merge.cpp 12.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html


#include "precomp.hpp"
#include "opencl_kernels_core.hpp"

namespace cv { namespace hal {

#if CV_SIMD
/*
  The trick with STORE_UNALIGNED/STORE_ALIGNED_NOCACHE is the following:
  on IA there are instructions movntps and such to which
  v_store_interleave(...., STORE_ALIGNED_NOCACHE) is mapped.
  Those instructions write directly into memory w/o touching cache
  that results in dramatic speed improvements, especially on
  large arrays (FullHD, 4K etc.).

  Those intrinsics require the destination address to be aligned
  by 16/32 bits (with SSE2 and AVX2, respectively).
  So we potentially split the processing into 3 stages:
  1) the optional prefix part [0:i0), where we use simple unaligned stores.
  2) the optional main part [i0:len - VECSZ], where we use "nocache" mode.
     But in some cases we have to use unaligned stores in this part.
  3) the optional suffix part (the tail) (len - VECSZ:len) where we switch back to "unaligned" mode
     to process the remaining len - VECSZ elements.
  In principle there can be very poorly aligned data where there is no main part.
  For that we set i0=0 and use unaligned stores for the whole array.
*/
template<typename T, typename VecT> static void
vecmerge_( const T** src, T* dst, int len, int cn )
{
    const int VECSZ = VecT::nlanes;
    int i, i0 = 0;
    const T* src0 = src[0];
    const T* src1 = src[1];

    const int dstElemSize = cn * sizeof(T);
    int r = (int)((size_t)(void*)dst % (VECSZ*sizeof(T)));
    hal::StoreMode mode = hal::STORE_ALIGNED_NOCACHE;
    if( r != 0 )
    {
        mode = hal::STORE_UNALIGNED;
        if (r % dstElemSize == 0 && len > VECSZ*2)
            i0 = VECSZ - (r / dstElemSize);
    }

    if( cn == 2 )
    {
        for( i = 0; i < len; i += VECSZ )
        {
            if( i > len - VECSZ )
            {
                i = len - VECSZ;
                mode = hal::STORE_UNALIGNED;
            }
            VecT a = vx_load(src0 + i), b = vx_load(src1 + i);
            v_store_interleave(dst + i*cn, a, b, mode);
            if( i < i0 )
            {
                i = i0 - VECSZ;
                mode = hal::STORE_ALIGNED_NOCACHE;
            }
        }
    }
    else if( cn == 3 )
    {
        const T* src2 = src[2];
        for( i = 0; i < len; i += VECSZ )
        {
            if( i > len - VECSZ )
            {
                i = len - VECSZ;
                mode = hal::STORE_UNALIGNED;
            }
            VecT a = vx_load(src0 + i), b = vx_load(src1 + i), c = vx_load(src2 + i);
            v_store_interleave(dst + i*cn, a, b, c, mode);
            if( i < i0 )
            {
                i = i0 - VECSZ;
                mode = hal::STORE_ALIGNED_NOCACHE;
            }
        }
    }
    else
    {
        CV_Assert( cn == 4 );
        const T* src2 = src[2];
        const T* src3 = src[3];
        for( i = 0; i < len; i += VECSZ )
        {
            if( i > len - VECSZ )
            {
                i = len - VECSZ;
                mode = hal::STORE_UNALIGNED;
            }
            VecT a = vx_load(src0 + i), b = vx_load(src1 + i);
            VecT c = vx_load(src2 + i), d = vx_load(src3 + i);
            v_store_interleave(dst + i*cn, a, b, c, d, mode);
            if( i < i0 )
            {
                i = i0 - VECSZ;
                mode = hal::STORE_ALIGNED_NOCACHE;
            }
        }
    }
    vx_cleanup();
}
#endif

