1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <vector>
/////////////////////////////////////////////////////////////////////////////////////////
// Default LSD parameters
// SIGMA_SCALE 0.6 - Sigma for Gaussian filter is computed as sigma = sigma_scale/scale.
// QUANT 2.0 - Bound to the quantization error on the gradient norm.
// ANG_TH 22.5 - Gradient angle tolerance in degrees.
// LOG_EPS 0.0 - Detection threshold: -log10(NFA) > log_eps
// DENSITY_TH 0.7 - Minimal density of region points in rectangle.
// N_BINS 1024 - Number of bins in pseudo-ordering of gradient modulus.
#define M_3_2_PI (3 * CV_PI) / 2 // 3/2 pi
#define M_2__PI (2 * CV_PI) // 2 pi
#ifndef M_LN10
#define M_LN10 2.30258509299404568402
#endif
#define NOTDEF double(-1024.0) // Label for pixels with undefined gradient.
#define NOTUSED 0 // Label for pixels not used in yet.
#define USED 1 // Label for pixels already used in detection.
#define RELATIVE_ERROR_FACTOR 100.0
const double DEG_TO_RADS = CV_PI / 180;
#define log_gamma(x) ((x)>15.0?log_gamma_windschitl(x):log_gamma_lanczos(x))
struct edge
{
cv::Point p;
bool taken;
};
/////////////////////////////////////////////////////////////////////////////////////////
inline double distSq(const double x1, const double y1,
const double x2, const double y2)
{
return (x2 - x1)*(x2 - x1) + (y2 - y1)*(y2 - y1);
}
inline double dist(const double x1, const double y1,
const double x2, const double y2)
{
return sqrt(distSq(x1, y1, x2, y2));
}
// Signed angle difference
inline double angle_diff_signed(const double& a, const double& b)
{
double diff = a - b;
while(diff <= -CV_PI) diff += M_2__PI;
while(diff > CV_PI) diff -= M_2__PI;
return diff;
}
// Absolute value angle difference
inline double angle_diff(const double& a, const double& b)
{
return std::fabs(angle_diff_signed(a, b));
}
// Compare doubles by relative error.
inline bool double_equal(const double& a, const double& b)
{
// trivial case
if(a == b) return true;
double abs_diff = fabs(a - b);
double aa = fabs(a);
double bb = fabs(b);
double abs_max = (aa > bb)? aa : bb;
if(abs_max < DBL_MIN) abs_max = DBL_MIN;
return (abs_diff / abs_max) <= (RELATIVE_ERROR_FACTOR * DBL_EPSILON);
}
inline bool AsmallerB_XoverY(const edge& a, const edge& b)
{
if (a.p.x == b.p.x) return a.p.y < b.p.y;
else return a.p.x < b.p.x;
}
/**
* Computes the natural logarithm of the absolute value of
* the gamma function of x using Windschitl method.
* See http://www.rskey.org/gamma.htm
*/
inline double log_gamma_windschitl(const double& x)
{
return 0.918938533204673 + (x-0.5)*log(x) - x
+ 0.5*x*log(x*sinh(1/x) + 1/(810.0*pow(x, 6.0)));
}
/**
* Computes the natural logarithm of the absolute value of
* the gamma function of x using the Lanczos approximation.
* See http://www.rskey.org/gamma.htm
*/
inline double log_gamma_lanczos(const double& x)
{
static double q[7] = { 75122.6331530, 80916.6278952, 36308.2951477,
8687.24529705, 1168.92649479, 83.8676043424,
2.50662827511 };
double a = (x + 0.5) * log(x + 5.5) - (x + 5.5);
double b = 0;
for(int n = 0; n < 7; ++n)
{
a -= log(x + double(n));
b += q[n] * pow(x, double(n));
}
return a + log(b);
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////
namespace cv{
class LineSegmentDetectorImpl : public LineSegmentDetector
{
public:
/**
* Create a LineSegmentDetectorImpl object. Specifying scale, number of subdivisions for the image, should the lines be refined and other constants as follows:
*
* @param _refine How should the lines found be refined?
* LSD_REFINE_NONE - No refinement applied.
* LSD_REFINE_STD - Standard refinement is applied. E.g. breaking arches into smaller line approximations.
* LSD_REFINE_ADV - Advanced refinement. Number of false alarms is calculated,
* lines are refined through increase of precision, decrement in size, etc.
* @param _scale The scale of the image that will be used to find the lines. Range (0..1].
* @param _sigma_scale Sigma for Gaussian filter is computed as sigma = _sigma_scale/_scale.
* @param _quant Bound to the quantization error on the gradient norm.
* @param _ang_th Gradient angle tolerance in degrees.
* @param _log_eps Detection threshold: -log10(NFA) > _log_eps
* @param _density_th Minimal density of aligned region points in rectangle.
* @param _n_bins Number of bins in pseudo-ordering of gradient modulus.
