1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Nathan, liujun@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencl_kernels_imgproc.hpp"
#include "opencv2/core/hal/intrin.hpp"
namespace cv {
#if CV_SIMD
static inline v_float32 blend(const v_float32& v_src1, const v_float32& v_src2, const v_float32& v_w1, const v_float32& v_w2)
{
const v_float32 v_eps = vx_setall_f32(1e-5f);
v_float32 v_denom = v_w1 + v_w2 + v_eps;
return (v_src1 * v_w1 + v_src2 * v_w2) / v_denom;
}
static inline v_float32 blend(const v_float32& v_src1, const v_float32& v_src2, const float* w_ptr1, const float* w_ptr2, int offset)
{
v_float32 v_w1 = vx_load(w_ptr1 + offset);
v_float32 v_w2 = vx_load(w_ptr2 + offset);
return blend(v_src1, v_src2, v_w1, v_w2);
}
static inline v_uint32 saturate_f32_u32(const v_float32& vec)
{
const v_int32 z = vx_setzero_s32();
const v_int32 x = vx_setall_s32(255);
return v_reinterpret_as_u32(v_min(v_max(v_round(vec), z), x));
}
static inline v_uint8 pack_f32tou8(v_float32& val0, v_float32& val1, v_float32& val2, v_float32& val3)
{
v_uint32 a = saturate_f32_u32(val0);
v_uint32 b = saturate_f32_u32(val1);
v_uint32 c = saturate_f32_u32(val2);
v_uint32 d = saturate_f32_u32(val3);
v_uint16 e = v_pack(a, b);
v_uint16 f = v_pack(c, d);
return v_pack(e, f);
}
static inline void store_pack_f32tou8(uchar* ptr, v_float32& val0, v_float32& val1, v_float32& val2, v_float32& val3)
{
v_store((ptr), pack_f32tou8(val0, val1, val2, val3));
}
static inline void expand_u8tof32(const v_uint8& src, v_float32& dst0, v_float32& dst1, v_float32& dst2, v_float32& dst3)
{
v_uint16 a0, a1;
v_expand(src, a0, a1);
v_uint32 b0, b1,b2,b3;
v_expand(a0, b0, b1);
v_expand(a1, b2, b3);
dst0 = v_cvt_f32(v_reinterpret_as_s32(b0));
dst1 = v_cvt_f32(v_reinterpret_as_s32(b1));
dst2 = v_cvt_f32(v_reinterpret_as_s32(b2));
dst3 = v_cvt_f32(v_reinterpret_as_s32(b3));
}
static inline void load_expand_u8tof32(const uchar* ptr, v_float32& dst0, v_float32& dst1, v_float32& dst2, v_float32& dst3)
{
v_uint8 a = vx_load((ptr));
expand_u8tof32(a, dst0, dst1, dst2, dst3);
}
int blendLinearSimd(const uchar* src1, const uchar* src2, const float* weights1, const float* weights2, uchar* dst, int x, int width, int cn);
int blendLinearSimd(const float* src1, const float* src2, const float* weights1, const float* weights2, float* dst, int x, int width, int cn);
int blendLinearSimd(const uchar* src1, const uchar* src2, const float* weights1, const float* weights2, uchar* dst, int x, int width, int cn)
{
switch(cn)
{
case 1:
for(int weight_offset = 0 ; x <= width - v_uint8::nlanes; x += v_uint8::nlanes, weight_offset += v_uint8::nlanes)
{
v_float32 v_src10, v_src11, v_src12, v_src13;
v_float32 v_src20, v_src21, v_src22, v_src23;
load_expand_u8tof32(src1 + x, v_src10, v_src11, v_src12, v_src13);
load_expand_u8tof32(src2 + x, v_src20, v_src21, v_src22, v_src23);