template<typename T> static void
merge_( const T** src, T* dst, int len, int cn )
{
    int k = cn % 4 ? cn % 4 : 4;
    int i, j;
    if( k == 1 )
    {
        const T* src0 = src[0];
        for( i = j = 0; i < len; i++, j += cn )
            dst[j] = src0[i];
    }
    else if( k == 2 )
    {
        const T *src0 = src[0], *src1 = src[1];
        i = j = 0;
        for( ; i < len; i++, j += cn )
        {
            dst[j] = src0[i];
            dst[j+1] = src1[i];
        }
    }
    else if( k == 3 )
    {
        const T *src0 = src[0], *src1 = src[1], *src2 = src[2];
        i = j = 0;
        for( ; i < len; i++, j += cn )
        {
            dst[j] = src0[i];
            dst[j+1] = src1[i];
            dst[j+2] = src2[i];
        }
    }
    else
    {
        const T *src0 = src[0], *src1 = src[1], *src2 = src[2], *src3 = src[3];
        i = j = 0;
        for( ; i < len; i++, j += cn )
        {
            dst[j] = src0[i]; dst[j+1] = src1[i];
            dst[j+2] = src2[i]; dst[j+3] = src3[i];
        }
    }

    for( ; k < cn; k += 4 )
    {
        const T *src0 = src[k], *src1 = src[k+1], *src2 = src[k+2], *src3 = src[k+3];
        for( i = 0, j = k; i < len; i++, j += cn )
        {
            dst[j] = src0[i]; dst[j+1] = src1[i];
            dst[j+2] = src2[i]; dst[j+3] = src3[i];
        }
    }
}

void merge8u(const uchar** src, uchar* dst, int len, int cn )
{
    CALL_HAL(merge8u, cv_hal_merge8u, src, dst, len, cn)
#if CV_SIMD
    if( len >= v_uint8::nlanes && 2 <= cn && cn <= 4 )
        vecmerge_<uchar, v_uint8>(src, dst, len, cn);
    else
#endif
        merge_(src, dst, len, cn);
}

void merge16u(const ushort** src, ushort* dst, int len, int cn )
{
    CALL_HAL(merge16u, cv_hal_merge16u, src, dst, len, cn)
#if CV_SIMD
    if( len >= v_uint16::nlanes && 2 <= cn && cn <= 4 )
        vecmerge_<ushort, v_uint16>(src, dst, len, cn);
    else
#endif
        merge_(src, dst, len, cn);
}

void merge32s(const int** src, int* dst, int len, int cn )
{
    CALL_HAL(merge32s, cv_hal_merge32s, src, dst, len, cn)
#if CV_SIMD
    if( len >= v_int32::nlanes && 2 <= cn && cn <= 4 )
        vecmerge_<int, v_int32>(src, dst, len, cn);
    else
#endif
        merge_(src, dst, len, cn);
}

void merge64s(const int64** src, int64* dst, int len, int cn )
{
    CALL_HAL(merge64s, cv_hal_merge64s, src, dst, len, cn)
#if CV_SIMD
    if( len >= v_int64::nlanes && 2 <= cn && cn <= 4 )
        vecmerge_<int64, v_int64>(src, dst, len, cn);
    else
#endif
        merge_(src, dst, len, cn);
}

}} // cv::hal::


typedef void (*MergeFunc)(const uchar** src, uchar* dst, int len, int cn);

static MergeFunc getMergeFunc(int depth)
{
    static MergeFunc mergeTab[] =
    {
        (MergeFunc)GET_OPTIMIZED(cv::hal::merge8u), (MergeFunc)GET_OPTIMIZED(cv::hal::merge8u),
        (MergeFunc)GET_OPTIMIZED(cv::hal::merge16u), (MergeFunc)GET_OPTIMIZED(cv::hal::merge16u),
        (MergeFunc)GET_OPTIMIZED(cv::hal::merge32s), (MergeFunc)GET_OPTIMIZED(cv::hal::merge32s),
        (MergeFunc)GET_OPTIMIZED(cv::hal::merge64s), (MergeFunc)GET_OPTIMIZED(cv::hal::merge16u)
    };