*/
LineSegmentDetectorImpl(int _refine = LSD_REFINE_STD, double _scale = 0.8,
double _sigma_scale = 0.6, double _quant = 2.0, double _ang_th = 22.5,
double _log_eps = 0, double _density_th = 0.7, int _n_bins = 1024);
/**
* Detect lines in the input image.
*
* @param _image A grayscale(CV_8UC1) input image.
* If only a roi needs to be selected, use
* lsd_ptr->detect(image(roi), ..., lines);
* lines += Scalar(roi.x, roi.y, roi.x, roi.y);
* @param _lines Return: A vector of Vec4i or Vec4f elements specifying the beginning and ending point of a line.
* Where Vec4i/Vec4f is (x1, y1, x2, y2), point 1 is the start, point 2 - end.
* Returned lines are strictly oriented depending on the gradient.
* @param width Return: Vector of widths of the regions, where the lines are found. E.g. Width of line.
* @param prec Return: Vector of precisions with which the lines are found.
* @param nfa Return: Vector containing number of false alarms in the line region, with precision of 10%.
* The bigger the value, logarithmically better the detection.
* * -1 corresponds to 10 mean false alarms
* * 0 corresponds to 1 mean false alarm
* * 1 corresponds to 0.1 mean false alarms
* This vector will be calculated _only_ when the objects type is REFINE_ADV
*/
void detect(InputArray _image, OutputArray _lines,
OutputArray width = noArray(), OutputArray prec = noArray(),
OutputArray nfa = noArray());
/**
* Draw lines on the given canvas.
*
* @param image The image, where lines will be drawn.
* Should have the size of the image, where the lines were found
* @param lines The lines that need to be drawn
*/
void drawSegments(InputOutputArray _image, InputArray lines);
/**
* Draw both vectors on the image canvas. Uses blue for lines 1 and red for lines 2.
*
* @param size The size of the image, where lines1 and lines2 were found.
* @param lines1 The first lines that need to be drawn. Color - Blue.
* @param lines2 The second lines that need to be drawn. Color - Red.
* @param image An optional image, where lines will be drawn.
* Should have the size of the image, where the lines were found
* @return The number of mismatching pixels between lines1 and lines2.
*/
int compareSegments(const Size& size, InputArray lines1, InputArray lines2, InputOutputArray _image = noArray());
private:
Mat image;
Mat scaled_image;
Mat_<double> angles; // in rads
Mat_<double> modgrad;
Mat_<uchar> used;
int img_width;
int img_height;
double LOG_NT;
bool w_needed;
bool p_needed;
bool n_needed;
const double SCALE;
const int doRefine;
const double SIGMA_SCALE;
const double QUANT;
const double ANG_TH;
const double LOG_EPS;
const double DENSITY_TH;
const int N_BINS;
struct RegionPoint {
int x;
int y;
uchar* used;
double angle;
double modgrad;
};
struct coorlist
{
Point2i p;
struct coorlist* next;
};
std::vector<coorlist> list;
struct rect
{
double x1, y1, x2, y2; // first and second point of the line segment
double width; // rectangle width
double x, y; // center of the rectangle
double theta; // angle
double dx,dy; // (dx,dy) is vector oriented as the line segment
double prec; // tolerance angle
double p; // probability of a point with angle within 'prec'
};
LineSegmentDetectorImpl& operator= (const LineSegmentDetectorImpl&); // to quiet MSVC
/**
* Detect lines in the whole input image.
*
* @param lines Return: A vector of Vec4f elements specifying the beginning and ending point of a line.
* Where Vec4f is (x1, y1, x2, y2), point 1 is the start, point 2 - end.
* Returned lines are strictly oriented depending on the gradient.
* @param widths Return: Vector of widths of the regions, where the lines are found. E.g. Width of line.
* @param precisions Return: Vector of precisions with which the lines are found.
* @param nfas Return: Vector containing number of false alarms in the line region, with precision of 10%.
* The bigger the value, logarithmically better the detection.
* * -1 corresponds to 10 mean false alarms
* * 0 corresponds to 1 mean false alarm
* * 1 corresponds to 0.1 mean false alarms
*/
void flsd(std::vector<Vec4f>& lines,
std::vector<double>& widths, std::vector<double>& precisions,
std::vector<double>& nfas);
/**
* Finds the angles and the gradients of the image. Generates a list of pseudo ordered points.
*
* @param threshold The minimum value of the angle that is considered defined, otherwise NOTDEF
* @param n_bins The number of bins with which gradients are ordered by, using bucket sort.
* @param list Return: Vector of coordinate points that are pseudo ordered by magnitude.
* Pixels would be ordered by norm value, up to a precision given by max_grad/n_bins.
*/
void ll_angle(const double& threshold, const unsigned int& n_bins);
/**
* Grow a region starting from point s with a defined precision,
* returning the containing points size and the angle of the gradients.
*
* @param s Starting point for the region.
* @param reg Return: Vector of points, that are part of the region
* @param reg_angle Return: The mean angle of the region.
* @param prec The precision by which each region angle should be aligned to the mean.
*/
void region_grow(const Point2i& s, std::vector<RegionPoint>& reg,
double& reg_angle, const double& prec);
/**
* Finds the bounding rotated rectangle of a region.