v_float32 v_dst0 = blend(v_src10, v_src20, weights1, weights2, weight_offset);
v_float32 v_dst1 = blend(v_src11, v_src21, weights1, weights2, weight_offset + v_float32::nlanes);
v_float32 v_dst2 = blend(v_src12, v_src22, weights1, weights2, weight_offset + 2*v_float32::nlanes);
v_float32 v_dst3 = blend(v_src13, v_src23, weights1, weights2, weight_offset + 3*v_float32::nlanes);
store_pack_f32tou8(dst + x, v_dst0, v_dst1, v_dst2, v_dst3);
}
break;
case 2:
for(int weight_offset = 0 ; x <= width - 2*v_uint8::nlanes; x += 2*v_uint8::nlanes, weight_offset += v_uint8::nlanes)
{
v_uint8 v_src10, v_src11, v_src20, v_src21;
v_load_deinterleave(src1 + x, v_src10, v_src11);
v_load_deinterleave(src2 + x, v_src20, v_src21);
v_float32 v_src100, v_src101, v_src102, v_src103, v_src110, v_src111, v_src112, v_src113;
v_float32 v_src200, v_src201, v_src202, v_src203, v_src210, v_src211, v_src212, v_src213;
expand_u8tof32(v_src10, v_src100, v_src101, v_src102, v_src103);
expand_u8tof32(v_src11, v_src110, v_src111, v_src112, v_src113);
expand_u8tof32(v_src20, v_src200, v_src201, v_src202, v_src203);
expand_u8tof32(v_src21, v_src210, v_src211, v_src212, v_src213);
v_float32 v_dst0 = blend(v_src100, v_src200, weights1, weights2, weight_offset);
v_float32 v_dst1 = blend(v_src110, v_src210, weights1, weights2, weight_offset);
v_float32 v_dst2 = blend(v_src101, v_src201, weights1, weights2, weight_offset + v_float32::nlanes);
v_float32 v_dst3 = blend(v_src111, v_src211, weights1, weights2, weight_offset + v_float32::nlanes);
v_float32 v_dst4 = blend(v_src102, v_src202, weights1, weights2, weight_offset + 2*v_float32::nlanes);
v_float32 v_dst5 = blend(v_src112, v_src212, weights1, weights2, weight_offset + 2*v_float32::nlanes);
v_float32 v_dst6 = blend(v_src103, v_src203, weights1, weights2, weight_offset + 3*v_float32::nlanes);
v_float32 v_dst7 = blend(v_src113, v_src213, weights1, weights2, weight_offset + 3*v_float32::nlanes);
v_uint8 v_dsta = pack_f32tou8(v_dst0, v_dst2, v_dst4, v_dst6);
v_uint8 v_dstb = pack_f32tou8(v_dst1, v_dst3, v_dst5, v_dst7);
v_store_interleave(dst + x, v_dsta, v_dstb);
}
break;
case 3:
for(int weight_offset = 0 ; x <= width - 3*v_uint8::nlanes; x += 3*v_uint8::nlanes, weight_offset += v_uint8::nlanes)
{
v_uint8 v_src10, v_src11, v_src12, v_src20, v_src21, v_src22;
v_load_deinterleave(src1 + x, v_src10, v_src11, v_src12);
v_load_deinterleave(src2 + x, v_src20, v_src21, v_src22);
v_float32 v_src100, v_src101, v_src102, v_src103, v_src110, v_src111, v_src112, v_src113, v_src120, v_src121, v_src122, v_src123;
v_float32 v_src200, v_src201, v_src202, v_src203, v_src210, v_src211, v_src212, v_src213, v_src220, v_src221, v_src222, v_src223;
expand_u8tof32(v_src10, v_src100, v_src101, v_src102, v_src103);
expand_u8tof32(v_src11, v_src110, v_src111, v_src112, v_src113);
