featurepyramid.cpp 18.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
#include "precomp.hpp"
#include "_latentsvm.h"
#include "_lsvm_resizeimg.h"

#ifndef max
#define max(a,b)            (((a) > (b)) ? (a) : (b))
#endif

#ifndef min
#define min(a,b)            (((a) < (b)) ? (a) : (b))
#endif

static inline int sign(float r){
    if(r >  0.0001f) return  1;
    if(r < -0.0001f) return -1;
    return 0;
}

/*
// Getting feature map for the selected subimage  
//
// API
// int getFeatureMaps(const IplImage * image, const int k, featureMap **map);
// INPUT
// image             - selected subimage
// k                 - size of cells
// OUTPUT
// map               - feature map
// RESULT
// Error status
*/
int getFeatureMaps_dp(const IplImage * image,const int k, CvLSVMFeatureMap **map)
{
    int sizeX, sizeY;
    int p, px, strsz;
    int height, width, channels;
    int i, j, kk, c, ii, jj, d;
    float  * datadx, * datady;
    float tmp, x, y, tx, ty;
    IplImage * dx, * dy;
    int *nearest_x, *nearest_y;
    float *w, a_x, b_x;

    float kernel[3] = {-1.f, 0.f, 1.f}; 
    CvMat kernel_dx = cvMat(1, 3, CV_32F, kernel);
    CvMat kernel_dy = cvMat(3, 1, CV_32F, kernel);

    float * r;
    int    * alfa;
    
    float boundary_x[CNTPARTION+1];
    float boundary_y[CNTPARTION+1];
    float max, tmp_scal;
    int    maxi;

	height = image->height;
	width  = image->width ;

    channels  = image->nChannels;

	dx    = cvCreateImage(cvSize(image->width , image->height) , IPL_DEPTH_32F , 3);
    dy    = cvCreateImage(cvSize(image->width , image->height) , IPL_DEPTH_32F , 3);

    sizeX = width  / k;
    sizeY = height / k;
    px    = CNTPARTION  + 2 * CNTPARTION; //     
    p     = px;
    strsz = sizeX * p;
    allocFeatureMapObject(map, sizeX, sizeY, p,  px);

	cvFilter2D(image, dx, &kernel_dx, cvPoint(-1, 0));
	cvFilter2D(image, dy, &kernel_dy, cvPoint(0, -1));
	
    for(i = 0; i <= CNTPARTION; i++)
    {
        boundary_x[i] = cosf((((float)i) * (((float)PI) / (float) (CNTPARTION))));
        boundary_y[i] = sinf((((float)i) * (((float)PI) / (float) (CNTPARTION))));
    }/*for(i = 0; i <= CNTPARTION; i++) */

    r    = (float *)malloc( sizeof(float) * (width * height));
    alfa = (int   *)malloc( sizeof(int  ) * (width * height * 2));

    for(j = 1; j < height-1; j++)
    {
        datadx = (float*)(dx->imageData + dx->widthStep *j);
        datady = (float*)(dy->imageData + dy->widthStep *j);
        for(i = 1; i < width-1; i++)
        {
			c = 0;
            x = (datadx[i*channels+c]);
            y = (datady[i*channels+c]);

            r[j * width + i] =sqrtf(x*x + y*y);
            for(kk = 1; kk < channels; kk++)
            {
                tx = (datadx[i*channels+kk]);
                ty = (datady[i*channels+kk]);
                tmp =sqrtf(tx*tx + ty*ty);
                if(tmp > r[j * width + i])
                {
                    r[j * width + i] = tmp;
                    c = kk;
                    x = tx;
                    y = ty;
                }
            }/*for(kk = 1; kk < channels; kk++)*/

            
            
            max  = boundary_x[0]*x + boundary_y[0]*y;
            maxi = 0;
            for (kk = 0; kk < CNTPARTION; kk++) {
                tmp_scal = boundary_x[kk]*x + boundary_y[kk]*y;
                if (tmp_scal> max) {
                    max = tmp_scal;
                    maxi = kk;
                }else if (-tmp_scal> max) {
                    max = -tmp_scal;
                    maxi = kk + CNTPARTION;
                }
            }
            alfa[j * width * 2 + i * 2    ] = maxi % CNTPARTION;
            alfa[j * width * 2 + i * 2 + 1] = maxi;  
        }/*for(i = 0; i < width; i++)*/
    }/*for(j = 0; j < height; j++)*/