*
* @param reg The region of points, from which the rectangle to be constructed from.
* @param reg_angle The mean angle of the region.
* @param prec The precision by which points were found.
* @param p Probability of a point with angle within 'prec'.
* @param rec Return: The generated rectangle.
*/
void region2rect(const std::vector<RegionPoint>& reg, const double reg_angle,
const double prec, const double p, rect& rec) const;
/**
* Compute region's angle as the principal inertia axis of the region.
* @return Regions angle.
*/
double get_theta(const std::vector<RegionPoint>& reg, const double& x,
const double& y, const double& reg_angle, const double& prec) const;
/**
* An estimation of the angle tolerance is performed by the standard deviation of the angle at points
* near the region's starting point. Then, a new region is grown starting from the same point, but using the
* estimated angle tolerance. If this fails to produce a rectangle with the right density of region points,
* 'reduce_region_radius' is called to try to satisfy this condition.
*/
bool refine(std::vector<RegionPoint>& reg, double reg_angle,
const double prec, double p, rect& rec, const double& density_th);
/**
* Reduce the region size, by elimination the points far from the starting point, until that leads to
* rectangle with the right density of region points or to discard the region if too small.
*/
bool reduce_region_radius(std::vector<RegionPoint>& reg, double reg_angle,
const double prec, double p, rect& rec, double density, const double& density_th);
/**
* Try some rectangles variations to improve NFA value. Only if the rectangle is not meaningful (i.e., log_nfa <= log_eps).
* @return The new NFA value.
*/
double rect_improve(rect& rec) const;
/**
* Calculates the number of correctly aligned points within the rectangle.
* @return The new NFA value.
*/
double rect_nfa(const rect& rec) const;
/**
* Computes the NFA values based on the total number of points, points that agree.
* n, k, p are the binomial parameters.
* @return The new NFA value.
*/
double nfa(const int& n, const int& k, const double& p) const;
/**
* Is the point at place 'address' aligned to angle theta, up to precision 'prec'?
* @return Whether the point is aligned.
*/
bool isAligned(int x, int y, const double& theta, const double& prec) const;
};
/////////////////////////////////////////////////////////////////////////////////////////
CV_EXPORTS Ptr<LineSegmentDetector> createLineSegmentDetector(
int _refine, double _scale, double _sigma_scale, double _quant, double _ang_th,
double _log_eps, double _density_th, int _n_bins)
{
return makePtr<LineSegmentDetectorImpl>(
_refine, _scale, _sigma_scale, _quant, _ang_th,
_log_eps, _density_th, _n_bins);
}
/////////////////////////////////////////////////////////////////////////////////////////
LineSegmentDetectorImpl::LineSegmentDetectorImpl(int _refine, double _scale, double _sigma_scale, double _quant,
double _ang_th, double _log_eps, double _density_th, int _n_bins)
:SCALE(_scale), doRefine(_refine), SIGMA_SCALE(_sigma_scale), QUANT(_quant),
ANG_TH(_ang_th), LOG_EPS(_log_eps), DENSITY_TH(_density_th), N_BINS(_n_bins)
{
CV_Assert(_scale > 0 && _sigma_scale > 0 && _quant >= 0 &&
_ang_th > 0 && _ang_th < 180 && _density_th >= 0 && _density_th < 1 &&
_n_bins > 0);
}
void LineSegmentDetectorImpl::detect(InputArray _image, OutputArray _lines,
OutputArray _width, OutputArray _prec, OutputArray _nfa)
{
CV_INSTRUMENT_REGION()
image = _image.getMat();
CV_Assert(!image.empty() && image.type() == CV_8UC1);
std::vector<Vec4f> lines;
std::vector<double> w, p, n;
w_needed = _width.needed();
p_needed = _prec.needed();
if (doRefine < LSD_REFINE_ADV)
n_needed = false;
else
n_needed = _nfa.needed();
flsd(lines, w, p, n);
Mat(lines).copyTo(_lines);
if(w_needed) Mat(w).copyTo(_width);
if(p_needed) Mat(p).copyTo(_prec);
if(n_needed) Mat(n).copyTo(_nfa);
}
void LineSegmentDetectorImpl::flsd(std::vector<Vec4f>& lines,
std::vector<double>& widths, std::vector<double>& precisions,
std::vector<double>& nfas)
{
// Angle tolerance
const double prec = CV_PI * ANG_TH / 180;
const double p = ANG_TH / 180;
const double rho = QUANT / sin(prec); // gradient magnitude threshold
if(SCALE != 1)
{
Mat gaussian_img;
const double sigma = (SCALE < 1)?(SIGMA_SCALE / SCALE):(SIGMA_SCALE);
const double sprec = 3;
const unsigned int h = (unsigned int)(ceil(sigma * sqrt(2 * sprec * log(10.0))));
Size ksize(1 + 2 * h, 1 + 2 * h); // kernel size
GaussianBlur(image, gaussian_img, ksize, sigma);
// Scale image to needed size
resize(gaussian_img, scaled_image, Size(), SCALE, SCALE);
ll_angle(rho, N_BINS);
}
else
{
scaled_image = image;
ll_angle(rho, N_BINS);
}
LOG_NT = 5 * (log10(double(img_width)) + log10(double(img_height))) / 2 + log10(11.0);
const size_t min_reg_size = size_t(-LOG_NT/log10(p)); // minimal number of points in region that can give a meaningful event
// // Initialize region only when needed
// Mat region = Mat::zeros(scaled_image.size(), CV_8UC1);
used = Mat_<uchar>::zeros(scaled_image.size()); // zeros = NOTUSED
std::vector<RegionPoint> reg;
// Search for line segments
for(size_t i = 0, list_size = list.size(); i < list_size; ++i)
{
const Point2i& point = list[i].p;
if((used.at<uchar>(point) == NOTUSED) && (angles.at<double>(point) != NOTDEF))
{
double reg_angle;
region_grow(list[i].p, reg, reg_angle, prec);
// Ignore small regions
if(reg.size() < min_reg_size) { continue; }
// Construct rectangular approximation for the region
rect rec;
region2rect(reg, reg_angle, prec, p, rec);
double log_nfa = -1;
if(doRefine > LSD_REFINE_NONE)
{
// At least REFINE_STANDARD lvl.