expand_u8tof32(v_src12, v_src120, v_src121, v_src122, v_src123);
expand_u8tof32(v_src20, v_src200, v_src201, v_src202, v_src203);
expand_u8tof32(v_src21, v_src210, v_src211, v_src212, v_src213);
expand_u8tof32(v_src22, v_src220, v_src221, v_src222, v_src223);
v_float32 v_w10 = vx_load(weights1 + weight_offset);
v_float32 v_w11 = vx_load(weights1 + weight_offset + v_float32::nlanes);
v_float32 v_w12 = vx_load(weights1 + weight_offset + 2*v_float32::nlanes);
v_float32 v_w13 = vx_load(weights1 + weight_offset + 3*v_float32::nlanes);
v_float32 v_w20 = vx_load(weights2 + weight_offset);
v_float32 v_w21 = vx_load(weights2 + weight_offset + v_float32::nlanes);
v_float32 v_w22 = vx_load(weights2 + weight_offset + 2*v_float32::nlanes);
v_float32 v_w23 = vx_load(weights2 + weight_offset + 3*v_float32::nlanes);
v_src100 = blend(v_src100, v_src200, v_w10, v_w20);
v_src110 = blend(v_src110, v_src210, v_w10, v_w20);
v_src120 = blend(v_src120, v_src220, v_w10, v_w20);
v_src101 = blend(v_src101, v_src201, v_w11, v_w21);
v_src111 = blend(v_src111, v_src211, v_w11, v_w21);
v_src121 = blend(v_src121, v_src221, v_w11, v_w21);
v_src102 = blend(v_src102, v_src202, v_w12, v_w22);
v_src112 = blend(v_src112, v_src212, v_w12, v_w22);
v_src122 = blend(v_src122, v_src222, v_w12, v_w22);
v_src103 = blend(v_src103, v_src203, v_w13, v_w23);
v_src113 = blend(v_src113, v_src213, v_w13, v_w23);
v_src123 = blend(v_src123, v_src223, v_w13, v_w23);
v_uint8 v_dst0 = pack_f32tou8(v_src100, v_src101, v_src102, v_src103);
v_uint8 v_dst1 = pack_f32tou8(v_src110, v_src111, v_src112, v_src113);
v_uint8 v_dst2 = pack_f32tou8(v_src120, v_src121, v_src122, v_src123);
v_store_interleave(dst + x, v_dst0, v_dst1, v_dst2);
}
break;
case 4:
for(int weight_offset = 0 ; x <= width - v_uint8::nlanes; x += v_uint8::nlanes, weight_offset += v_float32::nlanes)
{
v_float32 v_src10, v_src11, v_src12, v_src13;
v_float32 v_src20, v_src21, v_src22, v_src23;
load_expand_u8tof32(src1 + x, v_src10, v_src11, v_src12, v_src13);
load_expand_u8tof32(src2 + x, v_src20, v_src21, v_src22, v_src23);
v_float32 v_w10, v_w11, v_w12, v_w13, v_w20, v_w21, v_w22, v_w23, v_w0, v_w1;
v_w10 = vx_load(weights1 + weight_offset);
v_zip(v_w10, v_w10, v_w0, v_w1);
v_zip(v_w0, v_w0, v_w10, v_w11);
v_zip(v_w1, v_w1, v_w12, v_w13);
v_w20 = vx_load(weights2 + weight_offset);
v_zip(v_w20, v_w20, v_w0, v_w1);
v_zip(v_w0, v_w0, v_w20, v_w21);
v_zip(v_w1, v_w1, v_w22, v_w23);
v_float32 v_dst0, v_dst1, v_dst2, v_dst3;
v_dst0 = blend(v_src10, v_src20, v_w10, v_w20);
v_dst1 = blend(v_src11, v_src21, v_w11, v_w21);
v_dst2 = blend(v_src12, v_src22, v_w12, v_w22);
v_dst3 = blend(v_src13, v_src23, v_w13, v_w23);
store_pack_f32tou8(dst + x, v_dst0, v_dst1, v_dst2, v_dst3);
}
break;
default:
break;
}
return x;
}