    //   
    nearest_x = (int *)malloc(sizeof(int) * k);
    nearest_y = (int *)malloc(sizeof(int) * k);
    w         = (float*)malloc(sizeof(float) * (k * 2));
    
    for(i = 0; i < k / 2; i++)
    {
        nearest_x[i] = -1;
        nearest_y[i] = -1;
    }/*for(i = 0; i < k / 2; i++)*/
    for(i = k / 2; i < k; i++)
    {
        nearest_x[i] = 1;
        nearest_y[i] = 1;
    }/*for(i = k / 2; i < k; i++)*/

    for(j = 0; j < k / 2; j++)
    {
        b_x = k / 2 + j + 0.5f;
        a_x = k / 2 - j - 0.5f;
        w[j * 2    ] = 1.0f/a_x * ((a_x * b_x) / ( a_x + b_x)); 
        w[j * 2 + 1] = 1.0f/b_x * ((a_x * b_x) / ( a_x + b_x));  
    }/*for(j = 0; j < k / 2; j++)*/
    for(j = k / 2; j < k; j++)
    {
        a_x = j - k / 2 + 0.5f;
        b_x =-j + k / 2 - 0.5f + k;
        w[j * 2    ] = 1.0f/a_x * ((a_x * b_x) / ( a_x + b_x)); 
        w[j * 2 + 1] = 1.0f/b_x * ((a_x * b_x) / ( a_x + b_x));  
    }/*for(j = k / 2; j < k; j++)*/


    //
    for(i = 0; i < sizeY; i++)
    {
        for(j = 0; j < sizeX; j++)
        {
            for(ii = 0; ii < k; ii++)
            {
                for(jj = 0; jj < k; jj++)
                {
					if ((i * k + ii > 0) && (i * k + ii < height - 1) && (j * k + jj > 0) && (j * k + jj < width - 1))
					{
						d    =  (k*i + ii)* width + (j*k + jj);
						(*map)->Map[(i                ) * strsz + (j                ) * (*map)->p + alfa[d * 2    ]             ] += 
							r[d] * w[ii * 2    ] * w[jj * 2    ];
						(*map)->Map[(i                ) * strsz + (j                ) * (*map)->p + alfa[d * 2 + 1] + CNTPARTION] += 
							r[d] * w[ii * 2    ] * w[jj * 2    ];
						if ((i + nearest_y[ii] >= 0) && (i + nearest_y[ii] <= sizeY - 1))
						{
							(*map)->Map[(i + nearest_y[ii]) * strsz + (j                ) * (*map)->p + alfa[d * 2    ]             ] += 
								r[d] * w[ii * 2 + 1] * w[jj * 2    ];
							(*map)->Map[(i + nearest_y[ii]) * strsz + (j                ) * (*map)->p + alfa[d * 2 + 1] + CNTPARTION] += 
								r[d] * w[ii * 2 + 1] * w[jj * 2    ];
						}
						if ((j + nearest_x[jj] >= 0) && (j + nearest_x[jj] <= sizeX - 1))
						{
							(*map)->Map[(i                ) * strsz + (j + nearest_x[jj]) * (*map)->p + alfa[d * 2    ]             ] += 
								r[d] * w[ii * 2    ] * w[jj * 2 + 1];
							(*map)->Map[(i                ) * strsz + (j + nearest_x[jj]) * (*map)->p + alfa[d * 2 + 1] + CNTPARTION] += 
								r[d] * w[ii * 2    ] * w[jj * 2 + 1];
						}
						if ((i + nearest_y[ii] >= 0) && (i + nearest_y[ii] <= sizeY - 1) && (j + nearest_x[jj] >= 0) && (j + nearest_x[jj] <= sizeX - 1))
						{
							(*map)->Map[(i + nearest_y[ii]) * strsz + (j + nearest_x[jj]) * (*map)->p + alfa[d * 2    ]             ] += 
								r[d] * w[ii * 2 + 1] * w[jj * 2 + 1];
							(*map)->Map[(i + nearest_y[ii]) * strsz + (j + nearest_x[jj]) * (*map)->p + alfa[d * 2 + 1] + CNTPARTION] += 
								r[d] * w[ii * 2 + 1] * w[jj * 2 + 1];
						}
					}
                }/*for(jj = 0; jj < k; jj++)*/
            }/*for(ii = 0; ii < k; ii++)*/
        }/*for(j = 1; j < sizeX - 1; j++)*/
    }/*for(i = 1; i < sizeY - 1; i++)*/
    
    cvReleaseImage(&dx);
    cvReleaseImage(&dy);


    free(w);
    free(nearest_x);
    free(nearest_y);