if(!refine(reg, reg_angle, prec, p, rec, DENSITY_TH)) { continue; }
if(doRefine >= LSD_REFINE_ADV)
{
// Compute NFA
log_nfa = rect_improve(rec);
if(log_nfa <= LOG_EPS) { continue; }
}
}
// Found new line
// Add the offset
rec.x1 += 0.5; rec.y1 += 0.5;
rec.x2 += 0.5; rec.y2 += 0.5;
// scale the result values if a sub-sampling was performed
if(SCALE != 1)
{
rec.x1 /= SCALE; rec.y1 /= SCALE;
rec.x2 /= SCALE; rec.y2 /= SCALE;
rec.width /= SCALE;
}
//Store the relevant data
lines.push_back(Vec4f(float(rec.x1), float(rec.y1), float(rec.x2), float(rec.y2)));
if(w_needed) widths.push_back(rec.width);
if(p_needed) precisions.push_back(rec.p);
if(n_needed && doRefine >= LSD_REFINE_ADV) nfas.push_back(log_nfa);
}
}
}
void LineSegmentDetectorImpl::ll_angle(const double& threshold,
const unsigned int& n_bins)
{
//Initialize data
angles = Mat_<double>(scaled_image.size());
modgrad = Mat_<double>(scaled_image.size());
img_width = scaled_image.cols;
img_height = scaled_image.rows;
// Undefined the down and right boundaries
angles.row(img_height - 1).setTo(NOTDEF);
angles.col(img_width - 1).setTo(NOTDEF);
// Computing gradient for remaining pixels
double max_grad = -1;
for(int y = 0; y < img_height - 1; ++y)
{
const uchar* scaled_image_row = scaled_image.ptr<uchar>(y);
const uchar* next_scaled_image_row = scaled_image.ptr<uchar>(y+1);
double* angles_row = angles.ptr<double>(y);
double* modgrad_row = modgrad.ptr<double>(y);
for(int x = 0; x < img_width-1; ++x)
{
int DA = next_scaled_image_row[x + 1] - scaled_image_row[x];
int BC = scaled_image_row[x + 1] - next_scaled_image_row[x];
int gx = DA + BC; // gradient x component
int gy = DA - BC; // gradient y component
double norm = std::sqrt((gx * gx + gy * gy) / 4.0); // gradient norm
modgrad_row[x] = norm; // store gradient
if (norm <= threshold) // norm too small, gradient no defined
{
angles_row[x] = NOTDEF;
}
else
{
angles_row[x] = fastAtan2(float(gx), float(-gy)) * DEG_TO_RADS; // gradient angle computation
if (norm > max_grad) { max_grad = norm; }
}
}
}
// Compute histogram of gradient values
list.resize(img_width * img_height);
std::vector<coorlist*> range_s(n_bins);
std::vector<coorlist*> range_e(n_bins);
unsigned int count = 0;
double bin_coef = (max_grad > 0) ? double(n_bins - 1) / max_grad : 0; // If all image is smooth, max_grad <= 0
for(int y = 0; y < img_height - 1; ++y)
{
const double* modgrad_row = modgrad.ptr<double>(y);
for(int x = 0; x < img_width - 1; ++x)
{
// Store the point in the right bin according to its norm
int i = int(modgrad_row[x] * bin_coef);
if(!range_e[i])
{
range_e[i] = range_s[i] = &list[count];
++count;
}
else
{
range_e[i]->next = &list[count];
range_e[i] = &list[count];
++count;
}
range_e[i]->p = Point(x, y);
range_e[i]->next = 0;
}
}
// Sort
int idx = n_bins - 1;
for(;idx > 0 && !range_s[idx]; --idx);
coorlist* start = range_s[idx];
coorlist* end = range_e[idx];
if(start)
{
while(idx > 0)
{
--idx;
if(range_s[idx])
{
end->next = range_s[idx];
end = range_e[idx];
}
}
}
}
void LineSegmentDetectorImpl::region_grow(const Point2i& s, std::vector<RegionPoint>& reg,
double& reg_angle, const double& prec)
{
reg.clear();
// Point to this region
RegionPoint seed;
seed.x = s.x;
seed.y = s.y;
seed.used = &used.at<uchar>(s);
reg_angle = angles.at<double>(s);
