utility.cpp 11.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "test_precomp.hpp"

#ifdef HAVE_CUDA

using namespace std;
using namespace cv;
using namespace cv::gpu;
using namespace cvtest;
using namespace testing;
using namespace testing::internal;

//////////////////////////////////////////////////////////////////////
// random generators

int randomInt(int minVal, int maxVal)
{
    RNG& rng = TS::ptr()->get_rng();
    return rng.uniform(minVal, maxVal);
}

double randomDouble(double minVal, double maxVal)
{
    RNG& rng = TS::ptr()->get_rng();
    return rng.uniform(minVal, maxVal);
}

Size randomSize(int minVal, int maxVal)
{
    return Size(randomInt(minVal, maxVal), randomInt(minVal, maxVal));
}

Scalar randomScalar(double minVal, double maxVal)
{
    return Scalar(randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal));
}

Mat randomMat(Size size, int type, double minVal, double maxVal)
{
    return randomMat(TS::ptr()->get_rng(), size, type, minVal, maxVal, false);
}

//////////////////////////////////////////////////////////////////////
// GpuMat create

GpuMat createMat(Size size, int type, bool useRoi)
{
    Size size0 = size;

    if (useRoi)
    {
        size0.width += randomInt(5, 15);
        size0.height += randomInt(5, 15);
    }

    GpuMat d_m(size0, type);

    if (size0 != size)
        d_m = d_m(Rect((size0.width - size.width) / 2, (size0.height - size.height) / 2, size.width, size.height));

    return d_m;
}

GpuMat loadMat(const Mat& m, bool useRoi)
{
    GpuMat d_m = createMat(m.size(), m.type(), useRoi);
    d_m.upload(m);
    return d_m;
}

//////////////////////////////////////////////////////////////////////
// Image load

Mat readImage(const std::string& fileName, int flags)
{
    return imread(TS::ptr()->get_data_path() + fileName, flags);
}

Mat readImageType(const std::string& fname, int type)
{
    Mat src = readImage(fname, CV_MAT_CN(type) == 1 ? IMREAD_GRAYSCALE : IMREAD_COLOR);
    if (CV_MAT_CN(type) == 4)
    {
        Mat temp;
        cvtColor(src, temp, COLOR_BGR2BGRA);
        swap(src, temp);
    }
    src.convertTo(src, CV_MAT_DEPTH(type), CV_MAT_DEPTH(type) == CV_32F ? 1.0 / 255.0 : 1.0);
    return src;
}

//////////////////////////////////////////////////////////////////////
// Gpu devices

bool supportFeature(const DeviceInfo& info, FeatureSet feature)
{
    return TargetArchs::builtWith(feature) && info.supports(feature);
}

DeviceManager& DeviceManager::instance()
{
    static DeviceManager obj;
    return obj;
}

void DeviceManager::load(int i)
{
    devices_.clear();
    devices_.reserve(1);

    std::ostringstream msg;

    if (i < 0 || i >= getCudaEnabledDeviceCount())
    {
        msg << "Incorrect device number - " << i;
        throw runtime_error(msg.str());
    }

    DeviceInfo info(i);

    if (!info.isCompatible())
    {
        msg << "Device " << i << " [" << info.name() << "] is NOT compatible with current GPU module build";
        throw runtime_error(msg.str());
    }

    devices_.push_back(info);
}

void DeviceManager::loadAll()
{
    int deviceCount = getCudaEnabledDeviceCount();

    devices_.clear();
    devices_.reserve(deviceCount);

    for (int i = 0; i < deviceCount; ++i)
    {
        DeviceInfo info(i);
        if (info.isCompatible())
        {
            devices_.push_back(info);
        }
    }
}

//////////////////////////////////////////////////////////////////////
// Additional assertion

namespace
{
    template <typename T, typename OutT> std::string printMatValImpl(const Mat& m, Point p)
    {
        const int cn = m.channels();

        std::ostringstream ostr;
        ostr << "(";

        p.x /= cn;

        ostr << static_cast<OutT>(m.at<T>(p.y, p.x * cn));
        for (int c = 1; c < m.channels(); ++c)
        {
            ostr << ", " << static_cast<OutT>(m.at<T>(p.y, p.x * cn + c));
        }
        ostr << ")";

        return ostr.str();
    }

    std::string printMatVal(const Mat& m, Point p)
    {
        typedef std::string (*func_t)(const Mat& m, Point p);

        static const func_t funcs[] =
        {
            printMatValImpl<uchar, int>, printMatValImpl<schar, int>, printMatValImpl<ushort, int>, printMatValImpl<short, int>,
            printMatValImpl<int, int>, printMatValImpl<float, float>, printMatValImpl<double, double>
        };

        return funcs[m.depth()](m, p);
    }
}

void minMaxLocGold(const Mat& src, double* minVal_, double* maxVal_, Point* minLoc_, Point* maxLoc_, const Mat& mask)
{
    if (src.depth() != CV_8S)
    {
        minMaxLoc(src, minVal_, maxVal_, minLoc_, maxLoc_, mask);
        return;
    }