    free(r);
    free(alfa);

    return LATENT_SVM_OK;
}

/*
// Feature map Normalization and Truncation 
//
// API
// int normalizationAndTruncationFeatureMaps(featureMap *map, const float alfa);
// INPUT
// map               - feature map
// alfa              - truncation threshold
// OUTPUT
// map               - truncated and normalized feature map
// RESULT
// Error status
*/
int normalizationAndTruncationFeatureMaps(CvLSVMFeatureMap *map, const float alfa)
{
    int i,j, ii;
    int sizeX, sizeY, p, pos, pp, xp, pos1, pos2;
    float * part_noma; // norm of C(i, j)
    float * new_data;
    float   norm_val;

    sizeX     = map->sizeX;
    sizeY     = map->sizeY;
    part_noma = (float *)malloc (sizeof(float) * (sizeX * sizeY));

    p = map->xp / 3;

    for(i = 0; i < sizeX * sizeY; i++)
    {
        norm_val = 0.0;
        pos = i * map->p;
        for(j = 0; j < p; j++)
        {
            norm_val += map->Map[pos + j] * map->Map[pos + j];
        }/*for(j = 0; j < p; j++)*/
        part_noma[i] = norm_val;
    }/*for(i = 0; i < sizeX * sizeY; i++)*/
	
    xp = map->xp;
    pp = xp * 4;
    sizeX -= 2;
    sizeY -= 2;

    new_data = (float *)malloc (sizeof(float) * (sizeX * sizeY * pp));
//normalization
    for(i = 1; i <= sizeY; i++)
    {
        for(j = 1; j <= sizeX; j++)
        {
            norm_val = sqrtf(
                part_noma[(i    )*(sizeX + 2) + (j    )] +
                part_noma[(i    )*(sizeX + 2) + (j + 1)] +
                part_noma[(i + 1)*(sizeX + 2) + (j    )] +
                part_noma[(i + 1)*(sizeX + 2) + (j + 1)]);
            pos1 = (i  ) * (sizeX + 2) * xp + (j  ) * xp;
            pos2 = (i-1) * (sizeX    ) * pp + (j-1) * pp;
            for(ii = 0; ii < p; ii++)
            {
                new_data[pos2 + ii        ] = map->Map[pos1 + ii    ] / norm_val;
            }/*for(ii = 0; ii < p; ii++)*/
            for(ii = 0; ii < 2 * p; ii++)
            {
                new_data[pos2 + ii + p * 4] = map->Map[pos1 + ii + p] / norm_val;
            }/*for(ii = 0; ii < 2 * p; ii++)*/
            norm_val = sqrtf(
                part_noma[(i    )*(sizeX + 2) + (j    )] +
                part_noma[(i    )*(sizeX + 2) + (j + 1)] +
                part_noma[(i - 1)*(sizeX + 2) + (j    )] +
                part_noma[(i - 1)*(sizeX + 2) + (j + 1)]);
            for(ii = 0; ii < p; ii++)
            {
                new_data[pos2 + ii + p    ] = map->Map[pos1 + ii    ] / norm_val;
            }/*for(ii = 0; ii < p; ii++)*/
            for(ii = 0; ii < 2 * p; ii++)
            {
                new_data[pos2 + ii + p * 6] = map->Map[pos1 + ii + p] / norm_val;
            }/*for(ii = 0; ii < 2 * p; ii++)*/
            norm_val = sqrtf(
                part_noma[(i    )*(sizeX + 2) + (j    )] +
                part_noma[(i    )*(sizeX + 2) + (j - 1)] +
                part_noma[(i + 1)*(sizeX + 2) + (j    )] +
                part_noma[(i + 1)*(sizeX + 2) + (j - 1)]);
            for(ii = 0; ii < p; ii++)
            {
                new_data[pos2 + ii + p * 2] = map->Map[pos1 + ii    ] / norm_val;
            }/*for(ii = 0; ii < p; ii++)*/
            for(ii = 0; ii < 2 * p; ii++)
            {
                new_data[pos2 + ii + p * 8] = map->Map[pos1 + ii + p] / norm_val;
            }/*for(ii = 0; ii < 2 * p; ii++)*/
            norm_val = sqrtf(
                part_noma[(i    )*(sizeX + 2) + (j    )] +
                part_noma[(i    )*(sizeX + 2) + (j - 1)] +
                part_noma[(i - 1)*(sizeX + 2) + (j    )] +
                part_noma[(i - 1)*(sizeX + 2) + (j - 1)]);
            for(ii = 0; ii < p; ii++)
            {
                new_data[pos2 + ii + p * 3 ] = map->Map[pos1 + ii    ] / norm_val;
            }/*for(ii = 0; ii < p; ii++)*/
            for(ii = 0; ii < 2 * p; ii++)
            {
                new_data[pos2 + ii + p * 10] = map->Map[pos1 + ii + p] / norm_val;
            }/*for(ii = 0; ii < 2 * p; ii++)*/
        }/*for(j = 1; j <= sizeX; j++)*/
    }/*for(i = 1; i <= sizeY; i++)*/
//truncation
    for(i = 0; i < sizeX * sizeY * pp; i++)
    {
        if(new_data [i] > alfa) new_data [i] = alfa;
    }/*for(i = 0; i < sizeX * sizeY * pp; i++)*/
//swop data