seed.angle = reg_angle;
seed.modgrad = modgrad.at<double>(s);
reg.push_back(seed);
float sumdx = float(std::cos(reg_angle));
float sumdy = float(std::sin(reg_angle));
*seed.used = USED;
//Try neighboring regions
for (size_t i = 0;i<reg.size();i++)
{
const RegionPoint& rpoint = reg[i];
int xx_min = std::max(rpoint.x - 1, 0), xx_max = std::min(rpoint.x + 1, img_width - 1);
int yy_min = std::max(rpoint.y - 1, 0), yy_max = std::min(rpoint.y + 1, img_height - 1);
for(int yy = yy_min; yy <= yy_max; ++yy)
{
uchar* used_row = used.ptr<uchar>(yy);
const double* angles_row = angles.ptr<double>(yy);
const double* modgrad_row = modgrad.ptr<double>(yy);
for(int xx = xx_min; xx <= xx_max; ++xx)
{
uchar& is_used = used_row[xx];
if(is_used != USED &&
(isAligned(xx, yy, reg_angle, prec)))
{
const double& angle = angles_row[xx];
// Add point
is_used = USED;
RegionPoint region_point;
region_point.x = xx;
region_point.y = yy;
region_point.used = &is_used;
region_point.modgrad = modgrad_row[xx];
region_point.angle = angle;
reg.push_back(region_point);
// Update region's angle
sumdx += cos(float(angle));
sumdy += sin(float(angle));
// reg_angle is used in the isAligned, so it needs to be updates?
reg_angle = fastAtan2(sumdy, sumdx) * DEG_TO_RADS;
}
}
}
}
}
void LineSegmentDetectorImpl::region2rect(const std::vector<RegionPoint>& reg,
const double reg_angle, const double prec, const double p, rect& rec) const
{
double x = 0, y = 0, sum = 0;
for(size_t i = 0; i < reg.size(); ++i)
{
const RegionPoint& pnt = reg[i];
const double& weight = pnt.modgrad;
x += double(pnt.x) * weight;
y += double(pnt.y) * weight;
sum += weight;
}
// Weighted sum must differ from 0
CV_Assert(sum > 0);
x /= sum;
y /= sum;
double theta = get_theta(reg, x, y, reg_angle, prec);
// Find length and width
double dx = cos(theta);
double dy = sin(theta);
double l_min = 0, l_max = 0, w_min = 0, w_max = 0;
for(size_t i = 0; i < reg.size(); ++i)
{
double regdx = double(reg[i].x) - x;
double regdy = double(reg[i].y) - y;
double l = regdx * dx + regdy * dy;
double w = -regdx * dy + regdy * dx;
if(l > l_max) l_max = l;
else if(l < l_min) l_min = l;
if(w > w_max) w_max = w;
else if(w < w_min) w_min = w;
}
// Store values
rec.x1 = x + l_min * dx;
rec.y1 = y + l_min * dy;
rec.x2 = x + l_max * dx;
rec.y2 = y + l_max * dy;
rec.width = w_max - w_min;
rec.x = x;
rec.y = y;
rec.theta = theta;
rec.dx = dx;
rec.dy = dy;
rec.prec = prec;
rec.p = p;
// Min width of 1 pixel
if(rec.width < 1.0) rec.width = 1.0;
}
double LineSegmentDetectorImpl::get_theta(const std::vector<RegionPoint>& reg, const double& x,
const double& y, const double& reg_angle, const double& prec) const
{
double Ixx = 0.0;
double Iyy = 0.0;
double Ixy = 0.0;
// Compute inertia matrix
for(size_t i = 0; i < reg.size(); ++i)
{
const double& regx = reg[i].x;
const double& regy = reg[i].y;
const double& weight = reg[i].modgrad;
double dx = regx - x;
double dy = regy - y;
Ixx += dy * dy * weight;
Iyy += dx * dx * weight;
Ixy -= dx * dy * weight;
}
// Check if inertia matrix is null
CV_Assert(!(double_equal(Ixx, 0) && double_equal(Iyy, 0) && double_equal(Ixy, 0)));
// Compute smallest eigenvalue
double lambda = 0.5 * (Ixx + Iyy - sqrt((Ixx - Iyy) * (Ixx - Iyy) + 4.0 * Ixy * Ixy));
// Compute angle
double theta = (fabs(Ixx)>fabs(Iyy))?
