1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "precomp.hpp"
#include "opencl_kernels_core.hpp"
namespace cv { namespace hal {
#if CV_SIMD
/*
The trick with STORE_UNALIGNED/STORE_ALIGNED_NOCACHE is the following:
on IA there are instructions movntps and such to which
v_store_interleave(...., STORE_ALIGNED_NOCACHE) is mapped.
Those instructions write directly into memory w/o touching cache
that results in dramatic speed improvements, especially on
large arrays (FullHD, 4K etc.).
Those intrinsics require the destination address to be aligned
by 16/32 bits (with SSE2 and AVX2, respectively).
So we potentially split the processing into 3 stages:
1) the optional prefix part [0:i0), where we use simple unaligned stores.
2) the optional main part [i0:len - VECSZ], where we use "nocache" mode.
But in some cases we have to use unaligned stores in this part.
3) the optional suffix part (the tail) (len - VECSZ:len) where we switch back to "unaligned" mode
to process the remaining len - VECSZ elements.
In principle there can be very poorly aligned data where there is no main part.
For that we set i0=0 and use unaligned stores for the whole array.
*/
template<typename T, typename VecT> static void
vecmerge_( const T** src, T* dst, int len, int cn )
{
const int VECSZ = VecT::nlanes;
int i, i0 = 0;
const T* src0 = src[0];
const T* src1 = src[1];
const int dstElemSize = cn * sizeof(T);
int r = (int)((size_t)(void*)dst % (VECSZ*sizeof(T)));
hal::StoreMode mode = hal::STORE_ALIGNED_NOCACHE;
if( r != 0 )
{
mode = hal::STORE_UNALIGNED;
if (r % dstElemSize == 0 && len > VECSZ*2)
i0 = VECSZ - (r / dstElemSize);
}
if( cn == 2 )
{
for( i = 0; i < len; i += VECSZ )
{
if( i > len - VECSZ )
{
i = len - VECSZ;
mode = hal::STORE_UNALIGNED;
}
VecT a = vx_load(src0 + i), b = vx_load(src1 + i);
v_store_interleave(dst + i*cn, a, b, mode);
if( i < i0 )
{
i = i0 - VECSZ;
mode = hal::STORE_ALIGNED_NOCACHE;
}
}
}
else if( cn == 3 )
{
const T* src2 = src[2];
for( i = 0; i < len; i += VECSZ )
{
if( i > len - VECSZ )
{
i = len - VECSZ;
mode = hal::STORE_UNALIGNED;
}
VecT a = vx_load(src0 + i), b = vx_load(src1 + i), c = vx_load(src2 + i);
v_store_interleave(dst + i*cn, a, b, c, mode);
if( i < i0 )
{
i = i0 - VECSZ;
mode = hal::STORE_ALIGNED_NOCACHE;
}
}
}
else
{
CV_Assert( cn == 4 );
const T* src2 = src[2];
const T* src3 = src[3];
for( i = 0; i < len; i += VECSZ )
{
if( i > len - VECSZ )
{
i = len - VECSZ;
mode = hal::STORE_UNALIGNED;
}
VecT a = vx_load(src0 + i), b = vx_load(src1 + i);
VecT c = vx_load(src2 + i), d = vx_load(src3 + i);
v_store_interleave(dst + i*cn, a, b, c, d, mode);
if( i < i0 )
{
i = i0 - VECSZ;
mode = hal::STORE_ALIGNED_NOCACHE;
}
}
}
vx_cleanup();
}
#endif
template<typename T> static void
merge_( const T** src, T* dst, int len, int cn )
{
int k = cn % 4 ? cn % 4 : 4;
int i, j;
if( k == 1 )
{
const T* src0 = src[0];
for( i = j = 0; i < len; i++, j += cn )
dst[j] = src0[i];
}
else if( k == 2 )
{
const T *src0 = src[0], *src1 = src[1];
i = j = 0;
for( ; i < len; i++, j += cn )
{
dst[j] = src0[i];
dst[j+1] = src1[i];
}
}
else if( k == 3 )
{
const T *src0 = src[0], *src1 = src[1], *src2 = src[2];
i = j = 0;
for( ; i < len; i++, j += cn )
{
dst[j] = src0[i];
dst[j+1] = src1[i];
dst[j+2] = src2[i];
}
}
else
{
const T *src0 = src[0], *src1 = src[1], *src2 = src[2], *src3 = src[3];
i = j = 0;
for( ; i < len; i++, j += cn )