int blendLinearSimd(const float* src1, const float* src2, const float* weights1, const float* weights2, float* dst, int x, int width, int cn)
{
switch(cn)
{
case 1:
for(int weight_offset = 0 ; x <= width - v_float32::nlanes; x += v_float32::nlanes, weight_offset += v_float32::nlanes)
{
v_float32 v_src1 = vx_load(src1 + x);
v_float32 v_src2 = vx_load(src2 + x);
v_float32 v_w1 = vx_load(weights1 + weight_offset);
v_float32 v_w2 = vx_load(weights2 + weight_offset);
v_float32 v_dst = blend(v_src1, v_src2, v_w1, v_w2);
v_store(dst + x, v_dst);
}
break;
case 2:
for(int weight_offset = 0 ; x <= width - 2*v_float32::nlanes; x += 2*v_float32::nlanes, weight_offset += v_float32::nlanes)
{
v_float32 v_src10, v_src11, v_src20, v_src21;
v_load_deinterleave(src1 + x, v_src10, v_src11);
v_load_deinterleave(src2 + x, v_src20, v_src21);
v_float32 v_w1 = vx_load(weights1 + weight_offset);
v_float32 v_w2 = vx_load(weights2 + weight_offset);
v_float32 v_dst0 = blend(v_src10, v_src20, v_w1, v_w2);
v_float32 v_dst1 = blend(v_src11, v_src21, v_w1, v_w2);
v_store_interleave(dst + x, v_dst0, v_dst1);
}
break;
case 3:
for(int weight_offset = 0 ; x <= width - 3*v_float32::nlanes; x += 3*v_float32::nlanes, weight_offset += v_float32::nlanes)
{
v_float32 v_src10, v_src11, v_src12, v_src20, v_src21, v_src22;
v_load_deinterleave(src1 + x, v_src10, v_src11, v_src12);
v_load_deinterleave(src2 + x, v_src20, v_src21, v_src22);
v_float32 v_w1 = vx_load(weights1 + weight_offset);
v_float32 v_w2 = vx_load(weights2 + weight_offset);
v_float32 v_dst0 = blend(v_src10, v_src20, v_w1, v_w2);
v_float32 v_dst1 = blend(v_src11, v_src21, v_w1, v_w2);
v_float32 v_dst2 = blend(v_src12, v_src22, v_w1, v_w2);
v_store_interleave(dst + x, v_dst0, v_dst1, v_dst2);
}
break;
case 4:
for(int weight_offset = 0 ; x <= width - 4*v_float32::nlanes; x += 4*v_float32::nlanes, weight_offset += v_float32::nlanes)
{
v_float32 v_src10, v_src11, v_src12, v_src13, v_src20, v_src21, v_src22, v_src23;
v_load_deinterleave(src1 + x, v_src10, v_src11, v_src12, v_src13);
v_load_deinterleave(src2 + x, v_src20, v_src21, v_src22, v_src23);
v_float32 v_w1 = vx_load(weights1 + weight_offset);
v_float32 v_w2 = vx_load(weights2 + weight_offset);
v_float32 v_dst0 = blend(v_src10, v_src20, v_w1, v_w2);
v_float32 v_dst1 = blend(v_src11, v_src21, v_w1, v_w2);
v_float32 v_dst2 = blend(v_src12, v_src22, v_w1, v_w2);
v_float32 v_dst3 = blend(v_src13, v_src23, v_w1, v_w2);
v_store_interleave(dst + x, v_dst0, v_dst1, v_dst2, v_dst3);
}
break;
default:
break;
}
return x;
}
#endif
template <typename T>
class BlendLinearInvoker :
public ParallelLoopBody
{
public:
BlendLinearInvoker(const Mat & _src1, const Mat & _src2, const Mat & _weights1,
const Mat & _weights2, Mat & _dst) :
src1(&_src1), src2(&_src2), weights1(&_weights1), weights2(&_weights2), dst(&_dst)
{
}
virtual void operator() (const Range & range) const CV_OVERRIDE
