1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2008, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
static void
icvComputeIntegralImages( const CvMat* matI, CvMat* matS, CvMat* matT, CvMat* _FT )
{
int x, y, rows = matI->rows, cols = matI->cols;
const uchar* I = matI->data.ptr;
int *S = matS->data.i, *T = matT->data.i, *FT = _FT->data.i;
int istep = matI->step, step = matS->step/sizeof(S[0]);
assert( CV_MAT_TYPE(matI->type) == CV_8UC1 &&
CV_MAT_TYPE(matS->type) == CV_32SC1 &&
CV_ARE_TYPES_EQ(matS, matT) && CV_ARE_TYPES_EQ(matS, _FT) &&
CV_ARE_SIZES_EQ(matS, matT) && CV_ARE_SIZES_EQ(matS, _FT) &&
matS->step == matT->step && matS->step == _FT->step &&
matI->rows+1 == matS->rows && matI->cols+1 == matS->cols );
for( x = 0; x <= cols; x++ )
S[x] = T[x] = FT[x] = 0;
S += step; T += step; FT += step;
S[0] = T[0] = 0;
FT[0] = I[0];
for( x = 1; x < cols; x++ )
{
S[x] = S[x-1] + I[x-1];
T[x] = I[x-1];
FT[x] = I[x] + I[x-1];
}
S[cols] = S[cols-1] + I[cols-1];
T[cols] = FT[cols] = I[cols-1];
for( y = 2; y <= rows; y++ )
{
I += istep, S += step, T += step, FT += step;
S[0] = S[-step]; S[1] = S[-step+1] + I[0];
T[0] = T[-step + 1];
T[1] = FT[0] = T[-step + 2] + I[-istep] + I[0];
FT[1] = FT[-step + 2] + I[-istep] + I[1] + I[0];
for( x = 2; x < cols; x++ )
{
S[x] = S[x - 1] + S[-step + x] - S[-step + x - 1] + I[x - 1];
T[x] = T[-step + x - 1] + T[-step + x + 1] - T[-step*2 + x] + I[-istep + x - 1] + I[x - 1];
FT[x] = FT[-step + x - 1] + FT[-step + x + 1] - FT[-step*2 + x] + I[x] + I[x-1];
}
S[cols] = S[cols - 1] + S[-step + cols] - S[-step + cols - 1] + I[cols - 1];
T[cols] = FT[cols] = T[-step + cols - 1] + I[-istep + cols - 1] + I[cols - 1];
}
}
typedef struct CvStarFeature
{
int area;
int* p[8];
}
CvStarFeature;
static int
icvStarDetectorComputeResponses( const CvMat* img, CvMat* responses, CvMat* sizes,
const CvStarDetectorParams* params )
{
const int MAX_PATTERN = 17;
static const int sizes0[] = {1, 2, 3, 4, 6, 8, 11, 12, 16, 22, 23, 32, 45, 46, 64, 90, 128, -1};
static const int pairs[][2] = {{1, 0}, {3, 1}, {4, 2}, {5, 3}, {7, 4}, {8, 5}, {9, 6},
{11, 8}, {13, 10}, {14, 11}, {15, 12}, {16, 14}, {-1, -1}};
float invSizes[MAX_PATTERN][2];
int sizes1[MAX_PATTERN];
#if CV_SSE2
__m128 invSizes4[MAX_PATTERN][2];
__m128 sizes1_4[MAX_PATTERN];
Cv32suf absmask;
absmask.i = 0x7fffffff;
volatile bool useSIMD = cv::checkHardwareSupport(CV_CPU_SSE2);
#endif
CvStarFeature f[MAX_PATTERN];
CvMat *sum = 0, *tilted = 0, *flatTilted = 0;
int y, i=0, rows = img->rows, cols = img->cols, step;
int border, npatterns=0, maxIdx=0;
#ifdef _OPENMP
int nthreads = cvGetNumThreads();
#endif
assert( CV_MAT_TYPE(img->type) == CV_8UC1 &&
CV_MAT_TYPE(responses->type) == CV_32FC1 &&
CV_MAT_TYPE(sizes->type) == CV_16SC1 &&
CV_ARE_SIZES_EQ(responses, sizes) );
while( pairs[i][0] >= 0 && !