{
dst[j] = src0[i]; dst[j+1] = src1[i];
dst[j+2] = src2[i]; dst[j+3] = src3[i];
}
}
for( ; k < cn; k += 4 )
{
const T *src0 = src[k], *src1 = src[k+1], *src2 = src[k+2], *src3 = src[k+3];
for( i = 0, j = k; i < len; i++, j += cn )
{
dst[j] = src0[i]; dst[j+1] = src1[i];
dst[j+2] = src2[i]; dst[j+3] = src3[i];
}
}
}
void merge8u(const uchar** src, uchar* dst, int len, int cn )
{
CALL_HAL(merge8u, cv_hal_merge8u, src, dst, len, cn)
#if CV_SIMD
if( len >= v_uint8::nlanes && 2 <= cn && cn <= 4 )
vecmerge_<uchar, v_uint8>(src, dst, len, cn);
else
#endif
merge_(src, dst, len, cn);
}
void merge16u(const ushort** src, ushort* dst, int len, int cn )
{
CALL_HAL(merge16u, cv_hal_merge16u, src, dst, len, cn)
#if CV_SIMD
if( len >= v_uint16::nlanes && 2 <= cn && cn <= 4 )
vecmerge_<ushort, v_uint16>(src, dst, len, cn);
else
#endif
merge_(src, dst, len, cn);
}
void merge32s(const int** src, int* dst, int len, int cn )
{
CALL_HAL(merge32s, cv_hal_merge32s, src, dst, len, cn)
#if CV_SIMD
if( len >= v_int32::nlanes && 2 <= cn && cn <= 4 )
vecmerge_<int, v_int32>(src, dst, len, cn);
else
#endif
merge_(src, dst, len, cn);
}
void merge64s(const int64** src, int64* dst, int len, int cn )
{
CALL_HAL(merge64s, cv_hal_merge64s, src, dst, len, cn)
#if CV_SIMD
if( len >= v_int64::nlanes && 2 <= cn && cn <= 4 )
vecmerge_<int64, v_int64>(src, dst, len, cn);
else
#endif
merge_(src, dst, len, cn);
}
}} // cv::hal::
typedef void (*MergeFunc)(const uchar** src, uchar* dst, int len, int cn);
static MergeFunc getMergeFunc(int depth)
{
static MergeFunc mergeTab[] =
{
(MergeFunc)GET_OPTIMIZED(cv::hal::merge8u), (MergeFunc)GET_OPTIMIZED(cv::hal::merge8u),
(MergeFunc)GET_OPTIMIZED(cv::hal::merge16u), (MergeFunc)GET_OPTIMIZED(cv::hal::merge16u),
(MergeFunc)GET_OPTIMIZED(cv::hal::merge32s), (MergeFunc)GET_OPTIMIZED(cv::hal::merge32s),
(MergeFunc)GET_OPTIMIZED(cv::hal::merge64s), (MergeFunc)GET_OPTIMIZED(cv::hal::merge16u)
};
return mergeTab[depth];
}
#ifdef HAVE_IPP
namespace cv {
static bool ipp_merge(const Mat* mv, Mat& dst, int channels)
{
#ifdef HAVE_IPP_IW_LL
CV_INSTRUMENT_REGION_IPP();
if(channels != 3 && channels != 4)
return false;
if(mv[0].dims <= 2)
{
IppiSize size = ippiSize(mv[0].size());
const void *srcPtrs[4] = {NULL};
size_t srcStep = mv[0].step;
for(int i = 0; i < channels; i++)
{
srcPtrs[i] = mv[i].ptr();
if(srcStep != mv[i].step)
return false;
}
return CV_INSTRUMENT_FUN_IPP(llwiCopyMerge, srcPtrs, (int)srcStep, dst.ptr(), (int)dst.step, size, (int)mv[0].elemSize1(), channels, 0) >= 0;
}
else
{
const Mat *arrays[5] = {NULL};
uchar *ptrs[5] = {NULL};
arrays[0] = &dst;
for(int i = 1; i < channels; i++)
{
arrays[i] = &mv[i-1];
}
NAryMatIterator it(arrays, ptrs);
IppiSize size = { (int)it.size, 1 };
for( size_t i = 0; i < it.nplanes; i++, ++it )
{
if(CV_INSTRUMENT_FUN_IPP(llwiCopyMerge, (const void**)&ptrs[1], 0, ptrs[0], 0, size, (int)mv[0].elemSize1(), channels, 0) < 0)
return false;
}
return true;
}
#else
CV_UNUSED(dst); CV_UNUSED(mv); CV_UNUSED(channels);
return false;
#endif
}
}
#endif
void cv::merge(const Mat* mv, size_t n, OutputArray _dst)
{
CV_INSTRUMENT_REGION();
CV_Assert( mv && n > 0 );
int depth = mv[0].depth();
bool allch1 = true;
int k, cn = 0;
size_t i;
for( i = 0; i < n; i++ )
{
CV_Assert(mv[i].size == mv[0].size && mv[i].depth() == depth);
allch1 = allch1 && mv[i].channels() == 1;