double(fastAtan2(float(lambda - Ixx), float(Ixy))):
double(fastAtan2(float(Ixy), float(lambda - Iyy))); // in degs
theta *= DEG_TO_RADS;
// Correct angle by 180 deg if necessary
if(angle_diff(theta, reg_angle) > prec) { theta += CV_PI; }
return theta;
}
bool LineSegmentDetectorImpl::refine(std::vector<RegionPoint>& reg, double reg_angle,
const double prec, double p, rect& rec, const double& density_th)
{
double density = double(reg.size()) / (dist(rec.x1, rec.y1, rec.x2, rec.y2) * rec.width);
if (density >= density_th) { return true; }
// Try to reduce angle tolerance
double xc = double(reg[0].x);
double yc = double(reg[0].y);
const double& ang_c = reg[0].angle;
double sum = 0, s_sum = 0;
int n = 0;
for (size_t i = 0; i < reg.size(); ++i)
{
*(reg[i].used) = NOTUSED;
if (dist(xc, yc, reg[i].x, reg[i].y) < rec.width)
{
const double& angle = reg[i].angle;
double ang_d = angle_diff_signed(angle, ang_c);
sum += ang_d;
s_sum += ang_d * ang_d;
++n;
}
}
double mean_angle = sum / double(n);
// 2 * standard deviation
double tau = 2.0 * sqrt((s_sum - 2.0 * mean_angle * sum) / double(n) + mean_angle * mean_angle);
// Try new region
region_grow(Point(reg[0].x, reg[0].y), reg, reg_angle, tau);
if (reg.size() < 2) { return false; }
region2rect(reg, reg_angle, prec, p, rec);
density = double(reg.size()) / (dist(rec.x1, rec.y1, rec.x2, rec.y2) * rec.width);
if (density < density_th)
{
return reduce_region_radius(reg, reg_angle, prec, p, rec, density, density_th);
}
else
{
return true;
}
}
bool LineSegmentDetectorImpl::reduce_region_radius(std::vector<RegionPoint>& reg, double reg_angle,
const double prec, double p, rect& rec, double density, const double& density_th)
{
// Compute region's radius
double xc = double(reg[0].x);
double yc = double(reg[0].y);
double radSq1 = distSq(xc, yc, rec.x1, rec.y1);
double radSq2 = distSq(xc, yc, rec.x2, rec.y2);
double radSq = radSq1 > radSq2 ? radSq1 : radSq2;
while(density < density_th)
{
radSq *= 0.75*0.75; // Reduce region's radius to 75% of its value
// Remove points from the region and update 'used' map
for (size_t i = 0; i < reg.size(); ++i)
{
if(distSq(xc, yc, double(reg[i].x), double(reg[i].y)) > radSq)
{
// Remove point from the region
*(reg[i].used) = NOTUSED;
std::swap(reg[i], reg[reg.size() - 1]);
reg.pop_back();
--i; // To avoid skipping one point
}
}
if(reg.size() < 2) { return false; }
// Re-compute rectangle
region2rect(reg ,reg_angle, prec, p, rec);
// Re-compute region points density
density = double(reg.size()) /
(dist(rec.x1, rec.y1, rec.x2, rec.y2) * rec.width);
}
return true;
}
double LineSegmentDetectorImpl::rect_improve(rect& rec) const
{
double delta = 0.5;
double delta_2 = delta / 2.0;
double log_nfa = rect_nfa(rec);
if(log_nfa > LOG_EPS) return log_nfa; // Good rectangle
// Try to improve
// Finer precision
rect r = rect(rec); // Copy
for(int n = 0; n < 5; ++n)
{
r.p /= 2;
r.prec = r.p * CV_PI;
double log_nfa_new = rect_nfa(r);
if(log_nfa_new > log_nfa)
{
log_nfa = log_nfa_new;
rec = rect(r);
}
}
if(log_nfa > LOG_EPS) return log_nfa;
// Try to reduce width
r = rect(rec);
for(unsigned int n = 0; n < 5; ++n)
{
if((r.width - delta) >= 0.5)
{
r.width -= delta;
double log_nfa_new = rect_nfa(r);
if(log_nfa_new > log_nfa)
{
rec = rect(r);
log_nfa = log_nfa_new;
}
}
}
if(log_nfa > LOG_EPS) return log_nfa;
// Try to reduce one side of rectangle
r = rect(rec);
for(unsigned int n = 0; n < 5; ++n)
{
if((r.width - delta) >= 0.5)
{
