hist.cu 8.38 KB
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 1993-2011, NVIDIA Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or bpied warranties, including, but not limited to, the bpied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "internal_shared.hpp"
#include "opencv2/gpu/device/utility.hpp"
#include "opencv2/gpu/device/saturate_cast.hpp"

using namespace cv::gpu;

using namespace cv::gpu::device;

#define UINT_BITS 32U

//Warps == subhistograms per threadblock
#define WARP_COUNT 6

//Threadblock size
#define HISTOGRAM256_THREADBLOCK_SIZE (WARP_COUNT * OPENCV_GPU_WARP_SIZE)
#define HISTOGRAM256_BIN_COUNT 256

//Shared memory per threadblock
#define HISTOGRAM256_THREADBLOCK_MEMORY (WARP_COUNT * HISTOGRAM256_BIN_COUNT)

#define PARTIAL_HISTOGRAM256_COUNT 240

#define MERGE_THREADBLOCK_SIZE 256

#define USE_SMEM_ATOMICS (__CUDA_ARCH__ >= 120)

namespace cv { namespace gpu { namespace histograms
{
    #if (!USE_SMEM_ATOMICS)

        #define TAG_MASK ( (1U << (UINT_BITS - OPENCV_GPU_LOG_WARP_SIZE)) - 1U )

        __forceinline__ __device__ void addByte(volatile uint* s_WarpHist, uint data, uint threadTag)
        {
            uint count;
            do
            {
                count = s_WarpHist[data] & TAG_MASK;
                count = threadTag | (count + 1);
                s_WarpHist[data] = count;
            } while (s_WarpHist[data] != count);
        }

    #else

        #define TAG_MASK 0xFFFFFFFFU

        __forceinline__ __device__ void addByte(uint* s_WarpHist, uint data, uint threadTag)
        {
            atomicAdd(s_WarpHist + data, 1);
        }

    #endif

    __forceinline__ __device__ void addWord(uint* s_WarpHist, uint data, uint tag, uint pos_x, uint cols)
    {
        uint x = pos_x << 2;

        if (x + 0 < cols) addByte(s_WarpHist, (data >>  0) & 0xFFU, tag);
        if (x + 1 < cols) addByte(s_WarpHist, (data >>  8) & 0xFFU, tag);
        if (x + 2 < cols) addByte(s_WarpHist, (data >> 16) & 0xFFU, tag);
        if (x + 3 < cols) addByte(s_WarpHist, (data >> 24) & 0xFFU, tag);
    }

    __global__ void histogram256(PtrStep_<uint> d_Data, uint* d_PartialHistograms, uint dataCount, uint cols)
    {
        //Per-warp subhistogram storage
        __shared__ uint s_Hist[HISTOGRAM256_THREADBLOCK_MEMORY];
        uint* s_WarpHist= s_Hist + (threadIdx.x >> OPENCV_GPU_LOG_WARP_SIZE) * HISTOGRAM256_BIN_COUNT;

        //Clear shared memory storage for current threadblock before processing
        #pragma unroll
        for (uint i = 0; i < (HISTOGRAM256_THREADBLOCK_MEMORY / HISTOGRAM256_THREADBLOCK_SIZE); i++)
           s_Hist[threadIdx.x + i * HISTOGRAM256_THREADBLOCK_SIZE] = 0;

        //Cycle through the entire data set, update subhistograms for each warp
        const uint tag = threadIdx.x << (UINT_BITS - OPENCV_GPU_LOG_WARP_SIZE);

        __syncthreads();
        const uint colsui = d_Data.step / sizeof(uint);
        for(uint pos = blockIdx.x * blockDim.x + threadIdx.x; pos < dataCount; pos += blockDim.x * gridDim.x)
        {
            uint pos_y = pos / colsui;
            uint pos_x = pos % colsui;
            uint data = d_Data.ptr(pos_y)[pos_x];
            addWord(s_WarpHist, data, tag, pos_x, cols);
        }

        //Merge per-warp histograms into per-block and write to global memory
        __syncthreads();
        for(uint bin = threadIdx.x; bin < HISTOGRAM256_BIN_COUNT; bin += HISTOGRAM256_THREADBLOCK_SIZE)
        {
            uint sum = 0;

            for (uint i = 0; i < WARP_COUNT; i++)
                sum += s_Hist[bin + i * HISTOGRAM256_BIN_COUNT] & TAG_MASK;

            d_PartialHistograms[blockIdx.x * HISTOGRAM256_BIN_COUNT + bin] = sum;
        }
    }

    ////////////////////////////////////////////////////////////////////////////////
    // Merge histogram256() output
    // Run one threadblock per bin; each threadblock adds up the same bin counter
    // from every partial histogram. Reads are uncoalesced, but mergeHistogram256
    // takes only a fraction of total processing time
    ////////////////////////////////////////////////////////////////////////////////

    __global__ void mergeHistogram256(const uint* d_PartialHistograms, int* d_Histogram)
    {
        uint sum = 0;

        #pragma unroll
        for (uint i = threadIdx.x; i < PARTIAL_HISTOGRAM256_COUNT; i += MERGE_THREADBLOCK_SIZE)
            sum += d_PartialHistograms[blockIdx.x + i * HISTOGRAM256_BIN_COUNT];

        __shared__ uint data[MERGE_THREADBLOCK_SIZE];
        data[threadIdx.x] = sum;

        for (uint stride = MERGE_THREADBLOCK_SIZE / 2; stride > 0; stride >>= 1)
        {
            __syncthreads();
            if(threadIdx.x < stride)
                data[threadIdx.x] += data[threadIdx.x + stride];
        }

        if(threadIdx.x == 0)
            d_Histogram[blockIdx.x] = saturate_cast<int>(data[0]);
    }

    void histogram256_gpu(DevMem2D src, int* hist, uint* buf, cudaStream_t stream)
    {
        histogram256<<<PARTIAL_HISTOGRAM256_COUNT, HISTOGRAM256_THREADBLOCK_SIZE, 0, stream>>>(
            DevMem2D_<uint>(src),
            buf, 
            src.rows * src.step / sizeof(uint),
            src.cols);

        cudaSafeCall( cudaGetLastError() );

        mergeHistogram256<<<HISTOGRAM256_BIN_COUNT, MERGE_THREADBLOCK_SIZE, 0, stream>>>(buf, hist);

        cudaSafeCall( cudaGetLastError() );

        if (stream == 0)
            cudaSafeCall( cudaDeviceSynchronize() );
    }

    __global__ void equalizeHist(DevMem2D src, PtrStep dst, const int* lut)
    {
        __shared__ int s_lut[256];

        const int tid = threadIdx.y * blockDim.x + threadIdx.x;

        s_lut[tid] = lut[tid];
        __syncthreads();

        const int x = blockIdx.x * blockDim.x + threadIdx.x;
        const int y = blockIdx.y * blockDim.y + threadIdx.y;

        if (x < src.cols && y < src.rows)
        {
            dst.ptr(y)[x] = __float2int_rn(255.0f * s_lut[src.ptr(y)[x]] / (src.cols * src.rows));
        }
    }

    void equalizeHist_gpu(DevMem2D src, DevMem2D dst, const int* lut, cudaStream_t stream)
    {
        dim3 block(16, 16);
        dim3 grid(divUp(src.cols, block.x), divUp(src.rows, block.y));

        equalizeHist<<<grid, block, 0, stream>>>(src, dst, lut);
        cudaSafeCall( cudaGetLastError() );

        if (stream == 0)
            cudaSafeCall( cudaDeviceSynchronize() );
    }
}}}