1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "../op_cuda.hpp"
#include "../op_halide.hpp"
#include "../op_inf_engine.hpp"
#include "../ie_ngraph.hpp"
#ifdef HAVE_OPENCL
#include "opencl_kernels_dnn.hpp"
#endif
#ifdef HAVE_CUDA
#include "../cuda4dnn/primitives/eltwise.hpp"
#include "../cuda4dnn/primitives/shortcut.hpp"
using namespace cv::dnn::cuda4dnn;
#endif
namespace cv
{
namespace dnn
{
class EltwiseLayerImpl CV_FINAL : public EltwiseLayer
{
public:
enum EltwiseOp
{
PROD = 0,
SUM = 1,
MAX = 2,
DIV = 3
} op;
std::vector<float> coeffs;
enum OutputChannelsMode
{
ELTWISE_CHANNNELS_SAME = 0, //!< number of channels from inputs must be the same and equal to output's number of channels
ELTWISE_CHANNNELS_INPUT_0, //!< number of channels from inputs may be different,
//!< output's number of channels is equal to number of channels of first input
//!< number of channels of other inputs should not be greater than number of channels of first input
ELTWISE_CHANNNELS_INPUT_0_TRUNCATE, //!< number of channels from inputs may be different,
//!< output's number of channels is equal to number of channels of first input
//!< there is restriction on number of channels of other inputs
//!< extra channels of other inputs is ignored
ELTWISE_CHANNNELS_USE_MAX, //!< number of channels from inputs may be different,
//!< output's number of channels is equal to maximal number of input channels
//!< @note supported operation: `SUM`
} channelsModeInput;
mutable OutputChannelsMode channelsMode; //!< "optimized" channels mode (switch to ELTWISE_CHANNNELS_SAME if number of input channels are equal)
mutable /*size_t*/int outputChannels;
EltwiseLayerImpl(const LayerParams& params)
: outputChannels(0)
{
setParamsFrom(params);
op = SUM;
if (params.has("operation"))
{
String operation = toLowerCase(params.get<String>("operation"));
if (operation == "prod")
op = PROD;
else if (operation == "sum")
op = SUM;
else if (operation == "max")
op = MAX;
else if (operation == "div")
op = DIV;
else
CV_Error(cv::Error::StsBadArg, "Unknown operation type \"" + operation + "\"");
}
if (params.has("coeff"))
{
DictValue paramCoeff = params.get("coeff");
int i, n = paramCoeff.size();
coeffs.resize(n);
for (i = 0; i < n; i++)
{
coeffs[i] = paramCoeff.get<float>(i);
}
}
channelsModeInput = ELTWISE_CHANNNELS_SAME;
if (params.has("output_channels_mode"))
{
String v = toLowerCase(params.get<String>("output_channels_mode"));
if (v == "same")
{
channelsModeInput = ELTWISE_CHANNNELS_SAME;
}
else if (v == "input_0")
{
channelsModeInput = ELTWISE_CHANNNELS_INPUT_0;
}
else if (v == "input_0_truncate")
{
channelsModeInput = ELTWISE_CHANNNELS_INPUT_0_TRUNCATE;
}
else if (v == "max_input_channels")
{
channelsModeInput = ELTWISE_CHANNNELS_USE_MAX;
if (op != SUM)
CV_Error(cv::Error::StsBadArg, "[" + type + "]:(" + name + ") 'max' channels mode is limited to SUM operation only");
}
else
CV_Error(cv::Error::StsBadArg, "[" + type + "]:(" + name + ") unknown channels mode: \"" + v + "\"");
}
channelsMode = channelsModeInput;
// TODO Must have checks for other unknown options
}
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
if (backendId == DNN_BACKEND_CUDA)
{
if(channelsModeInput == ELTWISE_CHANNNELS_INPUT_0 || channelsModeInput == ELTWISE_CHANNNELS_INPUT_0_TRUNCATE)
return op == SUM && coeffs.empty();
return channelsModeInput == ELTWISE_CHANNNELS_SAME;
}
return backendId == DNN_BACKEND_OPENCV ||
(backendId == DNN_BACKEND_HALIDE && op != DIV) || // TODO: not implemented, see PR #15811
((((backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && (preferableTarget != DNN_TARGET_OPENCL || coeffs.empty()))
|| backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && channelsMode == ELTWISE_CHANNNELS_SAME));
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE
{
CV_Assert(inputs.size() >= 2);
CV_Assert(inputs[0].size() >= 2);
CV_Assert(coeffs.size() == 0 || coeffs.size() == inputs.size());
CV_Assert(op == SUM || coeffs.size() == 0);
int dims = inputs[0].size();
// Number of channels in output shape is determined by the first input tensor.