r.x1 += -r.dy * delta_2;
r.y1 += r.dx * delta_2;
r.x2 += -r.dy * delta_2;
r.y2 += r.dx * delta_2;
r.width -= delta;
double log_nfa_new = rect_nfa(r);
if(log_nfa_new > log_nfa)
{
rec = rect(r);
log_nfa = log_nfa_new;
}
}
}
if(log_nfa > LOG_EPS) return log_nfa;
// Try to reduce other side of rectangle
r = rect(rec);
for(unsigned int n = 0; n < 5; ++n)
{
if((r.width - delta) >= 0.5)
{
r.x1 -= -r.dy * delta_2;
r.y1 -= r.dx * delta_2;
r.x2 -= -r.dy * delta_2;
r.y2 -= r.dx * delta_2;
r.width -= delta;
double log_nfa_new = rect_nfa(r);
if(log_nfa_new > log_nfa)
{
rec = rect(r);
log_nfa = log_nfa_new;
}
}
}
if(log_nfa > LOG_EPS) return log_nfa;
// Try finer precision
r = rect(rec);
for(unsigned int n = 0; n < 5; ++n)
{
if((r.width - delta) >= 0.5)
{
r.p /= 2;
r.prec = r.p * CV_PI;
double log_nfa_new = rect_nfa(r);
if(log_nfa_new > log_nfa)
{
rec = rect(r);
log_nfa = log_nfa_new;
}
}
}
return log_nfa;
}
double LineSegmentDetectorImpl::rect_nfa(const rect& rec) const
{
int total_pts = 0, alg_pts = 0;
double half_width = rec.width / 2.0;
double dyhw = rec.dy * half_width;
double dxhw = rec.dx * half_width;
edge ordered_x[4];
edge* min_y = &ordered_x[0];
edge* max_y = &ordered_x[0]; // Will be used for loop range
ordered_x[0].p.x = int(rec.x1 - dyhw); ordered_x[0].p.y = int(rec.y1 + dxhw); ordered_x[0].taken = false;
ordered_x[1].p.x = int(rec.x2 - dyhw); ordered_x[1].p.y = int(rec.y2 + dxhw); ordered_x[1].taken = false;
ordered_x[2].p.x = int(rec.x2 + dyhw); ordered_x[2].p.y = int(rec.y2 - dxhw); ordered_x[2].taken = false;
ordered_x[3].p.x = int(rec.x1 + dyhw); ordered_x[3].p.y = int(rec.y1 - dxhw); ordered_x[3].taken = false;
std::sort(ordered_x, ordered_x + 4, AsmallerB_XoverY);
// Find min y. And mark as taken. find max y.
for(unsigned int i = 1; i < 4; ++i)
{
if(min_y->p.y > ordered_x[i].p.y) {min_y = &ordered_x[i]; }
if(max_y->p.y < ordered_x[i].p.y) {max_y = &ordered_x[i]; }
}
min_y->taken = true;
// Find leftmost untaken point;
edge* leftmost = 0;
for(unsigned int i = 0; i < 4; ++i)
{
if(!ordered_x[i].taken)
{
if(!leftmost) // if uninitialized
{
leftmost = &ordered_x[i];
}
else if (leftmost->p.x > ordered_x[i].p.x)
{
leftmost = &ordered_x[i];
}
}
}
leftmost->taken = true;
// Find rightmost untaken point;
edge* rightmost = 0;
for(unsigned int i = 0; i < 4; ++i)
{
if(!ordered_x[i].taken)
{
if(!rightmost) // if uninitialized
{
rightmost = &ordered_x[i];
}
else if (rightmost->p.x < ordered_x[i].p.x)
{
rightmost = &ordered_x[i];
}
}
}
rightmost->taken = true;
// Find last untaken point;
edge* tailp = 0;
for(unsigned int i = 0; i < 4; ++i)
{
if(!ordered_x[i].taken)
{
if(!tailp) // if uninitialized
{
tailp = &ordered_x[i];
}
else if (tailp->p.x > ordered_x[i].p.x)
{
tailp = &ordered_x[i];
}
}
}
tailp->taken = true;
double flstep = (min_y->p.y != leftmost->p.y) ?
(min_y->p.x - leftmost->p.x) / (min_y->p.y - leftmost->p.y) : 0; //first left step
double slstep = (leftmost->p.y != tailp->p.x) ?
(leftmost->p.x - tailp->p.x) / (leftmost->p.y - tailp->p.x) : 0; //second left step
double frstep = (min_y->p.y != rightmost->p.y) ?
(min_y->p.x - rightmost->p.x) / (min_y->p.y - rightmost->p.y) : 0; //first right step
double srstep = (rightmost->p.y != tailp->p.x) ?
(rightmost->p.x - tailp->p.x) / (rightmost->p.y - tailp->p.x) : 0; //second right step
double lstep = flstep, rstep = frstep;
double left_x = min_y->p.x, right_x = min_y->p.x;
// Loop around all points in the region and count those that are aligned.