    map->p  = pp;
    map->xp = xp;
    map->sizeX = sizeX;
    map->sizeY = sizeY;

    free (map->Map);
    free (part_noma);

    map->Map = new_data;

    return LATENT_SVM_OK;
}
/*
// Feature map reduction
// In each cell we reduce dimension of the feature vector
// according to original paper special procedure
//
// API
// int PCAFeatureMaps(featureMap *map)
// INPUT
// map               - feature map
// OUTPUT
// map               - feature map
// RESULT
// Error status
*/
int PCAFeatureMaps(CvLSVMFeatureMap *map)
{ 
    int i,j, ii, jj, k;
    int sizeX, sizeY, p,  pp, xp, yp, pos1, pos2;
    float * new_data;
    float val;
    float nx, ny;
    
    sizeX = map->sizeX;
    sizeY = map->sizeY;
    p     = map->p;
    pp    = map->xp + 4;
    yp    = 4;
    xp    = (map->xp / 3);

    nx    = 1.0f / sqrtf((float)(xp * 2));
    ny    = 1.0f / sqrtf((float)(yp    ));

    new_data = (float *)malloc (sizeof(float) * (sizeX * sizeY * pp));

    for(i = 0; i < sizeY; i++)
    {
        for(j = 0; j < sizeX; j++)
        {
            pos1 = ((i)*sizeX + j)*p;
            pos2 = ((i)*sizeX + j)*pp;
            k = 0;
            for(jj = 0; jj < xp * 2; jj++)
            {
                val = 0;
                for(ii = 0; ii < yp; ii++)
                {
                    val += map->Map[pos1 + yp * xp + ii * xp * 2 + jj];
                }/*for(ii = 0; ii < yp; ii++)*/
                new_data[pos2 + k] = val * ny;
                k++;
            }/*for(jj = 0; jj < xp * 2; jj++)*/
            for(jj = 0; jj < xp; jj++)
            {
                val = 0;
                for(ii = 0; ii < yp; ii++)
                {
                    val += map->Map[pos1 + ii * xp + jj];
                }/*for(ii = 0; ii < yp; ii++)*/
                new_data[pos2 + k] = val * ny;
                k++;
            }/*for(jj = 0; jj < xp; jj++)*/
            for(ii = 0; ii < yp; ii++)
            {
                val = 0;
                for(jj = 0; jj < 2 * xp; jj++)
                {
                    val += map->Map[pos1 + yp * xp + ii * xp * 2 + jj];
                }/*for(jj = 0; jj < xp; jj++)*/
                new_data[pos2 + k] = val * nx;
                k++;
            } /*for(ii = 0; ii < yp; ii++)*/           
        }/*for(j = 0; j < sizeX; j++)*/
    }/*for(i = 0; i < sizeY; i++)*/
//swop data

    map->p  = pp;
    map->xp = pp;

    free (map->Map);

    map->Map = new_data;

    return LATENT_SVM_OK;
}

/*
// Getting feature pyramid  
//
// API
// int getFeaturePyramid(IplImage * image, const filterObject **all_F, 
                      const int n_f,
                      const int lambda, const int k, 
                      const int startX, const int startY, 
                      const int W, const int H, featurePyramid **maps);
// INPUT
// image             - image
// lambda            - resize scale
// k                 - size of cells
// startX            - X coordinate of the image rectangle to search
// startY            - Y coordinate of the image rectangle to search
// W                 - width of the image rectangle to search
// H                 - height of the image rectangle to search
// OUTPUT
// maps              - feature maps for all levels
// RESULT
// Error status
*/
int getFeaturePyramid(IplImage * image,
                      const int lambda, const int k, 
                      const int startX, const int startY, 
                      const int W, const int H, CvLSVMFeaturePyramid **maps)
{
    IplImage *img2, *imgTmp, *imgResize;
    float   step, tmp;
    int      cntStep;
    int      maxcall;
    int i;
    int err;
    CvLSVMFeatureMap *map;
    
