1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
#include "precomp.hpp"
#define MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES 0
static cvflann::IndexParams& get_params(const cv::flann::IndexParams& p)
{
return *(cvflann::IndexParams*)(p.params);
}
cv::flann::IndexParams::~IndexParams()
{
delete &get_params(*this);
}
namespace cv
{
namespace flann
{
using namespace cvflann;
IndexParams::IndexParams()
{
params = new ::cvflann::IndexParams();
}
template<typename T>
T getParam(const IndexParams& _p, const std::string& key, const T& defaultVal=T())
{
::cvflann::IndexParams& p = get_params(_p);
::cvflann::IndexParams::const_iterator it = p.find(key);
if( it == p.end() )
return defaultVal;
return it->second.cast<T>();
}
template<typename T>
void setParam(IndexParams& _p, const std::string& key, const T& value)
{
::cvflann::IndexParams& p = get_params(_p);
p[key] = value;
}
std::string IndexParams::getString(const std::string& key, const std::string& defaultVal) const
{
return getParam(*this, key, defaultVal);
}
int IndexParams::getInt(const std::string& key, int defaultVal) const
{
return getParam(*this, key, defaultVal);
}
double IndexParams::getDouble(const std::string& key, double defaultVal) const
{
return getParam(*this, key, defaultVal);
}
void IndexParams::setString(const std::string& key, const std::string& value)
{
setParam(*this, key, value);
}
void IndexParams::setInt(const std::string& key, int value)
{
setParam(*this, key, value);
}
void IndexParams::setDouble(const std::string& key, double value)
{
setParam(*this, key, value);
}
void IndexParams::setFloat(const std::string& key, float value)
{
setParam(*this, key, value);
}
void IndexParams::setBool(const std::string& key, bool value)
{
setParam(*this, key, value);
}
void IndexParams::setAlgorithm(int value)
{
setParam(*this, "algorithm", (cvflann::flann_algorithm_t)value);
}
void IndexParams::getAll(std::vector<std::string>& names,
std::vector<int>& types,
std::vector<std::string>& strValues,
std::vector<double>& numValues) const
{
names.clear();
types.clear();
strValues.clear();
numValues.clear();
::cvflann::IndexParams& p = get_params(*this);
::cvflann::IndexParams::const_iterator it = p.begin(), it_end = p.end();
for( ; it != it_end; ++it )
{
names.push_back(it->first);
try
{
std::string val = it->second.cast<std::string>();
types.push_back(CV_USRTYPE1);
strValues.push_back(val);
numValues.push_back(-1);
continue;
}
catch (...) {}
strValues.push_back(it->second.type().name());
try
{
double val = it->second.cast<double>();
types.push_back( CV_64F );
numValues.push_back(val);
continue;
}
catch (...) {}
try
{
float val = it->second.cast<float>();
types.push_back( CV_32F );
numValues.push_back(val);
continue;
}
catch (...) {}
try
{
int val = it->second.cast<int>();
types.push_back( CV_32S );
numValues.push_back(val);
continue;
}
catch (...) {}
try
{
short val = it->second.cast<short>();
types.push_back( CV_16S );
numValues.push_back(val);
continue;
}
catch (...) {}
try
{
ushort val = it->second.cast<ushort>();
types.push_back( CV_16U );
numValues.push_back(val);
continue;
}
catch (...) {}
try
{
char val = it->second.cast<char>();
types.push_back( CV_8S );
numValues.push_back(val);
continue;
}
catch (...) {}
try
{
uchar val = it->second.cast<uchar>();
types.push_back( CV_8U );
numValues.push_back(val);
continue;
}
catch (...) {}
try
{
bool val = it->second.cast<bool>();
types.push_back( CV_MAKETYPE(CV_USRTYPE1,2) );
numValues.push_back(val);
continue;
}
catch (...) {}
try
{
cvflann::flann_algorithm_t val = it->second.cast<cvflann::flann_algorithm_t>();
types.push_back( CV_MAKETYPE(CV_USRTYPE1,3) );