bool variableChannels = false;
int numChannels = inputs[0][1];
for (size_t i = 1; i < inputs.size(); i++)
{
CV_Assert(inputs[0][0] == inputs[i][0]); // batch sizes are equal
int input_channels = inputs[i][1];
if (numChannels != input_channels)
variableChannels = true;
if (channelsModeInput == ELTWISE_CHANNNELS_SAME)
{
CV_Assert(numChannels == input_channels);
}
else if (channelsModeInput == ELTWISE_CHANNNELS_INPUT_0)
{
CV_Assert(numChannels >= input_channels);
}
else if (channelsModeInput == ELTWISE_CHANNNELS_INPUT_0_TRUNCATE)
{
// nothing to check
}
else if (channelsModeInput == ELTWISE_CHANNNELS_USE_MAX)
{
numChannels = std::max(numChannels, input_channels);
}
else
{
CV_Assert(0 && "Internal error");
}
for (size_t j = 2; j < dims; j++)
CV_Assert(inputs[0][j] == inputs[i][j]);
}
channelsMode = variableChannels ? channelsModeInput : ELTWISE_CHANNNELS_SAME;
outputChannels = numChannels;
outputs.assign(1, inputs[0]);
outputs[0][1] = numChannels;
return false;
}
class EltwiseInvoker : public ParallelLoopBody
{
EltwiseLayerImpl& self;
std::vector<const Mat*> srcs;
std::vector<int> srcNumChannels;
int nsrcs;
Mat* dst;
std::vector<float> coeffs;
int nstripes;
const ActivationLayer* activ;
int channels;
size_t planeSize;
EltwiseInvoker(EltwiseLayerImpl& self_)
: self(self_)
, nsrcs(0), dst(0), nstripes(0), activ(0), channels(0)
, planeSize(0)
{}
public:
static void run(EltwiseLayerImpl& self,
const Mat* srcs, int nsrcs, Mat& dst,
int nstripes)
{
const EltwiseOp op = self.op;
CV_Check(dst.dims, 1 < dst.dims && dst.dims <= 5, ""); CV_CheckTypeEQ(dst.type(), CV_32FC1, ""); CV_Assert(dst.isContinuous());
CV_Assert(self.coeffs.empty() || self.coeffs.size() == (size_t)nsrcs);
CV_CheckGE(nsrcs, 2, "");
CV_Assert(self.outputChannels == dst.size[1]);
EltwiseInvoker p(self);
p.srcs.resize(nsrcs);
p.srcNumChannels.resize(nsrcs);
p.coeffs = self.coeffs; // can be sorted
bool sortInputs = false;
for( int i = 0; i < nsrcs; i++ )
{
p.srcs[i] = &srcs[i];
CV_CheckEQ(srcs[i].dims, dst.dims, "");
CV_Assert(srcs[i].isContinuous());
CV_Assert(srcs[i].type() == dst.type());
p.srcNumChannels[i] = (srcs[i].dims >= 4) ? srcs[i].size[1] : 1;
if (self.channelsMode == ELTWISE_CHANNNELS_SAME)
{
CV_Assert(srcs[i].size == dst.size);
}
else if (self.channelsMode == ELTWISE_CHANNNELS_INPUT_0)
{
if (i == 0)
CV_Assert(srcs[0].size == dst.size);
CV_Assert(self.outputChannels >= p.srcNumChannels[i]);
sortInputs = true;
}
else if (self.channelsMode == ELTWISE_CHANNNELS_INPUT_0_TRUNCATE)
{
if (i == 0)
CV_Assert(srcs[0].size == dst.size);
sortInputs = true;
}
else if (self.channelsMode == ELTWISE_CHANNNELS_USE_MAX)
{
CV_Assert(op == SUM);
CV_Assert(self.outputChannels >= p.srcNumChannels[i]);
sortInputs = true;
}
else
{
CV_Assert(0 && "Internal error");
}
if (sortInputs)
{
// Sort srcs and coefficients in the desc order by number of channels
for (int j = i; j >= 1; j--)
{
if (std::min(self.outputChannels, p.srcs[j - 1]->size[1]) < std::min(self.outputChannels, p.srcs[j]->size[1]))
