2.img_size.height * 0.5f;
dst_points.at<Point2f>(0, inlier_idx) = p;
inlier_idx++;
}
// Rerun motion estimation on inliers only
matches_info.H = findHomography(src_points, dst_points, RANSAC);
}
void BestOf2NearestMatcher::collectGarbage()
{
impl_->collectGarbage();
}
} // namespace detail
} // namespace cv