cn += mv[i].channels();
}
CV_Assert( 0 < cn && cn <= CV_CN_MAX );
_dst.create(mv[0].dims, mv[0].size, CV_MAKETYPE(depth, cn));
Mat dst = _dst.getMat();
if( n == 1 )
{
mv[0].copyTo(dst);
return;
}
CV_IPP_RUN_FAST(ipp_merge(mv, dst, (int)n));
if( !allch1 )
{
AutoBuffer<int> pairs(cn*2);
int j, ni=0;
for( i = 0, j = 0; i < n; i++, j += ni )
{
ni = mv[i].channels();
for( k = 0; k < ni; k++ )
{
pairs[(j+k)*2] = j + k;
pairs[(j+k)*2+1] = j + k;
}
}
mixChannels( mv, n, &dst, 1, &pairs[0], cn );
return;
}
MergeFunc func = getMergeFunc(depth);
CV_Assert( func != 0 );
size_t esz = dst.elemSize(), esz1 = dst.elemSize1();
size_t blocksize0 = (int)((BLOCK_SIZE + esz-1)/esz);
AutoBuffer<uchar> _buf((cn+1)*(sizeof(Mat*) + sizeof(uchar*)) + 16);
const Mat** arrays = (const Mat**)_buf.data();
uchar** ptrs = (uchar**)alignPtr(arrays + cn + 1, 16);
arrays[0] = &dst;
for( k = 0; k < cn; k++ )
arrays[k+1] = &mv[k];
NAryMatIterator it(arrays, ptrs, cn+1);
size_t total = (int)it.size;
size_t blocksize = std::min((size_t)CV_SPLIT_MERGE_MAX_BLOCK_SIZE(cn), cn <= 4 ? total : std::min(total, blocksize0));
for( i = 0; i < it.nplanes; i++, ++it )
{
for( size_t j = 0; j < total; j += blocksize )
{
size_t bsz = std::min(total - j, blocksize);
func( (const uchar**)&ptrs[1], ptrs[0], (int)bsz, cn );
if( j + blocksize < total )
{
ptrs[0] += bsz*esz;
for( int t = 0; t < cn; t++ )
ptrs[t+1] += bsz*esz1;
}
}
}
}
#ifdef HAVE_OPENCL
namespace cv {
static bool ocl_merge( InputArrayOfArrays _mv, OutputArray _dst )
{
std::vector<UMat> src, ksrc;
_mv.getUMatVector(src);
CV_Assert(!src.empty());
int type = src[0].type(), depth = CV_MAT_DEPTH(type),
rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1;
Size size = src[0].size();
for (size_t i = 0, srcsize = src.size(); i < srcsize; ++i)
{
int itype = src[i].type(), icn = CV_MAT_CN(itype), idepth = CV_MAT_DEPTH(itype),
esz1 = CV_ELEM_SIZE1(idepth);
if (src[i].dims > 2)
return false;
CV_Assert(size == src[i].size() && depth == idepth);
for (int cn = 0; cn < icn; ++cn)
{
UMat tsrc = src[i];
tsrc.offset += cn * esz1;
ksrc.push_back(tsrc);
}
}
int dcn = (int)ksrc.size();
String srcargs, processelem, cndecl, indexdecl;
for (int i = 0; i < dcn; ++i)
{
srcargs += format("DECLARE_SRC_PARAM(%d)", i);
processelem += format("PROCESS_ELEM(%d)", i);
indexdecl += format("DECLARE_INDEX(%d)", i);
cndecl += format(" -D scn%d=%d", i, ksrc[i].channels());
}
ocl::Kernel k("merge", ocl::core::split_merge_oclsrc,
format("-D OP_MERGE -D cn=%d -D T=%s -D DECLARE_SRC_PARAMS_N=%s"
" -D DECLARE_INDEX_N=%s -D PROCESS_ELEMS_N=%s%s",
dcn, ocl::memopTypeToStr(depth), srcargs.c_str(),
indexdecl.c_str(), processelem.c_str(), cndecl.c_str()));
if (k.empty())
return false;
_dst.create(size, CV_MAKE_TYPE(depth, dcn));
UMat dst = _dst.getUMat();
int argidx = 0;
for (int i = 0; i < dcn; ++i)
argidx = k.set(argidx, ocl::KernelArg::ReadOnlyNoSize(ksrc[i]));
argidx = k.set(argidx, ocl::KernelArg::WriteOnly(dst));
k.set(argidx, rowsPerWI);
size_t globalsize[2] = { (size_t)dst.cols, ((size_t)dst.rows + rowsPerWI - 1) / rowsPerWI };
return k.run(2, globalsize, NULL, false);
}
}
#endif
void cv::merge(InputArrayOfArrays _mv, OutputArray _dst)
{
CV_INSTRUMENT_REGION();
CV_OCL_RUN(_mv.isUMatVector() && _dst.isUMat(),
ocl_merge(_mv, _dst))
std::vector<Mat> mv;
_mv.getMatVector(mv);
merge(!mv.empty() ? &mv[0] : 0, mv.size(), _dst);
}