int min_iter = min_y->p.y;
int max_iter = max_y->p.y;
for(int y = min_iter; y <= max_iter; ++y)
{
if (y < 0 || y >= img_height) continue;
for(int x = int(left_x); x <= int(right_x); ++x)
{
if (x < 0 || x >= img_width) continue;
++total_pts;
if(isAligned(x, y, rec.theta, rec.prec))
{
++alg_pts;
}
}
if(y >= leftmost->p.y) { lstep = slstep; }
if(y >= rightmost->p.y) { rstep = srstep; }
left_x += lstep;
right_x += rstep;
}
return nfa(total_pts, alg_pts, rec.p);
}
double LineSegmentDetectorImpl::nfa(const int& n, const int& k, const double& p) const
{
// Trivial cases
if(n == 0 || k == 0) { return -LOG_NT; }
if(n == k) { return -LOG_NT - double(n) * log10(p); }
double p_term = p / (1 - p);
double log1term = (double(n) + 1) - log_gamma(double(k) + 1)
- log_gamma(double(n-k) + 1)
+ double(k) * log(p) + double(n-k) * log(1.0 - p);
double term = exp(log1term);
if(double_equal(term, 0))
{
if(k > n * p) return -log1term / M_LN10 - LOG_NT;
else return -LOG_NT;
}
// Compute more terms if needed
double bin_tail = term;
double tolerance = 0.1; // an error of 10% in the result is accepted
for(int i = k + 1; i <= n; ++i)
{
double bin_term = double(n - i + 1) / double(i);
double mult_term = bin_term * p_term;
term *= mult_term;
bin_tail += term;
if(bin_term < 1)
{
double err = term * ((1 - pow(mult_term, double(n-i+1))) / (1 - mult_term) - 1);
if(err < tolerance * fabs(-log10(bin_tail) - LOG_NT) * bin_tail) break;
}
}
return -log10(bin_tail) - LOG_NT;
}
inline bool LineSegmentDetectorImpl::isAligned(int x, int y, const double& theta, const double& prec) const
{
if(x < 0 || y < 0 || x >= angles.cols || y >= angles.rows) { return false; }
const double& a = angles.at<double>(y, x);
if(a == NOTDEF) { return false; }
// It is assumed that 'theta' and 'a' are in the range [-pi,pi]
double n_theta = theta - a;
if(n_theta < 0) { n_theta = -n_theta; }
if(n_theta > M_3_2_PI)
{
n_theta -= M_2__PI;
if(n_theta < 0) n_theta = -n_theta;
}
return n_theta <= prec;
}
void LineSegmentDetectorImpl::drawSegments(InputOutputArray _image, InputArray lines)
{
CV_INSTRUMENT_REGION()
CV_Assert(!_image.empty() && (_image.channels() == 1 || _image.channels() == 3));
Mat gray;
if (_image.channels() == 1)
{
gray = _image.getMatRef();
}
else if (_image.channels() == 3)
{
cvtColor(_image, gray, CV_BGR2GRAY);
}
// Create a 3 channel image in order to draw colored lines
std::vector<Mat> planes;
planes.push_back(gray);
planes.push_back(gray);
planes.push_back(gray);
merge(planes, _image);
Mat _lines;
_lines = lines.getMat();
int N = _lines.checkVector(4);
// Draw segments
for(int i = 0; i < N; ++i)
{
const Vec4f& v = _lines.at<Vec4f>(i);
Point2f b(v[0], v[1]);
Point2f e(v[2], v[3]);
line(_image.getMatRef(), b, e, Scalar(0, 0, 255), 1);
}
}
int LineSegmentDetectorImpl::compareSegments(const Size& size, InputArray lines1, InputArray lines2, InputOutputArray _image)
{
CV_INSTRUMENT_REGION()
Size sz = size;
if (_image.needed() && _image.size() != size) sz = _image.size();
CV_Assert(sz.area());
Mat_<uchar> I1 = Mat_<uchar>::zeros(sz);
Mat_<uchar> I2 = Mat_<uchar>::zeros(sz);
Mat _lines1;
Mat _lines2;
_lines1 = lines1.getMat();
_lines2 = lines2.getMat();
int N1 = _lines1.checkVector(4);
int N2 = _lines2.checkVector(4);
// Draw segments
for(int i = 0; i < N1; ++i)
{
Point2f b(_lines1.at<Vec4f>(i)[0], _lines1.at<Vec4f>(i)[1]);
Point2f e(_lines1.at<Vec4f>(i)[2], _lines1.at<Vec4f>(i)[3]);
line(I1, b, e, Scalar::all(255), 1);
}
for(int i = 0; i < N2; ++i)
{
Point2f b(_lines2.at<Vec4f>(i)[0], _lines2.at<Vec4f>(i)[1]);
Point2f e(_lines2.at<Vec4f>(i)[2], _lines2.at<Vec4f>(i)[3]);
line(I2, b, e, Scalar::all(255), 1);
}
// Count the pixels that don't agree
Mat Ixor;
bitwise_xor(I1, I2, Ixor);
int N = countNonZero(Ixor);
if (_image.needed())
{
CV_Assert(_image.channels() == 3);
Mat img = _image.getMatRef();
CV_Assert(img.isContinuous() && I1.isContinuous() && I2.isContinuous());
for (unsigned int i = 0; i < I1.total(); ++i)
{
uchar i1 = I1.ptr()[i];
uchar i2 = I2.ptr()[i];
if (i1 || i2)
{
unsigned int base_idx = i * 3;
if (i1) img.ptr()[base_idx] = 255;
else img.ptr()[base_idx] = 0;
img.ptr()[base_idx + 1] = 0;
if (i2) img.ptr()[base_idx + 2] = 255;
else img.ptr()[base_idx + 2] = 0;
}
}
}
return N;
}
} // namespace cv