{
std::swap(p.srcs[j - 1], p.srcs[j]);
std::swap(p.srcNumChannels[j - 1], p.srcNumChannels[j]);
if (!p.coeffs.empty())
std::swap(p.coeffs[j - 1], p.coeffs[j]);
}
else
break;
}
}
}
p.nsrcs = nsrcs;
p.dst = &dst;
p.nstripes = nstripes;
p.channels = (dst.dims >= 4 ? dst.size[1] : 1);
p.planeSize = dst.total(dst.dims >= 4 ? 2 : 1);
CV_CheckEQ(dst.total(), dst.size[0] * p.channels * p.planeSize, "");
bool simpleCoeffs = true;
if (op == SUM && !p.coeffs.empty())
{
CV_CheckEQ(p.coeffs.size(), (size_t)nsrcs, "");
for (size_t i = 0; i < p.coeffs.size(); i++)
{
if (p.coeffs[i] != 1)
{
simpleCoeffs = false;
break;
}
}
}
if (simpleCoeffs)
p.coeffs.clear();
p.activ = self.activ.get();
parallel_for_(Range(0, nstripes), p, nstripes);
}
void operator()(const Range& r) const CV_OVERRIDE
{
const EltwiseOp op = self.op;
size_t total = dst->size[0]*planeSize;
size_t stripeSize = (total + nstripes - 1)/nstripes;
size_t stripeStart = r.start*stripeSize;
size_t stripeEnd = std::min(r.end*stripeSize, total);
const float* coeffsptr = !coeffs.empty() ? &coeffs[0] : 0;
float* dstptr0 = dst->ptr<float>();
int blockSize0 = 1 << 12;
for (size_t ofs = stripeStart; ofs < stripeEnd; )
{
int sampleIdx = (int)(ofs / planeSize);
int delta = (int)ofs - sampleIdx * planeSize;
int blockSize = std::min(blockSize0, std::min((int)(stripeEnd - ofs), (int)planeSize - delta));
if( blockSize <= 0 )
break;
ofs += blockSize;
for (int c = 0; c < channels; c++)
{
size_t dstIdx = delta + (sampleIdx*channels + c)*planeSize;
float* dstptr = dstptr0 + dstIdx;
// process first two inputs
{
const float* srcptr0 = srcs[0]->ptr<float>() + dstIdx;
const int inputIdx = 1;
int src1_channels = srcNumChannels[inputIdx];
if (c >= src1_channels)
{
// no data from second input
if (!coeffsptr || coeffsptr[0] == 1.0f)
{
for (int j = 0; j < blockSize; j++)
{
dstptr[j] = srcptr0[j];
}
}
else
{
float c0 = coeffsptr[0];
for (int j = 0; j < blockSize; j++)
{
dstptr[j] = c0*srcptr0[j];
}
}
}
else
{
size_t srcIdx = delta + (sampleIdx * src1_channels + c) * planeSize;
const float* srcptrI = srcs[inputIdx]->ptr<float>() + srcIdx;
if (op == PROD)
{
for (int j = 0; j < blockSize; j++)
{
dstptr[j] = srcptr0[j] * srcptrI[j];
}
}
else if (op == DIV)
{
for (int j = 0; j < blockSize; j++)
{
dstptr[j] = srcptr0[j] / srcptrI[j];
}
}
else if (op == MAX)
{
for (int j = 0; j < blockSize; j++)
{
dstptr[j] = std::max(srcptr0[j], srcptrI[j]);
}
}
else if (op == SUM)
{
if (!coeffsptr || (coeffsptr[0] == 1.0f && coeffsptr[1] == 1.0f))
{
for (int j = 0; j < blockSize; j++)
{
dstptr[j] = srcptr0[j] + srcptrI[j];
}
}
else
{
float c0 = coeffsptr[0];
float c1 = coeffsptr[1];
for (int j = 0; j < blockSize; j++)
{
dstptr[j] = c0*srcptr0[j] + c1*srcptrI[j];
}
}
}
else
CV_Error(Error::StsInternal, "");
}
}
// aggregate other inputs (3+)
for (size_t inputIdx = 2; inputIdx < nsrcs; inputIdx++)
{
int srcI_channels = srcNumChannels[inputIdx];
if (c >= srcI_channels)
continue; // no data from second input