( sizes0[pairs[i][0]] >= params->maxSize
|| sizes0[pairs[i+1][0]] + sizes0[pairs[i+1][0]]/2 >= std::min(rows, cols) ) )
{
++i;
}
npatterns = i;
npatterns += (pairs[npatterns-1][0] >= 0);
maxIdx = pairs[npatterns-1][0];
sum = cvCreateMat( rows + 1, cols + 1, CV_32SC1 );
tilted = cvCreateMat( rows + 1, cols + 1, CV_32SC1 );
flatTilted = cvCreateMat( rows + 1, cols + 1, CV_32SC1 );
step = sum->step/CV_ELEM_SIZE(sum->type);
icvComputeIntegralImages( img, sum, tilted, flatTilted );
for( i = 0; i <= maxIdx; i++ )
{
int ur_size = sizes0[i], t_size = sizes0[i] + sizes0[i]/2;
int ur_area = (2*ur_size + 1)*(2*ur_size + 1);
int t_area = t_size*t_size + (t_size + 1)*(t_size + 1);
f[i].p[0] = sum->data.i + (ur_size + 1)*step + ur_size + 1;
f[i].p[1] = sum->data.i - ur_size*step + ur_size + 1;
f[i].p[2] = sum->data.i + (ur_size + 1)*step - ur_size;
f[i].p[3] = sum->data.i - ur_size*step - ur_size;
f[i].p[4] = tilted->data.i + (t_size + 1)*step + 1;
f[i].p[5] = flatTilted->data.i - t_size;
f[i].p[6] = flatTilted->data.i + t_size + 1;
f[i].p[7] = tilted->data.i - t_size*step + 1;
f[i].area = ur_area + t_area;
sizes1[i] = sizes0[i];
}
// negate end points of the size range
// for a faster rejection of very small or very large features in non-maxima suppression.
sizes1[0] = -sizes1[0];
sizes1[1] = -sizes1[1];
sizes1[maxIdx] = -sizes1[maxIdx];
border = sizes0[maxIdx] + sizes0[maxIdx]/2;
for( i = 0; i < npatterns; i++ )
{
int innerArea = f[pairs[i][1]].area;
int outerArea = f[pairs[i][0]].area - innerArea;
invSizes[i][0] = 1.f/outerArea;
invSizes[i][1] = 1.f/innerArea;
}
#if CV_SSE2
if( useSIMD )
{
for( i = 0; i < npatterns; i++ )
{
_mm_store_ps((float*)&invSizes4[i][0], _mm_set1_ps(invSizes[i][0]));
_mm_store_ps((float*)&invSizes4[i][1], _mm_set1_ps(invSizes[i][1]));
}
for( i = 0; i <= maxIdx; i++ )
_mm_store_ps((float*)&sizes1_4[i], _mm_set1_ps((float)sizes1[i]));
}
#endif
for( y = 0; y < border; y++ )
{
float* r_ptr = (float*)(responses->data.ptr + responses->step*y);
float* r_ptr2 = (float*)(responses->data.ptr + responses->step*(rows - 1 - y));
short* s_ptr = (short*)(sizes->data.ptr + sizes->step*y);
short* s_ptr2 = (short*)(sizes->data.ptr + sizes->step*(rows - 1 - y));
memset( r_ptr, 0, cols*sizeof(r_ptr[0]));
memset( r_ptr2, 0, cols*sizeof(r_ptr2[0]));
memset( s_ptr, 0, cols*sizeof(s_ptr[0]));
memset( s_ptr2, 0, cols*sizeof(s_ptr2[0]));
}
#ifdef _OPENMP
#pragma omp parallel for num_threads(nthreads) schedule(static)
#endif
for( y = border; y < rows - border; y++ )
{
int x = border, i;
float* r_ptr = (float*)(responses->data.ptr + responses->step*y);
short* s_ptr = (short*)(sizes->data.ptr + sizes->step*y);
memset( r_ptr, 0, border*sizeof(r_ptr[0]));
memset( s_ptr, 0, border*sizeof(s_ptr[0]));
memset( r_ptr + cols - border, 0, border*sizeof(r_ptr[0]));
memset( s_ptr + cols - border, 0, border*sizeof(s_ptr[0]));
#if CV_SSE2
if( useSIMD )
{
__m128 absmask4 = _mm_set1_ps(absmask.f);
for( ; x <= cols - border - 4; x += 4 )
{
int ofs = y*step + x;
__m128 vals[MAX_PATTERN];
__m128 bestResponse = _mm_setzero_ps();
__m128 bestSize = _mm_setzero_ps();
for( i = 0; i <= maxIdx; i++ )
{
const int** p = (const int**)&f[i].p[0];
__m128i r0 = _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(p[0]+ofs)),
_mm_loadu_si128((const __m128i*)(p[1]+ofs)));
__m128i r1 = _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(p[3]+ofs)),
_mm_loadu_si128((const __m128i*)(p[2]+ofs)));