    return mergeTab[depth];
}

#ifdef HAVE_IPP

namespace cv {
static bool ipp_merge(const Mat* mv, Mat& dst, int channels)
{
#ifdef HAVE_IPP_IW_LL
    CV_INSTRUMENT_REGION_IPP();

    if(channels != 3 && channels != 4)
        return false;

    if(mv[0].dims <= 2)
    {
        IppiSize    size       = ippiSize(mv[0].size());
        const void *srcPtrs[4] = {NULL};
        size_t      srcStep    = mv[0].step;
        for(int i = 0; i < channels; i++)
        {
            srcPtrs[i] = mv[i].ptr();
            if(srcStep != mv[i].step)
                return false;
        }

        return CV_INSTRUMENT_FUN_IPP(llwiCopyMerge, srcPtrs, (int)srcStep, dst.ptr(), (int)dst.step, size, (int)mv[0].elemSize1(), channels, 0) >= 0;
    }
    else
    {
        const Mat *arrays[5] = {NULL};
        uchar     *ptrs[5]   = {NULL};
        arrays[0] = &dst;

        for(int i = 1; i < channels; i++)
        {
            arrays[i] = &mv[i-1];
        }

        NAryMatIterator it(arrays, ptrs);
        IppiSize size = { (int)it.size, 1 };

        for( size_t i = 0; i < it.nplanes; i++, ++it )
        {
            if(CV_INSTRUMENT_FUN_IPP(llwiCopyMerge, (const void**)&ptrs[1], 0, ptrs[0], 0, size, (int)mv[0].elemSize1(), channels, 0) < 0)
                return false;
        }
        return true;
    }
#else
    CV_UNUSED(dst); CV_UNUSED(mv); CV_UNUSED(channels);
    return false;
#endif
}
}
#endif

void cv::merge(const Mat* mv, size_t n, OutputArray _dst)
{
    CV_INSTRUMENT_REGION();

    CV_Assert( mv && n > 0 );

    int depth = mv[0].depth();
    bool allch1 = true;
    int k, cn = 0;
    size_t i;

    for( i = 0; i < n; i++ )
    {
        CV_Assert(mv[i].size == mv[0].size && mv[i].depth() == depth);
        allch1 = allch1 && mv[i].channels() == 1;
        cn += mv[i].channels();
    }

    CV_Assert( 0 < cn && cn <= CV_CN_MAX );
    _dst.create(mv[0].dims, mv[0].size, CV_MAKETYPE(depth, cn));
    Mat dst = _dst.getMat();

    if( n == 1 )
    {
        mv[0].copyTo(dst);
        return;
    }

    CV_IPP_RUN_FAST(ipp_merge(mv, dst, (int)n));

    if( !allch1 )
    {
        AutoBuffer<int> pairs(cn*2);
        int j, ni=0;

        for( i = 0, j = 0; i < n; i++, j += ni )
        {
            ni = mv[i].channels();
            for( k = 0; k < ni; k++ )
            {
                pairs[(j+k)*2] = j + k;
                pairs[(j+k)*2+1] = j + k;
            }
        }
        mixChannels( mv, n, &dst, 1, &pairs[0], cn );
        return;
    }

    MergeFunc func = getMergeFunc(depth);
    CV_Assert( func != 0 );

    size_t esz = dst.elemSize(), esz1 = dst.elemSize1();
    size_t blocksize0 = (int)((BLOCK_SIZE + esz-1)/esz);
    AutoBuffer<uchar> _buf((cn+1)*(sizeof(Mat*) + sizeof(uchar*)) + 16);
    const Mat** arrays = (const Mat**)_buf.data();
    uchar** ptrs = (uchar**)alignPtr(arrays + cn + 1, 16);

    arrays[0] = &dst;
    for( k = 0; k < cn; k++ )
        arrays[k+1] = &mv[k];