size_t srcIdx = delta + (sampleIdx * srcI_channels + c) * planeSize;
const float* srcptrI = srcs[inputIdx]->ptr<float>() + srcIdx;
if (op == PROD)
{
for (int j = 0; j < blockSize; j++)
{
dstptr[j] *= srcptrI[j];
}
}
else if (op == DIV)
{
for (int j = 0; j < blockSize; j++)
{
dstptr[j] /= srcptrI[j];
}
}
else if (op == MAX)
{
for (int j = 0; j < blockSize; j++)
{
dstptr[j] = std::max(dstptr[j], srcptrI[j]);
}
}
else if (op == SUM)
{
if (!coeffsptr || coeffsptr[inputIdx] == 1.0f)
{
for (int j = 0; j < blockSize; j++)
{
dstptr[j] += srcptrI[j];
}
}
else
{
float cI = coeffsptr[inputIdx];
for (int j = 0; j < blockSize; j++)
{
dstptr[j] += cI * srcptrI[j];
}
}
}
else
CV_Error(Error::StsInternal, "");
}
}
if( activ )
{
float* ptr = dstptr0 + delta + sampleIdx*channels*planeSize;
activ->forwardSlice(ptr, ptr, blockSize, planeSize, 0, channels);
}
}
}
};
#ifdef HAVE_OPENCL
bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
if ((inputs_.depth() == CV_16S && op != SUM) || (channelsMode != ELTWISE_CHANNNELS_SAME))
return false;
inputs_.getUMatVector(inputs);
outputs_.getUMatVector(outputs);
switch (op)
{
case SUM:
{
int channels = total(shape(outputs[0]), 0, 2);
int plane_size = total(shape(outputs[0]), 2);
if (channels % 4 == 0 && plane_size % 4 == 0)
{
size_t localsize[] = { 128 };
size_t globalsize[] = { (size_t)channels / 4 * localsize[0] };
String opts;
if (inputs_.depth() == CV_16S)
opts = " -DDtype=half -DDtype4=half4 -DDtype8=half8";
else
opts = " -DDtype=float -DDtype4=float4 -DDtype8=float8";
for (int i = 0; i < (inputs.size() - 1); ++i)
{
String buildopt = format("-DLOOP=%d", i) + opts;
ocl::Kernel kernel("op_sum4", ocl::dnn::eltwise_oclsrc, buildopt);
int idx = 0;
UMat inpMat = (i == 0) ? inputs[0] : UMat();
float coeff1 = (coeffs.empty() || i > 0) ? 1.0f : coeffs[i];
float coeff2 = coeffs.empty() ? 1.0f : coeffs[i + 1];
kernel.set(idx++, ocl::KernelArg::PtrReadOnly(inputs[0]));
kernel.set(idx++, ocl::KernelArg::PtrReadOnly(inputs[1]));
kernel.set(idx++, (int)plane_size);
kernel.set(idx++, (float)coeff1);
kernel.set(idx++, (float)coeff2);
kernel.set(idx++, ocl::KernelArg::PtrReadWrite(outputs[0]));
bool ret = kernel.run(1, globalsize, localsize, false);
if (!ret)
return false;
}
}
else
{
if (inputs_.depth() == CV_16S)
return false;
float coeff1 = coeffs.empty() ? 1.f : coeffs[0];
float coeff2 = coeffs.empty() ? 1.f : coeffs[1];
UMat mul0, mul1;
multiply(coeff1, inputs[0], mul0);
multiply(coeff2, inputs[1], mul1);
add(mul0, mul1, outputs[0]);
for (int i = 2; i < inputs.size(); ++i)
{
float coeff = coeffs.empty() ? 1.f : coeffs[i];
multiply(coeff, inputs[i], mul0);
add(mul0, outputs[0], outputs[0]);
}
}
}
break;
case PROD:
multiply(inputs[0], inputs[1], outputs[0]);
for (int i = 2; i < inputs.size(); ++i)
multiply(inputs[i], outputs[0], outputs[0]);
break;
case DIV:
divide(inputs[0], inputs[1], outputs[0]);
for (int i = 2; i < inputs.size(); ++i)
divide(outputs[0], inputs[i], outputs[0]);
break;
case MAX:
max(inputs[0], inputs[1], outputs[0]);