numValues.push_back(val);
continue;
}
catch (...) {}
types.push_back(-1); // unknown type
numValues.push_back(-1);
}
}
KDTreeIndexParams::KDTreeIndexParams(int trees)
{
::cvflann::IndexParams& p = get_params(*this);
p["algorithm"] = FLANN_INDEX_KDTREE;
p["trees"] = trees;
}
LinearIndexParams::LinearIndexParams()
{
::cvflann::IndexParams& p = get_params(*this);
p["algorithm"] = FLANN_INDEX_LINEAR;
}
CompositeIndexParams::CompositeIndexParams(int trees, int branching, int iterations,
flann_centers_init_t centers_init, float cb_index )
{
::cvflann::IndexParams& p = get_params(*this);
p["algorithm"] = FLANN_INDEX_KMEANS;
// number of randomized trees to use (for kdtree)
p["trees"] = trees;
// branching factor
p["branching"] = branching;
// max iterations to perform in one kmeans clustering (kmeans tree)
p["iterations"] = iterations;
// algorithm used for picking the initial cluster centers for kmeans tree
p["centers_init"] = centers_init;
// cluster boundary index. Used when searching the kmeans tree
p["cb_index"] = cb_index;
}
AutotunedIndexParams::AutotunedIndexParams(float target_precision, float build_weight,
float memory_weight, float sample_fraction)
{
::cvflann::IndexParams& p = get_params(*this);
p["algorithm"] = FLANN_INDEX_AUTOTUNED;
// precision desired (used for autotuning, -1 otherwise)
p["target_precision"] = target_precision;
// build tree time weighting factor
p["build_weight"] = build_weight;
// index memory weighting factor
p["memory_weight"] = memory_weight;
// what fraction of the dataset to use for autotuning
p["sample_fraction"] = sample_fraction;
}
KMeansIndexParams::KMeansIndexParams(int branching, int iterations,
flann_centers_init_t centers_init, float cb_index )
{
::cvflann::IndexParams& p = get_params(*this);
p["algorithm"] = FLANN_INDEX_KMEANS;
// branching factor
p["branching"] = branching;
// max iterations to perform in one kmeans clustering (kmeans tree)
p["iterations"] = iterations;
// algorithm used for picking the initial cluster centers for kmeans tree
p["centers_init"] = centers_init;
// cluster boundary index. Used when searching the kmeans tree
p["cb_index"] = cb_index;
}
LshIndexParams::LshIndexParams(int table_number, int key_size, int multi_probe_level)
{
::cvflann::IndexParams& p = get_params(*this);
p["algorithm"] = FLANN_INDEX_LSH;
// The number of hash tables to use
p["table_number"] = (unsigned)table_number;
// The length of the key in the hash tables
p["key_size"] = (unsigned)key_size;
// Number of levels to use in multi-probe (0 for standard LSH)
p["multi_probe_level"] = (unsigned)multi_probe_level;
}
SavedIndexParams::SavedIndexParams(const std::string& _filename)
{
std::string filename = _filename;
::cvflann::IndexParams& p = get_params(*this);
p["algorithm"] = FLANN_INDEX_SAVED;
p["filename"] = filename;
}
SearchParams::SearchParams( int checks, float eps, bool sorted )
{
::cvflann::IndexParams& p = get_params(*this);
// how many leafs to visit when searching for neighbours (-1 for unlimited)
p["checks"] = checks;
// search for eps-approximate neighbours (default: 0)
p["eps"] = eps;
// only for radius search, require neighbours sorted by distance (default: true)
p["sorted"] = sorted;
}
template<typename Distance, typename IndexType> void
buildIndex_(void*& index, const Mat& data, const IndexParams& params, const Distance& dist = Distance())
{
typedef typename Distance::ElementType ElementType;
if(DataType<ElementType>::type != data.type())
CV_Error_(CV_StsUnsupportedFormat, ("type=%d\n", data.type()));
if(!data.isContinuous())
CV_Error(CV_StsBadArg, "Only continuous arrays are supported");
::cvflann::Matrix<ElementType> dataset((ElementType*)data.data, data.rows, data.cols);