    NAryMatIterator it(arrays, ptrs, cn+1);
    size_t total = (int)it.size;
    size_t blocksize = std::min((size_t)CV_SPLIT_MERGE_MAX_BLOCK_SIZE(cn), cn <= 4 ? total : std::min(total, blocksize0));

    for( i = 0; i < it.nplanes; i++, ++it )
    {
        for( size_t j = 0; j < total; j += blocksize )
        {
            size_t bsz = std::min(total - j, blocksize);
            func( (const uchar**)&ptrs[1], ptrs[0], (int)bsz, cn );

            if( j + blocksize < total )
            {
                ptrs[0] += bsz*esz;
                for( int t = 0; t < cn; t++ )
                    ptrs[t+1] += bsz*esz1;
            }
        }
    }
}

#ifdef HAVE_OPENCL

namespace cv {

static bool ocl_merge( InputArrayOfArrays _mv, OutputArray _dst )
{
    std::vector<UMat> src, ksrc;
    _mv.getUMatVector(src);
    CV_Assert(!src.empty());

    int type = src[0].type(), depth = CV_MAT_DEPTH(type),
            rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1;
    Size size = src[0].size();

    for (size_t i = 0, srcsize = src.size(); i < srcsize; ++i)
    {
        int itype = src[i].type(), icn = CV_MAT_CN(itype), idepth = CV_MAT_DEPTH(itype),
                esz1 = CV_ELEM_SIZE1(idepth);
        if (src[i].dims > 2)
            return false;

        CV_Assert(size == src[i].size() && depth == idepth);

        for (int cn = 0; cn < icn; ++cn)
        {
            UMat tsrc = src[i];
            tsrc.offset += cn * esz1;
            ksrc.push_back(tsrc);
        }
    }
    int dcn = (int)ksrc.size();

    String srcargs, processelem, cndecl, indexdecl;
    for (int i = 0; i < dcn; ++i)
    {
        srcargs += format("DECLARE_SRC_PARAM(%d)", i);
        processelem += format("PROCESS_ELEM(%d)", i);
        indexdecl += format("DECLARE_INDEX(%d)", i);
        cndecl += format(" -D scn%d=%d", i, ksrc[i].channels());
    }

    ocl::Kernel k("merge", ocl::core::split_merge_oclsrc,
                  format("-D OP_MERGE -D cn=%d -D T=%s -D DECLARE_SRC_PARAMS_N=%s"
                         " -D DECLARE_INDEX_N=%s -D PROCESS_ELEMS_N=%s%s",
                         dcn, ocl::memopTypeToStr(depth), srcargs.c_str(),
                         indexdecl.c_str(), processelem.c_str(), cndecl.c_str()));
    if (k.empty())
        return false;

    _dst.create(size, CV_MAKE_TYPE(depth, dcn));
    UMat dst = _dst.getUMat();

    int argidx = 0;
    for (int i = 0; i < dcn; ++i)
        argidx = k.set(argidx, ocl::KernelArg::ReadOnlyNoSize(ksrc[i]));
    argidx = k.set(argidx, ocl::KernelArg::WriteOnly(dst));
    k.set(argidx, rowsPerWI);

    size_t globalsize[2] = { (size_t)dst.cols, ((size_t)dst.rows + rowsPerWI - 1) / rowsPerWI };
    return k.run(2, globalsize, NULL, false);
}

}

#endif

void cv::merge(InputArrayOfArrays _mv, OutputArray _dst)
{
    CV_INSTRUMENT_REGION();

    CV_OCL_RUN(_mv.isUMatVector() && _dst.isUMat(),
               ocl_merge(_mv, _dst))

    std::vector<Mat> mv;
    _mv.getMatVector(mv);
    merge(!mv.empty() ? &mv[0] : 0, mv.size(), _dst);
}