    // OpenCV's minMaxLoc doesn't support CV_8S type
    double minVal = numeric_limits<double>::max();
    Point minLoc(-1, -1);

    double maxVal = -numeric_limits<double>::max();
    Point maxLoc(-1, -1);

    for (int y = 0; y < src.rows; ++y)
    {
        const schar* src_row = src.ptr<schar>(y);
        const uchar* mask_row = mask.empty() ? 0 : mask.ptr<uchar>(y);

        for (int x = 0; x < src.cols; ++x)
        {
            if (!mask_row || mask_row[x])
            {
                schar val = src_row[x];

                if (val < minVal)
                {
                    minVal = val;
                    minLoc = cv::Point(x, y);
                }

                if (val > maxVal)
                {
                    maxVal = val;
                    maxLoc = cv::Point(x, y);
                }
            }
        }
    }

    if (minVal_) *minVal_ = minVal;
    if (maxVal_) *maxVal_ = maxVal;

    if (minLoc_) *minLoc_ = minLoc;
    if (maxLoc_) *maxLoc_ = maxLoc;
}

Mat getMat(InputArray arr)
{
    if (arr.kind() == _InputArray::GPU_MAT)
    {
        Mat m;
        arr.getGpuMat().download(m);
        return m;
    }

    return arr.getMat();
}

AssertionResult assertMatNear(const char* expr1, const char* expr2, const char* eps_expr, InputArray m1_, InputArray m2_, double eps)
{
    Mat m1 = getMat(m1_);
    Mat m2 = getMat(m2_);

    if (m1.size() != m2.size())
    {
        return AssertionFailure() << "Matrices \"" << expr1 << "\" and \"" << expr2 << "\" have different sizes : \""
                                  << expr1 << "\" [" << PrintToString(m1.size()) << "] vs \""
                                  << expr2 << "\" [" << PrintToString(m2.size()) << "]";
    }

    if (m1.type() != m2.type())
    {
        return AssertionFailure() << "Matrices \"" << expr1 << "\" and \"" << expr2 << "\" have different types : \""
                                  << expr1 << "\" [" << PrintToString(MatType(m1.type())) << "] vs \""
                                  << expr2 << "\" [" << PrintToString(MatType(m2.type())) << "]";
    }

    Mat diff;
    absdiff(m1.reshape(1), m2.reshape(1), diff);

    double maxVal = 0.0;
    Point maxLoc;
    minMaxLocGold(diff, 0, &maxVal, 0, &maxLoc);

    if (maxVal > eps)
    {
        return AssertionFailure() << "The max difference between matrices \"" << expr1 << "\" and \"" << expr2
                                  << "\" is " << maxVal << " at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ")"
                                  << ", which exceeds \"" << eps_expr << "\", where \""
                                  << expr1 << "\" at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ") evaluates to " << printMatVal(m1, maxLoc) << ", \""
                                  << expr2 << "\" at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ") evaluates to " << printMatVal(m2, maxLoc) << ", \""
                                  << eps_expr << "\" evaluates to " << eps;
    }

    return AssertionSuccess();
}

double checkSimilarity(InputArray m1, InputArray m2)
{
    Mat diff;
    matchTemplate(getMat(m1), getMat(m2), diff, CV_TM_CCORR_NORMED);
    return std::abs(diff.at<float>(0, 0) - 1.f);
}

//////////////////////////////////////////////////////////////////////
// Helper structs for value-parameterized tests

vector<MatType> types(int depth_start, int depth_end, int cn_start, int cn_end)
{
    vector<MatType> v;

    v.reserve((depth_end - depth_start + 1) * (cn_end - cn_start + 1));

    for (int depth = depth_start; depth <= depth_end; ++depth)
    {
        for (int cn = cn_start; cn <= cn_end; ++cn)
        {
            v.push_back(MatType(CV_MAKE_TYPE(depth, cn)));
        }
    }

    return v;
}

const vector<MatType>& all_types()
{
    static vector<MatType> v = types(CV_8U, CV_64F, 1, 4);

    return v;
}

void cv::gpu::PrintTo(const DeviceInfo& info, ostream* os)
{
    (*os) << info.name();
}

void PrintTo(const UseRoi& useRoi, std::ostream* os)
{
    if (useRoi)
        (*os) << "sub matrix";
    else
        (*os) << "whole matrix";
}

void PrintTo(const Inverse& inverse, std::ostream* os)
{
    if (inverse)
        (*os) << "inverse";
    else
        (*os) << "direct";
}

//////////////////////////////////////////////////////////////////////
// Other

void dumpImage(const std::string& fileName, const Mat& image)
{
    imwrite(TS::ptr()->get_data_path() + fileName, image);
}

void showDiff(InputArray gold_, InputArray actual_, double eps)
{
    Mat gold = getMat(gold_);
    Mat actual = getMat(actual_);

    Mat diff;
    absdiff(gold, actual, diff);
    threshold(diff, diff, eps, 255.0, cv::THRESH_BINARY);

    namedWindow("gold", WINDOW_NORMAL);
    namedWindow("actual", WINDOW_NORMAL);
    namedWindow("diff", WINDOW_NORMAL);

    imshow("gold", gold);
    imshow("actual", actual);
    imshow("diff", diff);

    waitKey();
}

#endif // HAVE_CUDA