IndexType* _index = new IndexType(dataset, get_params(params), dist);
_index->buildIndex();
index = _index;
}
template<typename Distance> void
buildIndex(void*& index, const Mat& data, const IndexParams& params, const Distance& dist = Distance())
{
buildIndex_<Distance, ::cvflann::Index<Distance> >(index, data, params, dist);
}
#if CV_NEON
typedef ::cvflann::Hamming<uchar> HammingDistance;
#else
typedef ::cvflann::HammingLUT HammingDistance;
#endif
typedef ::cvflann::LshIndex<HammingDistance> LshIndex;
Index::Index()
{
index = 0;
featureType = CV_32F;
algo = FLANN_INDEX_LINEAR;
distType = FLANN_DIST_L2;
}
Index::Index(InputArray _data, const IndexParams& params, flann_distance_t _distType)
{
index = 0;
featureType = CV_32F;
algo = FLANN_INDEX_LINEAR;
distType = FLANN_DIST_L2;
build(_data, params, _distType);
}
void Index::build(InputArray _data, const IndexParams& params, flann_distance_t _distType)
{
release();
algo = getParam<flann_algorithm_t>(params, "algorithm", FLANN_INDEX_LINEAR);
if( algo == FLANN_INDEX_SAVED )
{
load(_data, getParam<std::string>(params, "filename", std::string()));
return;
}
Mat data = _data.getMat();
index = 0;
featureType = data.type();
distType = _distType;
if( algo == FLANN_INDEX_LSH )
{
buildIndex_<HammingDistance, LshIndex>(index, data, params);
return;
}
switch( distType )
{
case FLANN_DIST_L2:
buildIndex< ::cvflann::L2<float> >(index, data, params);
break;
case FLANN_DIST_L1:
buildIndex< ::cvflann::L1<float> >(index, data, params);
break;
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
case FLANN_DIST_MAX:
buildIndex< ::cvflann::MaxDistance<float> >(index, data, params);
break;
case FLANN_DIST_HIST_INTERSECT:
buildIndex< ::cvflann::HistIntersectionDistance<float> >(index, data, params);
break;
case FLANN_DIST_HELLINGER:
buildIndex< ::cvflann::HellingerDistance<float> >(index, data, params);
break;
case FLANN_DIST_CHI_SQUARE:
buildIndex< ::cvflann::ChiSquareDistance<float> >(index, data, params);
break;
case FLANN_DIST_KL:
buildIndex< ::cvflann::KL_Divergence<float> >(index, data, params);
break;
#endif
default:
CV_Error(CV_StsBadArg, "Unknown/unsupported distance type");
}
}
template<typename IndexType> void deleteIndex_(void* index)
{
delete (IndexType*)index;
}
template<typename Distance> void deleteIndex(void* index)
{
deleteIndex_< ::cvflann::Index<Distance> >(index);
}
Index::~Index()
{
release();
}
void Index::release()
{
if( !index )
return;
if( algo == FLANN_INDEX_LSH )
{
deleteIndex_<LshIndex>(index);
}
else
{
CV_Assert( featureType == CV_32F );
switch( distType )
{
case FLANN_DIST_L2:
deleteIndex< ::cvflann::L2<float> >(index);
break;
case FLANN_DIST_L1:
deleteIndex< ::cvflann::L1<float> >(index);
break;
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
case FLANN_DIST_MAX:
deleteIndex< ::cvflann::MaxDistance<float> >(index);
break;
case FLANN_DIST_HIST_INTERSECT:
deleteIndex< ::cvflann::HistIntersectionDistance<float> >(index);
break;
case FLANN_DIST_HELLINGER:
deleteIndex< ::cvflann::HellingerDistance<float> >(index);
break;
case FLANN_DIST_CHI_SQUARE:
deleteIndex< ::cvflann::ChiSquareDistance<float> >(index);
break;
case FLANN_DIST_KL:
deleteIndex< ::cvflann::KL_Divergence<float> >(index);
break;
#endif
default:
CV_Error(CV_StsBadArg, "Unknown/unsupported distance type");
}
}
index = 0;
}
template<typename Distance, typename IndexType>
void runKnnSearch_(void* index, const Mat& query, Mat& indices, Mat& dists,
int knn, const SearchParams& params)
{
typedef typename Distance::ElementType ElementType;
typedef typename Distance::ResultType DistanceType;
int type = DataType<ElementType>::type;