for (int i = 2; i < inputs.size(); ++i)
max(inputs[i], outputs[0], outputs[0]);
break;
default:
return false;
}
return true;
}
#endif
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
forward_ocl(inputs_arr, outputs_arr, internals_arr))
if (inputs_arr.depth() == CV_16S)
{
forward_fallback(inputs_arr, outputs_arr, internals_arr);
return;
}
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
CV_Assert(outputs.size() == 1);
const int nstripes = getNumThreads();
EltwiseInvoker::run(*this,
&inputs[0], (int)inputs.size(), outputs[0],
nstripes);
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(
void *context_,
const std::vector<Ptr<BackendWrapper>>& inputs,
const std::vector<Ptr<BackendWrapper>>& outputs
) override
{
auto context = reinterpret_cast<csl::CSLContext*>(context_);
CV_Assert(channelsModeInput == ELTWISE_CHANNNELS_INPUT_0 ||
channelsModeInput == ELTWISE_CHANNNELS_INPUT_0_TRUNCATE ||
channelsModeInput == ELTWISE_CHANNNELS_SAME);
if(channelsModeInput == ELTWISE_CHANNNELS_INPUT_0 || channelsModeInput == ELTWISE_CHANNNELS_INPUT_0_TRUNCATE)
{
auto input_wrapper = inputs[0].dynamicCast<CUDABackendWrapper>();
for (int i = 1; i < inputs.size(); i++)
{
auto from_wrapper = inputs[i].dynamicCast<CUDABackendWrapper>();
if (input_wrapper->getShape()[1] != from_wrapper->getShape()[1])
{
CV_Assert(op == SUM);
CV_Assert(coeffs.empty());
return make_cuda_node<cuda4dnn::ShortcutOp>(preferableTarget, std::move(context->stream));
}
}
}
auto op_ = [this] {
switch (op) {
case MAX: return cuda4dnn::EltwiseOpType::MAX;
case SUM: return cuda4dnn::EltwiseOpType::SUM;
case PROD: return cuda4dnn::EltwiseOpType::PRODUCT;
case DIV: return cuda4dnn::EltwiseOpType::DIV;
}
return cuda4dnn::EltwiseOpType::SUM;
}();
return make_cuda_node<cuda4dnn::EltwiseOp>(preferableTarget, std::move(context->stream), op_, coeffs);
}
#endif
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &input) CV_OVERRIDE
{
#ifdef HAVE_HALIDE
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
Halide::Expr topExpr;
std::vector<Halide::Buffer<> > inputBuffers = halideBuffers(input);
switch (op)
{
case SUM:
if (coeffs.empty())
{
topExpr = inputBuffers[0](x, y, c, n) +
inputBuffers[1](x, y, c, n);
for (int i = 2; i < inputBuffers.size(); ++i)
topExpr += inputBuffers[i](x, y, c, n);
}
else
{
topExpr = coeffs[0] * inputBuffers[0](x, y, c, n) +
coeffs[1] * inputBuffers[1](x, y, c, n);
for (int i = 2; i < inputBuffers.size(); ++i)
topExpr += coeffs[i] * inputBuffers[i](x, y, c, n);
}
break;
case PROD:
topExpr = inputBuffers[0](x, y, c, n) *
inputBuffers[1](x, y, c, n);
for (int i = 2; i < inputBuffers.size(); ++i)
topExpr *= inputBuffers[i](x, y, c, n);
break;
case DIV:
topExpr = inputBuffers[0](x, y, c, n) /
inputBuffers[1](x, y, c, n);
for (int i = 2; i < inputBuffers.size(); ++i)
topExpr /= inputBuffers[i](x, y, c, n);
break;
case MAX:
topExpr = max(inputBuffers[0](x, y, c, n),
inputBuffers[1](x, y, c, n));
for (int i = 2; i < inputBuffers.size(); ++i)
topExpr = max(topExpr, inputBuffers[i](x, y, c, n));