__m128i r2 = _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(p[4]+ofs)),
_mm_loadu_si128((const __m128i*)(p[5]+ofs)));
__m128i r3 = _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(p[7]+ofs)),
_mm_loadu_si128((const __m128i*)(p[6]+ofs)));
r0 = _mm_add_epi32(_mm_add_epi32(r0,r1), _mm_add_epi32(r2,r3));
_mm_store_ps((float*)&vals[i], _mm_cvtepi32_ps(r0));
}
for( i = 0; i < npatterns; i++ )
{
__m128 inner_sum = vals[pairs[i][1]];
__m128 outer_sum = _mm_sub_ps(vals[pairs[i][0]], inner_sum);
__m128 response = _mm_sub_ps(_mm_mul_ps(inner_sum, invSizes4[i][1]),
_mm_mul_ps(outer_sum, invSizes4[i][0]));
__m128 swapmask = _mm_cmpgt_ps(_mm_and_ps(response,absmask4),
_mm_and_ps(bestResponse,absmask4));
bestResponse = _mm_xor_ps(bestResponse,
_mm_and_ps(_mm_xor_ps(response,bestResponse), swapmask));
bestSize = _mm_xor_ps(bestSize,
_mm_and_ps(_mm_xor_ps(sizes1_4[pairs[i][0]], bestSize), swapmask));
}
_mm_storeu_ps(r_ptr + x, bestResponse);
_mm_storel_epi64((__m128i*)(s_ptr + x),
_mm_packs_epi32(_mm_cvtps_epi32(bestSize),_mm_setzero_si128()));
}
}
#endif
for( ; x < cols - border; x++ )
{
int ofs = y*step + x;
int vals[MAX_PATTERN];
float bestResponse = 0;
int bestSize = 0;
for( i = 0; i <= maxIdx; i++ )
{
const int** p = (const int**)&f[i].p[0];
vals[i] = p[0][ofs] - p[1][ofs] - p[2][ofs] + p[3][ofs] +
p[4][ofs] - p[5][ofs] - p[6][ofs] + p[7][ofs];
}
for( i = 0; i < npatterns; i++ )
{
int inner_sum = vals[pairs[i][1]];
int outer_sum = vals[pairs[i][0]] - inner_sum;
float response = inner_sum*invSizes[i][1] - outer_sum*invSizes[i][0];
if( fabs(response) > fabs(bestResponse) )
{
bestResponse = response;
bestSize = sizes1[pairs[i][0]];
}
}
r_ptr[x] = bestResponse;
s_ptr[x] = (short)bestSize;
}
}
cvReleaseMat(&sum);
cvReleaseMat(&tilted);
cvReleaseMat(&flatTilted);
return border;
}
static bool
icvStarDetectorSuppressLines( const CvMat* responses, const CvMat* sizes, CvPoint pt,
const CvStarDetectorParams* params )
{
const float* r_ptr = responses->data.fl;
int rstep = responses->step/sizeof(r_ptr[0]);
const short* s_ptr = sizes->data.s;
int sstep = sizes->step/sizeof(s_ptr[0]);
int sz = s_ptr[pt.y*sstep + pt.x];
int x, y, delta = sz/4, radius = delta*4;
float Lxx = 0, Lyy = 0, Lxy = 0;
int Lxxb = 0, Lyyb = 0, Lxyb = 0;
for( y = pt.y - radius; y <= pt.y + radius; y += delta )
for( x = pt.x - radius; x <= pt.x + radius; x += delta )
{
float Lx = r_ptr[y*rstep + x + 1] - r_ptr[y*rstep + x - 1];
float Ly = r_ptr[(y+1)*rstep + x] - r_ptr[(y-1)*rstep + x];
Lxx += Lx*Lx; Lyy += Ly*Ly; Lxy += Lx*Ly;
}
if( (Lxx + Lyy)*(Lxx + Lyy) >= params->lineThresholdProjected*(Lxx*Lyy - Lxy*Lxy) )
return true;
for( y = pt.y - radius; y <= pt.y + radius; y += delta )
for( x = pt.x - radius; x <= pt.x + radius; x += delta )
{
int Lxb = (s_ptr[y*sstep + x + 1] == sz) - (s_ptr[y*sstep + x - 1] == sz);
int Lyb = (s_ptr[(y+1)*sstep + x] == sz) - (s_ptr[(y-1)*sstep + x] == sz);
Lxxb += Lxb * Lxb; Lyyb += Lyb * Lyb; Lxyb += Lxb * Lyb;
}
if( (Lxxb + Lyyb)*(Lxxb + Lyyb) >= params->lineThresholdBinarized*(Lxxb*Lyyb - Lxyb*Lxyb) )
return true;
return false;
}
static void
icvStarDetectorSuppressNonmax( const CvMat* responses, const CvMat* sizes,
CvSeq* keypoints, int border,
const CvStarDetectorParams* params )
{
int x, y, x1, y1, delta = params->suppressNonmaxSize/2;
