1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Peng Xiao, pengxiao@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
// Smoothing perpendicular to the derivative direction with a triangle filter
// only support 3x3 Sobel kernel
// h (-1) = 1, h (0) = 2, h (1) = 1
// h'(-1) = -1, h'(0) = 0, h'(1) = 1
// thus sobel 2D operator can be calculated as:
// h'(x, y) = h'(x)h(y) for x direction
//
// src input 8bit single channel image data
// dx_buf output dx buffer
// dy_buf output dy buffer
__kernel void __attribute__((reqd_work_group_size(16, 16, 1)))
calcSobelRowPass
(__global const uchar * src, int src_step, int src_offset, int rows, int cols,
__global uchar * dx_buf, int dx_buf_step, int dx_buf_offset,
__global uchar * dy_buf, int dy_buf_step, int dy_buf_offset)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
int lidx = get_local_id(0);
int lidy = get_local_id(1);
__local int smem[16][18];
smem[lidy][lidx + 1] = src[mad24(src_step, min(gidy, rows - 1), gidx + src_offset)];
if (lidx == 0)
{
smem[lidy][0] = src[mad24(src_step, min(gidy, rows - 1), max(gidx - 1, 0) + src_offset)];
smem[lidy][17] = src[mad24(src_step, min(gidy, rows - 1), min(gidx + 16, cols - 1) + src_offset)];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (gidy < rows && gidx < cols)
{
*(__global short *)(dx_buf + mad24(gidy, dx_buf_step, gidx * (int)sizeof(short) + dx_buf_offset)) =
smem[lidy][lidx + 2] - smem[lidy][lidx];
*(__global short *)(dy_buf + mad24(gidy, dy_buf_step, gidx * (int)sizeof(short) + dy_buf_offset)) =
smem[lidy][lidx] + 2 * smem[lidy][lidx + 1] + smem[lidy][lidx + 2];
}
}
inline int calc(short x, short y)
{
#ifdef L2GRAD
return x * x + y * y;
#else
return (x >= 0 ? x : -x) + (y >= 0 ? y : -y);
#endif
}
// calculate the magnitude of the filter pass combining both x and y directions
// This is the non-buffered version(non-3x3 sobel)
//
// dx_buf dx buffer, calculated from calcSobelRowPass
// dy_buf dy buffer, calculated from calcSobelRowPass
// dx direvitive in x direction output
// dy direvitive in y direction output
// mag magnitude direvitive of xy output
__kernel void calcMagnitude(__global const uchar * dxptr, int dx_step, int dx_offset,
__global const uchar * dyptr, int dy_step, int dy_offset,
__global uchar * magptr, int mag_step, int mag_offset, int rows, int cols)
{
int x = get_global_id(0);
int y = get_global_id(1);
if (y < rows && x < cols)
{
int dx_index = mad24(dx_step, y, x * (int)sizeof(short) + dx_offset);
int dy_index = mad24(dy_step, y, x * (int)sizeof(short) + dy_offset);
int mag_index = mad24(mag_step, y + 1, (x + 1) * (int)sizeof(int) + mag_offset);
__global const short * dx = (__global const short *)(dxptr + dx_index);
__global const short * dy = (__global const short *)(dyptr + dy_index);
__global int * mag = (__global int *)(magptr + mag_index);
mag[0] = calc(dx[0], dy[0]);
}
}
// calculate the magnitude of the filter pass combining both x and y directions
// This is the buffered version(3x3 sobel)
//
// dx_buf dx buffer, calculated from calcSobelRowPass
// dy_buf dy buffer, calculated from calcSobelRowPass
// dx direvitive in x direction output
// dy direvitive in y direction output
// mag magnitude direvitive of xy output
__kernel void __attribute__((reqd_work_group_size(16, 16, 1)))
calcMagnitude_buf
(__global const short * dx_buf, int dx_buf_step, int dx_buf_offset,
__global const short * dy_buf, int dy_buf_step, int dy_buf_offset,
__global short * dx, int dx_step, int dx_offset,
__global short * dy, int dy_step, int dy_offset,
__global int * mag, int mag_step, int mag_offset,
int rows, int cols)
{
dx_buf_step /= sizeof(*dx_buf);
dx_buf_offset /= sizeof(*dx_buf);
dy_buf_step /= sizeof(*dy_buf);
dy_buf_offset /= sizeof(*dy_buf);
dx_step /= sizeof(*dx);
dx_offset /= sizeof(*dx);
dy_step /= sizeof(*dy);
dy_offset /= sizeof(*dy);
mag_step /= sizeof(*mag);
mag_offset /= sizeof(*mag);
int gidx = get_global_id(0);
int gidy = get_global_id(1);
int lidx = get_local_id(0);
int lidy = get_local_id(1);
__local short sdx[18][16];
__local short sdy[18][16];
sdx[lidy + 1][lidx] = dx_buf[gidx + min(gidy, rows - 1) * dx_buf_step + dx_buf_offset];
sdy[lidy + 1][lidx] = dy_buf[gidx + min(gidy, rows - 1) * dy_buf_step + dy_buf_offset];
if (lidy == 0)
{
sdx[0][lidx] = dx_buf[gidx + min(max(gidy - 1, 0), rows - 1) * dx_buf_step + dx_buf_offset];
sdx[17][lidx] = dx_buf[gidx + min(gidy + 16, rows - 1) * dx_buf_step + dx_buf_offset];
sdy[0][lidx] = dy_buf[gidx + min(max(gidy - 1, 0), rows - 1) * dy_buf_step + dy_buf_offset];
sdy[17][lidx] = dy_buf[gidx + min(gidy + 16, rows - 1) * dy_buf_step + dy_buf_offset];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (gidx < cols && gidy < rows)
{
short x = sdx[lidy][lidx] + 2 * sdx[lidy + 1][lidx] + sdx[lidy + 2][lidx];