break;
default:
return Ptr<BackendNode>();
}
top(x, y, c, n) = topExpr;
return Ptr<BackendNode>(new HalideBackendNode(top));
#endif // HAVE_HALIDE
return Ptr<BackendNode>();
}
#ifdef HAVE_INF_ENGINE
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >& inputs) CV_OVERRIDE
{
InferenceEngine::Builder::EltwiseLayer ieLayer(name);
ieLayer.setInputPorts(std::vector<InferenceEngine::Port>(inputs.size()));
if (op == SUM)
ieLayer.setEltwiseType(InferenceEngine::Builder::EltwiseLayer::EltwiseType::SUM);
else if (op == PROD)
ieLayer.setEltwiseType(InferenceEngine::Builder::EltwiseLayer::EltwiseType::MUL);
else if (op == DIV)
ieLayer.setEltwiseType(InferenceEngine::Builder::EltwiseLayer::EltwiseType::DIV);
else if (op == MAX)
ieLayer.setEltwiseType(InferenceEngine::Builder::EltwiseLayer::EltwiseType::MAX);
else
CV_Error(Error::StsNotImplemented, "Unsupported eltwise operation");
InferenceEngine::Builder::Layer l = ieLayer;
if (!coeffs.empty())
l.getParameters()["coeff"] = coeffs;
return Ptr<BackendNode>(new InfEngineBackendNode(l));
}
#endif // HAVE_INF_ENGINE
#ifdef HAVE_DNN_NGRAPH
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
auto curr_node = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
if (!coeffs.empty()) {
auto coeff = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, ngraph::Shape{1}, &coeffs[0]);
curr_node = std::make_shared<ngraph::op::v1::Multiply>(curr_node, coeff, ngraph::op::AutoBroadcastType::NUMPY);
}
for (size_t i = 1; i < nodes.size(); i++)
{
auto next_node = nodes[i].dynamicCast<InfEngineNgraphNode>()->node;
if (!coeffs.empty()) {
auto coeff = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, ngraph::Shape{1}, &coeffs[i]);
next_node = std::make_shared<ngraph::op::v1::Multiply>(next_node, coeff, ngraph::op::AutoBroadcastType::NUMPY);
}
switch (op) {
case SUM: curr_node = std::make_shared<ngraph::op::v1::Add>(curr_node, next_node); break;
case PROD: curr_node = std::make_shared<ngraph::op::v1::Multiply>(curr_node, next_node); break;
case DIV: curr_node = std::make_shared<ngraph::op::v1::Divide>(curr_node, next_node); break;
case MAX: curr_node = std::make_shared<ngraph::op::v1::Maximum>(curr_node, next_node); break;
default: CV_Error(Error::StsNotImplemented, "Unsupported eltwise operation");
}
}
return Ptr<BackendNode>(new InfEngineNgraphNode(curr_node));
}
#endif // HAVE_DNN_NGRAPH
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const CV_OVERRIDE
{
CV_UNUSED(outputs); // suppress unused variable warning
CV_Assert(inputs.size());
// FIXIT: handle inputs with different number of channels
long flops = inputs.size() * total(inputs[0]);
return flops;
}
bool setActivation(const Ptr<ActivationLayer>& layer) CV_OVERRIDE
{
if (activ.empty() || layer.empty())
{
activ = layer;
return !activ.empty();
}
else
return false;
}
Ptr<ActivationLayer> activ;
};
Ptr<EltwiseLayer> EltwiseLayer::create(const LayerParams& params)
{
return Ptr<EltwiseLayer>(new EltwiseLayerImpl(params));
}
}
}