int rows = responses->rows, cols = responses->cols;
const float* r_ptr = responses->data.fl;
int rstep = responses->step/sizeof(r_ptr[0]);
const short* s_ptr = sizes->data.s;
int sstep = sizes->step/sizeof(s_ptr[0]);
short featureSize = 0;
for( y = border; y < rows - border; y += delta+1 )
for( x = border; x < cols - border; x += delta+1 )
{
float maxResponse = (float)params->responseThreshold;
float minResponse = (float)-params->responseThreshold;
CvPoint maxPt = {-1,-1}, minPt = {-1,-1};
int tileEndY = MIN(y + delta, rows - border - 1);
int tileEndX = MIN(x + delta, cols - border - 1);
for( y1 = y; y1 <= tileEndY; y1++ )
for( x1 = x; x1 <= tileEndX; x1++ )
{
float val = r_ptr[y1*rstep + x1];
if( maxResponse < val )
{
maxResponse = val;
maxPt = cvPoint(x1, y1);
}
else if( minResponse > val )
{
minResponse = val;
minPt = cvPoint(x1, y1);
}
}
if( maxPt.x >= 0 )
{
for( y1 = maxPt.y - delta; y1 <= maxPt.y + delta; y1++ )
for( x1 = maxPt.x - delta; x1 <= maxPt.x + delta; x1++ )
{
float val = r_ptr[y1*rstep + x1];
if( val >= maxResponse && (y1 != maxPt.y || x1 != maxPt.x))
goto skip_max;
}
if( (featureSize = s_ptr[maxPt.y*sstep + maxPt.x]) >= 4 &&
!icvStarDetectorSuppressLines( responses, sizes, maxPt, params ))
{
CvStarKeypoint kpt = cvStarKeypoint( maxPt, featureSize, maxResponse );
cvSeqPush( keypoints, &kpt );
}
}
skip_max:
if( minPt.x >= 0 )
{
for( y1 = minPt.y - delta; y1 <= minPt.y + delta; y1++ )
for( x1 = minPt.x - delta; x1 <= minPt.x + delta; x1++ )
{
float val = r_ptr[y1*rstep + x1];
if( val <= minResponse && (y1 != minPt.y || x1 != minPt.x))
goto skip_min;
}
if( (featureSize = s_ptr[minPt.y*sstep + minPt.x]) >= 4 &&
!icvStarDetectorSuppressLines( responses, sizes, minPt, params ))
{
CvStarKeypoint kpt = cvStarKeypoint( minPt, featureSize, minResponse );
cvSeqPush( keypoints, &kpt );
}
}
skip_min:
;
}
}
CV_IMPL CvSeq*
cvGetStarKeypoints( const CvArr* _img, CvMemStorage* storage,
CvStarDetectorParams params )
{
CvMat stub, *img = cvGetMat(_img, &stub);
CvSeq* keypoints = cvCreateSeq(0, sizeof(CvSeq), sizeof(CvStarKeypoint), storage );
CvMat* responses = cvCreateMat( img->rows, img->cols, CV_32FC1 );
CvMat* sizes = cvCreateMat( img->rows, img->cols, CV_16SC1 );
int border = icvStarDetectorComputeResponses( img, responses, sizes, ¶ms );
if( border >= 0 )
icvStarDetectorSuppressNonmax( responses, sizes, keypoints, border, ¶ms );
cvReleaseMat( &responses );
cvReleaseMat( &sizes );
return border >= 0 ? keypoints : 0;
}
namespace cv
{
StarDetector::StarDetector()
{
*(CvStarDetectorParams*)this = cvStarDetectorParams();
}
StarDetector::StarDetector(int _maxSize, int _responseThreshold,
int _lineThresholdProjected,
int _lineThresholdBinarized,
int _suppressNonmaxSize)
{
*(CvStarDetectorParams*)this = cvStarDetectorParams(_maxSize, _responseThreshold,
_lineThresholdProjected, _lineThresholdBinarized, _suppressNonmaxSize);
}
void StarDetector::operator()(const Mat& image, vector<KeyPoint>& keypoints) const
{
CvMat _image = image;
MemStorage storage(cvCreateMemStorage(0));
Seq<CvStarKeypoint> kp = cvGetStarKeypoints( &_image, storage, *(const CvStarDetectorParams*)this);
Seq<CvStarKeypoint>::iterator it = kp.begin();
keypoints.resize(kp.size());
size_t i, n = kp.size();
for( i = 0; i < n; i++, ++it )
{
const CvStarKeypoint& kpt = *it;
keypoints[i] = KeyPoint(kpt.pt, (float)kpt.size, -1.f, kpt.response, 0);
}
}
}