short y = -sdy[lidy][lidx] + sdy[lidy + 2][lidx];
dx[gidx + gidy * dx_step + dx_offset] = x;
dy[gidx + gidy * dy_step + dy_offset] = y;
mag[(gidx + 1) + (gidy + 1) * mag_step + mag_offset] = calc(x, y);
}
}
//////////////////////////////////////////////////////////////////////////////////////////
// 0.4142135623730950488016887242097 is tan(22.5)
#define CANNY_SHIFT 15
#define TG22 (int)(0.4142135623730950488016887242097f*(1<<CANNY_SHIFT) + 0.5f)
// First pass of edge detection and non-maximum suppression
// edgetype is set to for each pixel:
// 0 - below low thres, not an edge
// 1 - maybe an edge
// 2 - is an edge, either magnitude is greater than high thres, or
// Given estimates of the image gradients, a search is then carried out
// to determine if the gradient magnitude assumes a local maximum in the gradient direction.
// if the rounded gradient angle is zero degrees (i.e. the edge is in the north-south direction) the point will be considered to be on the edge if its gradient magnitude is greater than the magnitudes in the west and east directions,
// if the rounded gradient angle is 90 degrees (i.e. the edge is in the east-west direction) the point will be considered to be on the edge if its gradient magnitude is greater than the magnitudes in the north and south directions,
// if the rounded gradient angle is 135 degrees (i.e. the edge is in the north east-south west direction) the point will be considered to be on the edge if its gradient magnitude is greater than the magnitudes in the north west and south east directions,
// if the rounded gradient angle is 45 degrees (i.e. the edge is in the north west-south east direction)the point will be considered to be on the edge if its gradient magnitude is greater than the magnitudes in the north east and south west directions.
//
// dx, dy direvitives of x and y direction
// mag magnitudes calculated from calcMagnitude function
// map output containing raw edge types
__kernel void __attribute__((reqd_work_group_size(16,16,1)))
calcMap(
__global const uchar * dx, int dx_step, int dx_offset,
__global const uchar * dy, int dy_step, int dy_offset,
__global const uchar * mag, int mag_step, int mag_offset,
__global uchar * map, int map_step, int map_offset,
int rows, int cols, int low_thresh, int high_thresh)
{
__local int smem[18][18];
int gidx = get_global_id(0);
int gidy = get_global_id(1);
int lidx = get_local_id(0);
int lidy = get_local_id(1);
int grp_idx = get_global_id(0) & 0xFFFFF0;
int grp_idy = get_global_id(1) & 0xFFFFF0;
int tid = lidx + lidy * 16;
int lx = tid % 18;
int ly = tid / 18;
mag += mag_offset;
if (ly < 14)
smem[ly][lx] = *(__global const int *)(mag +
mad24(mag_step, min(grp_idy + ly, rows - 1), (int)sizeof(int) * (grp_idx + lx)));
if (ly < 4 && grp_idy + ly + 14 <= rows && grp_idx + lx <= cols)
smem[ly + 14][lx] = *(__global const int *)(mag +
mad24(mag_step, min(grp_idy + ly + 14, rows - 1), (int)sizeof(int) * (grp_idx + lx)));
barrier(CLK_LOCAL_MEM_FENCE);
if (gidy < rows && gidx < cols)
{
// 0 - the pixel can not belong to an edge
// 1 - the pixel might belong to an edge
// 2 - the pixel does belong to an edge
int edge_type = 0;
int m = smem[lidy + 1][lidx + 1];
if (m > low_thresh)
{
short xs = *(__global const short *)(dx + mad24(gidy, dx_step, dx_offset + (int)sizeof(short) * gidx));
short ys = *(__global const short *)(dy + mad24(gidy, dy_step, dy_offset + (int)sizeof(short) * gidx));
int x = abs(xs), y = abs(ys);
int tg22x = x * TG22;
y <<= CANNY_SHIFT;
if (y < tg22x)
{
if (m > smem[lidy + 1][lidx] && m >= smem[lidy + 1][lidx + 2])
edge_type = 1 + (int)(m > high_thresh);
}
else
{
int tg67x = tg22x + (x << (1 + CANNY_SHIFT));
if (y > tg67x)
{
if (m > smem[lidy][lidx + 1]&& m >= smem[lidy + 2][lidx + 1])
edge_type = 1 + (int)(m > high_thresh);
}
else
{
int s = (xs ^ ys) < 0 ? -1 : 1;
if (m > smem[lidy][lidx + 1 - s]&& m > smem[lidy + 2][lidx + 1 + s])
edge_type = 1 + (int)(m > high_thresh);
}
}
}
*(__global int *)(map + mad24(map_step, gidy + 1, (gidx + 1) * (int)sizeof(int) + map_offset)) = edge_type;
}
}
#undef CANNY_SHIFT
#undef TG22
struct PtrStepSz
{
__global uchar * ptr;
int step, rows, cols;
};
inline int get(struct PtrStepSz data, int y, int x)
{
return *(__global int *)(data.ptr + mad24(data.step, y + 1, (int)sizeof(int) * (x + 1)));
}
inline void set(struct PtrStepSz data, int y, int x, int value)
{
*(__global int *)(data.ptr + mad24(data.step, y + 1, (int)sizeof(int) * (x + 1))) = value;
}
// perform Hysteresis for pixel whose edge type is 1
//
// If candidate pixel (edge type is 1) has a neighbour pixel (in 3x3 area) with type 2, it is believed to be part of an edge and
// marked as edge. Each thread will iterate for 16 times to connect local edges.