int dtype = DataType<DistanceType>::type;
CV_Assert(query.type() == type && indices.type() == CV_32S && dists.type() == dtype);
CV_Assert(query.isContinuous() && indices.isContinuous() && dists.isContinuous());
::cvflann::Matrix<ElementType> _query((ElementType*)query.data, query.rows, query.cols);
::cvflann::Matrix<int> _indices((int*)indices.data, indices.rows, indices.cols);
::cvflann::Matrix<DistanceType> _dists((DistanceType*)dists.data, dists.rows, dists.cols);
((IndexType*)index)->knnSearch(_query, _indices, _dists, knn,
(const ::cvflann::SearchParams&)get_params(params));
}
template<typename Distance>
void runKnnSearch(void* index, const Mat& query, Mat& indices, Mat& dists,
int knn, const SearchParams& params)
{
runKnnSearch_<Distance, ::cvflann::Index<Distance> >(index, query, indices, dists, knn, params);
}
template<typename Distance, typename IndexType>
int runRadiusSearch_(void* index, const Mat& query, Mat& indices, Mat& dists,
double radius, const SearchParams& params)
{
typedef typename Distance::ElementType ElementType;
typedef typename Distance::ResultType DistanceType;
int type = DataType<ElementType>::type;
int dtype = DataType<DistanceType>::type;
CV_Assert(query.type() == type && indices.type() == CV_32S && dists.type() == dtype);
CV_Assert(query.isContinuous() && indices.isContinuous() && dists.isContinuous());
::cvflann::Matrix<ElementType> _query((ElementType*)query.data, query.rows, query.cols);
::cvflann::Matrix<int> _indices((int*)indices.data, indices.rows, indices.cols);
::cvflann::Matrix<DistanceType> _dists((DistanceType*)dists.data, dists.rows, dists.cols);
return ((IndexType*)index)->radiusSearch(_query, _indices, _dists,
saturate_cast<DistanceType>(radius),
(const ::cvflann::SearchParams&)get_params(params));
}
template<typename Distance>
int runRadiusSearch(void* index, const Mat& query, Mat& indices, Mat& dists,
double radius, const SearchParams& params)
{
return runRadiusSearch_<Distance, ::cvflann::Index<Distance> >(index, query, indices, dists, radius, params);
}
static void createIndicesDists(OutputArray _indices, OutputArray _dists,
Mat& indices, Mat& dists, int rows,
int minCols, int maxCols, int dtype)
{
if( _indices.needed() )
{
indices = _indices.getMat();
if( !indices.isContinuous() || indices.type() != CV_32S ||
indices.rows != rows || indices.cols < minCols || indices.cols > maxCols )
{
if( !indices.isContinuous() )
_indices.release();
_indices.create( rows, minCols, CV_32S );
indices = _indices.getMat();
}
}
else
indices.create( rows, minCols, CV_32S );
if( _dists.needed() )
{
dists = _dists.getMat();
if( !dists.isContinuous() || dists.type() != dtype ||
dists.rows != rows || dists.cols < minCols || dists.cols > maxCols )
{
if( !indices.isContinuous() )
_dists.release();
_dists.create( rows, minCols, dtype );
dists = _dists.getMat();
}
}
else
dists.create( rows, minCols, dtype );
}
void Index::knnSearch(InputArray _query, OutputArray _indices,
OutputArray _dists, int knn, const SearchParams& params)
{
Mat query = _query.getMat(), indices, dists;
int dtype = algo == FLANN_INDEX_LSH ? CV_32S : CV_32F;
createIndicesDists( _indices, _dists, indices, dists, query.rows, knn, knn, dtype );
if( algo == FLANN_INDEX_LSH )
{
runKnnSearch_<HammingDistance, LshIndex>(index, query, indices, dists, knn, params);
return;
}
switch( distType )
{
case FLANN_DIST_L2:
runKnnSearch< ::cvflann::L2<float> >(index, query, indices, dists, knn, params);
break;
case FLANN_DIST_L1:
runKnnSearch< ::cvflann::L1<float> >(index, query, indices, dists, knn, params);
break;
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
case FLANN_DIST_MAX:
runKnnSearch< ::cvflann::MaxDistance<float> >(index, query, indices, dists, knn, params);
break;
case FLANN_DIST_HIST_INTERSECT:
runKnnSearch< ::cvflann::HistIntersectionDistance<float> >(index, query, indices, dists, knn, params);
break;
case FLANN_DIST_HELLINGER:
runKnnSearch< ::cvflann::HellingerDistance<float> >(index, query, indices, dists, knn, params);
break;
case FLANN_DIST_CHI_SQUARE:
runKnnSearch< ::cvflann::ChiSquareDistance<float> >(index, query, indices, dists, knn, params);
break;
case FLANN_DIST_KL:
runKnnSearch< ::cvflann::KL_Divergence<float> >(index, query, indices, dists, knn, params);
break;
#endif
default:
CV_Error(CV_StsBadArg, "Unknown/unsupported distance type");
}
}
int Index::radiusSearch(InputArray _query, OutputArray _indices,
OutputArray _dists, double radius, int maxResults,
const SearchParams& params)
{
Mat query = _query.getMat(), indices, dists;
int dtype = algo == FLANN_INDEX_LSH ? CV_32S : CV_32F;
CV_Assert( maxResults > 0 );
createIndicesDists( _indices, _dists, indices, dists, query.rows, maxResults, INT_MAX, dtype );
if( algo == FLANN_INDEX_LSH )
CV_Error( CV_StsNotImplemented, "LSH index does not support radiusSearch operation" );
switch( distType )
{
case FLANN_DIST_L2:
return runRadiusSearch< ::cvflann::L2<float> >(index, query, indices, dists, radius, params);
case FLANN_DIST_L1:
return runRadiusSearch< ::cvflann::L1<float> >(index, query, indices, dists, radius, params);
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
case FLANN_DIST_MAX:
return runRadiusSearch< ::cvflann::MaxDistance<float> >(index, query, indices, dists, radius, params);
case FLANN_DIST_HIST_INTERSECT:
return runRadiusSearch< ::cvflann::HistIntersectionDistance<float> >(index, query, indices, dists, radius, params);
case FLANN_DIST_HELLINGER:
return runRadiusSearch< ::cvflann::HellingerDistance<float> >(index, query, indices, dists, radius, params);
case FLANN_DIST_CHI_SQUARE:
return runRadiusSearch< ::cvflann::ChiSquareDistance<float> >(index, query, indices, dists, radius, params);
case FLANN_DIST_KL:
return runRadiusSearch< ::cvflann::KL_Divergence<float> >(index, query, indices, dists, radius, params);
#endif
default:
CV_Error(CV_StsBadArg, "Unknown/unsupported distance type");
}
return -1;
}
flann_distance_t Index::getDistance() const
{
return distType;
}
flann_algorithm_t Index::getAlgorithm() const
{
return algo;
}
template<typename IndexType> void saveIndex_(const Index* index0, const void* index, FILE* fout)
{
IndexType* _index = (IndexType*)index;
::cvflann::save_header(fout, *_index);
// some compilers may store short enumerations as bytes,
// so make sure we always write integers (which are 4-byte values in any modern C compiler)
int idistType = (int)index0->getDistance();
::cvflann::save_value<int>(fout, idistType);
_index->saveIndex(fout);
}
template<typename Distance> void saveIndex(const Index* index0, const void* index, FILE* fout)
{
saveIndex_< ::cvflann::Index<Distance> >(index0, index, fout);
}
void Index::save(const std::string& filename) const
{
FILE* fout = fopen(filename.c_str(), "wb");
if (fout == NULL)
CV_Error_( CV_StsError, ("Can not open file %s for writing FLANN index\n", filename.c_str()) );
if( algo == FLANN_INDEX_LSH )
{
saveIndex_<LshIndex>(this, index, fout);
fclose(fout);
return;
}
switch( distType )
{
case FLANN_DIST_L2:
saveIndex< ::cvflann::L2<float> >(this, index, fout);
break;
case FLANN_DIST_L1:
saveIndex< ::cvflann::L1<float> >(this, index, fout);
break;
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
case FLANN_DIST_MAX:
saveIndex< ::cvflann::MaxDistance<float> >(this, index, fout);
break;
case FLANN_DIST_HIST_INTERSECT:
saveIndex< ::cvflann::HistIntersectionDistance<float> >(this, index, fout);
break;
case FLANN_DIST_HELLINGER:
saveIndex< ::cvflann::HellingerDistance<float> >(this, index, fout);
break;
case FLANN_DIST_CHI_SQUARE:
saveIndex< ::cvflann::ChiSquareDistance<float> >(this, index, fout);
break;
case FLANN_DIST_KL:
saveIndex< ::cvflann::KL_Divergence<float> >(this, index, fout);
break;
#endif
default:
fclose(fout);
fout = 0;
CV_Error(CV_StsBadArg, "Unknown/unsupported distance type");
}
if( fout )
fclose(fout);
}
template<typename Distance, typename IndexType>
bool loadIndex_(Index* index0, void*& index, const Mat& data, FILE* fin, const Distance& dist=Distance())
{
typedef typename Distance::ElementType ElementType;
CV_Assert(DataType<ElementType>::type == data.type() && data.isContinuous());
::cvflann::Matrix<ElementType> dataset((ElementType*)data.data, data.rows, data.cols);
::cvflann::IndexParams params;
params["algorithm"] = index0->getAlgorithm();
IndexType* _index = new IndexType(dataset, params, dist);
_index->loadIndex(fin);
index = _index;
return true;
}
template<typename Distance>
bool loadIndex(Index* index0, void*& index, const Mat& data, FILE* fin, const Distance& dist=Distance())
{
return loadIndex_<Distance, ::cvflann::Index<Distance> >(index0, index, data, fin, dist);
}
bool Index::load(InputArray _data, const std::string& filename)
{
Mat data = _data.getMat();
bool ok = true;
release();
FILE* fin = fopen(filename.c_str(), "rb");
if (fin == NULL)
return false;
::cvflann::IndexHeader header = ::cvflann::load_header(fin);
algo = header.index_type;
featureType = header.data_type == FLANN_UINT8 ? CV_8U :
header.data_type == FLANN_INT8 ? CV_8S :
header.data_type == FLANN_UINT16 ? CV_16U :
header.data_type == FLANN_INT16 ? CV_16S :
header.data_type == FLANN_INT32 ? CV_32S :
header.data_type == FLANN_FLOAT32 ? CV_32F :
header.data_type == FLANN_FLOAT64 ? CV_64F : -1;
if( (int)header.rows != data.rows || (int)header.cols != data.cols ||
featureType != data.type() )
{
fprintf(stderr, "Reading FLANN index error: the saved data size (%d, %d) or type (%d) is different from the passed one (%d, %d), %d\n",
(int)header.rows, (int)header.cols, featureType, data.rows, data.cols, data.type());
fclose(fin);
return false;
}
if( !((algo == FLANN_INDEX_LSH && featureType == CV_8U) ||
(algo != FLANN_INDEX_LSH && featureType == CV_32F)) )
{
fprintf(stderr, "Reading FLANN index error: unsupported feature type %d for the index type %d\n", featureType, algo);
fclose(fin);
return false;
}
int idistType = 0;
::cvflann::load_value(fin, idistType);
distType = (flann_distance_t)idistType;
if( algo == FLANN_INDEX_LSH )
{
loadIndex_<HammingDistance, LshIndex>(this, index, data, fin);
}
else
{
switch( distType )
{
case FLANN_DIST_L2:
loadIndex< ::cvflann::L2<float> >(this, index, data, fin);
break;
case FLANN_DIST_L1:
loadIndex< ::cvflann::L1<float> >(this, index, data, fin);
break;
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
case FLANN_DIST_MAX:
loadIndex< ::cvflann::MaxDistance<float> >(this, index, data, fin);
break;
case FLANN_DIST_HIST_INTERSECT:
loadIndex< ::cvflann::HistIntersectionDistance<float> >(index, data, fin);
break;
case FLANN_DIST_HELLINGER:
loadIndex< ::cvflann::HellingerDistance<float> >(this, index, data, fin);
break;
case FLANN_DIST_CHI_SQUARE:
loadIndex< ::cvflann::ChiSquareDistance<float> >(this, index, data, fin);
break;
case FLANN_DIST_KL:
loadIndex< ::cvflann::KL_Divergence<float> >(this, index, data, fin);
break;
#endif
default:
fprintf(stderr, "Reading FLANN index error: unsupported distance type %d\n", distType);
ok = false;
}
}
if( fin )
fclose(fin);
return ok;
}
}
}