{
int cn = src1->channels(), width = src1->cols * cn;
for (int y = range.start; y < range.end; ++y)
{
const float * const weights1_row = weights1->ptr<float>(y);
const float * const weights2_row = weights2->ptr<float>(y);
const T * const src1_row = src1->ptr<T>(y);
const T * const src2_row = src2->ptr<T>(y);
T * const dst_row = dst->ptr<T>(y);
int x = 0;
#if CV_SIMD
x = blendLinearSimd(src1_row, src2_row, weights1_row, weights2_row, dst_row, x, width, cn);
#endif
for ( ; x < width; ++x)
{
int x1 = x / cn;
float w1 = weights1_row[x1], w2 = weights2_row[x1];
float den = (w1 + w2 + 1e-5f);
float num = (src1_row[x] * w1 + src2_row[x] * w2);
dst_row[x] = saturate_cast<T>(num / den);
}
}
}
private:
const BlendLinearInvoker & operator= (const BlendLinearInvoker &);
BlendLinearInvoker(const BlendLinearInvoker &);
const Mat * src1, * src2, * weights1, * weights2;
Mat * dst;
};
#ifdef HAVE_OPENCL
static bool ocl_blendLinear( InputArray _src1, InputArray _src2, InputArray _weights1, InputArray _weights2, OutputArray _dst )
{
int type = _src1.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
char cvt[30];
ocl::Kernel k("blendLinear", ocl::imgproc::blend_linear_oclsrc,
format("-D T=%s -D cn=%d -D convertToT=%s", ocl::typeToStr(depth),
cn, ocl::convertTypeStr(CV_32F, depth, 1, cvt)));
if (k.empty())
return false;
UMat src1 = _src1.getUMat(), src2 = _src2.getUMat(), weights1 = _weights1.getUMat(),
weights2 = _weights2.getUMat(), dst = _dst.getUMat();
k.args(ocl::KernelArg::ReadOnlyNoSize(src1), ocl::KernelArg::ReadOnlyNoSize(src2),
ocl::KernelArg::ReadOnlyNoSize(weights1), ocl::KernelArg::ReadOnlyNoSize(weights2),
ocl::KernelArg::WriteOnly(dst));
size_t globalsize[2] = { (size_t)dst.cols, (size_t)dst.rows };
return k.run(2, globalsize, NULL, false);
}
#endif
}
void cv::blendLinear( InputArray _src1, InputArray _src2, InputArray _weights1, InputArray _weights2, OutputArray _dst )
{
CV_INSTRUMENT_REGION();
int type = _src1.type(), depth = CV_MAT_DEPTH(type);
Size size = _src1.size();
CV_Assert(depth == CV_8U || depth == CV_32F);
CV_Assert(size == _src2.size() && size == _weights1.size() && size == _weights2.size());
CV_Assert(type == _src2.type() && _weights1.type() == CV_32FC1 && _weights2.type() == CV_32FC1);
_dst.create(size, type);
CV_OCL_RUN(_dst.isUMat(),
ocl_blendLinear(_src1, _src2, _weights1, _weights2, _dst))
Mat src1 = _src1.getMat(), src2 = _src2.getMat(), weights1 = _weights1.getMat(),
weights2 = _weights2.getMat(), dst = _dst.getMat();
if (depth == CV_8U)
{
BlendLinearInvoker<uchar> invoker(src1, src2, weights1, weights2, dst);
parallel_for_(Range(0, src1.rows), invoker, dst.total()/(double)(1<<16));
}
else if (depth == CV_32F)
{
BlendLinearInvoker<float> invoker(src1, src2, weights1, weights2, dst);
parallel_for_(Range(0, src1.rows), invoker, dst.total()/(double)(1<<16));
}
}