    //geting subimage
    cvSetImageROI(image, cvRect(startX, startY, W, H));
    img2 = cvCreateImage(cvGetSize(image), image->depth, image->nChannels);
    cvCopy(image, img2, NULL);
    cvResetImageROI(image);

    if(img2->depth != IPL_DEPTH_32F)
    {
        imgResize = cvCreateImage(cvSize(img2->width , img2->height) , IPL_DEPTH_32F , 3);
        cvConvert(img2, imgResize);
    }
    else
    {
        imgResize = img2;
    }
    
    step = powf(2.0f, 1.0f/ ((float)lambda));
    maxcall = W/k;
    if( maxcall > H/k )
    {
        maxcall = H/k;
    }
    cntStep = (int)(logf((float)maxcall/(5.0f))/logf(step)) + 1;
    //printf("Count step: %f %d\n", step, cntStep);

    allocFeaturePyramidObject(maps, lambda, cntStep + lambda);

    for(i = 0; i < lambda; i++)
    {
        tmp = 1.0f / powf(step, (float)i);
        imgTmp = resize_opencv (imgResize, tmp);
        //imgTmp = resize_article_dp(img2, tmp, 4);
        err = getFeatureMaps_dp(imgTmp, 4, &map);
        err = normalizationAndTruncationFeatureMaps(map, 0.2f);
        err = PCAFeatureMaps(map);
        (*maps)->pyramid[i] = map;
        //printf("%d, %d\n", map->sizeY, map->sizeX);
        cvReleaseImage(&imgTmp);
    }

    /**********************************one**************/
    for(i = 0; i <  cntStep; i++)
    {
        tmp = 1.0f / powf(step, (float)i);
        imgTmp = resize_opencv (imgResize, tmp);
        //imgTmp = resize_article_dp(imgResize, tmp, 8);
	    err = getFeatureMaps_dp(imgTmp, 8, &map);
        err = normalizationAndTruncationFeatureMaps(map, 0.2f);
        err = PCAFeatureMaps(map);
        (*maps)->pyramid[i + lambda] = map;
        //printf("%d, %d\n", map->sizeY, map->sizeX);
		cvReleaseImage(&imgTmp);
    }/*for(i = 0; i < cntStep; i++)*/

    if(img2->depth != IPL_DEPTH_32F)
    {
        cvReleaseImage(&imgResize);
    }

    cvReleaseImage(&img2);
    return LATENT_SVM_OK;
}

/*
// add zero border to feature map
//
// API
// int addBordersToFeatureMaps(featureMap *map, const int bX, const int bY);
// INPUT
// map               - feature map
// bX                - border size in x
// bY                - border size in y
// OUTPUT
// map               - feature map
// RESULT
// Error status
*/
int addBordersToFeatureMaps(CvLSVMFeatureMap *map, const int bX, const int bY){
    int i,j, jj;
    int sizeX, sizeY, p, pos1, pos2;
    float * new_data;
    
    sizeX = map->sizeX;
    sizeY = map->sizeY;
    p     = map->p;

    new_data = (float *)malloc (sizeof(float) * ((sizeX + 2 * bX) * (sizeY + 2 * bY) * p));

    for(i = 0; i < ((sizeX + 2 * bX) * (sizeY + 2 * bY) * p); i++)
    {
        new_data[i] = (float)0;
    }/*for(i = 0; i < ((sizeX + 2 * bX) * (sizeY + 2 * bY) * p); i++)*/

    for(i = 0; i < sizeY; i++)
    {
        for(j = 0; j < sizeX; j++)
        {

            pos1 = ((i     )*sizeX            + (j     )) * p;
            pos2 = ((i + bY)*(sizeX + 2 * bX) + (j + bX)) * p;
            
            for(jj = 0; jj < p; jj++)
            {
                new_data[pos2 + jj] = map->Map[pos1 + jj];
            }/*for(jj = 0; jj < p; jj++)*/
        }/*for(j = 0; j < sizeX; j++)*/
    }/*for(i = 0; i < sizeY; i++)*/
    //swop data

    map->sizeX = sizeX + 2 * bX;
    map->sizeY = sizeY + 2 * bY;
    
    free (map->Map);

    map->Map = new_data;

    return LATENT_SVM_OK;
}