// Candidate pixel being identified as edge will then be tested if there is nearby potiential edge points. If there is, counter will
// be incremented by 1 and the point location is stored. These potiential candidates will be processed further in next kernel.
//
// map raw edge type results calculated from calcMap.
// stack the potiential edge points found in this kernel call
// counter the number of potiential edge points
__kernel void __attribute__((reqd_work_group_size(16,16,1)))
edgesHysteresisLocal
(__global uchar * map_ptr, int map_step, int map_offset,
__global ushort2 * st, __global unsigned int * counter,
int rows, int cols)
{
struct PtrStepSz map = { map_ptr + map_offset, map_step, rows + 1, cols + 1 };
__local int smem[18][18];
int2 blockIdx = (int2)(get_group_id(0), get_group_id(1));
int2 blockDim = (int2)(get_local_size(0), get_local_size(1));
int2 threadIdx = (int2)(get_local_id(0), get_local_id(1));
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
smem[threadIdx.y + 1][threadIdx.x + 1] = x < map.cols && y < map.rows ? get(map, y, x) : 0;
if (threadIdx.y == 0)
smem[0][threadIdx.x + 1] = x < map.cols ? get(map, y - 1, x) : 0;
if (threadIdx.y == blockDim.y - 1)
smem[blockDim.y + 1][threadIdx.x + 1] = y + 1 < map.rows ? get(map, y + 1, x) : 0;
if (threadIdx.x == 0)
smem[threadIdx.y + 1][0] = y < map.rows ? get(map, y, x - 1) : 0;
if (threadIdx.x == blockDim.x - 1)
smem[threadIdx.y + 1][blockDim.x + 1] = x + 1 < map.cols && y < map.rows ? get(map, y, x + 1) : 0;
if (threadIdx.x == 0 && threadIdx.y == 0)
smem[0][0] = y > 0 && x > 0 ? get(map, y - 1, x - 1) : 0;
if (threadIdx.x == blockDim.x - 1 && threadIdx.y == 0)
smem[0][blockDim.x + 1] = y > 0 && x + 1 < map.cols ? get(map, y - 1, x + 1) : 0;
if (threadIdx.x == 0 && threadIdx.y == blockDim.y - 1)
smem[blockDim.y + 1][0] = y + 1 < map.rows && x > 0 ? get(map, y + 1, x - 1) : 0;
if (threadIdx.x == blockDim.x - 1 && threadIdx.y == blockDim.y - 1)
smem[blockDim.y + 1][blockDim.x + 1] = y + 1 < map.rows && x + 1 < map.cols ? get(map, y + 1, x + 1) : 0;
barrier(CLK_LOCAL_MEM_FENCE);
if (x >= cols || y >= rows)
return;
int n;
#pragma unroll
for (int k = 0; k < 16; ++k)
{
n = 0;
if (smem[threadIdx.y + 1][threadIdx.x + 1] == 1)
{
n += smem[threadIdx.y ][threadIdx.x ] == 2;
n += smem[threadIdx.y ][threadIdx.x + 1] == 2;
n += smem[threadIdx.y ][threadIdx.x + 2] == 2;
n += smem[threadIdx.y + 1][threadIdx.x ] == 2;
n += smem[threadIdx.y + 1][threadIdx.x + 2] == 2;
n += smem[threadIdx.y + 2][threadIdx.x ] == 2;
n += smem[threadIdx.y + 2][threadIdx.x + 1] == 2;
n += smem[threadIdx.y + 2][threadIdx.x + 2] == 2;
}
if (n > 0)
smem[threadIdx.y + 1][threadIdx.x + 1] = 2;
}
const int e = smem[threadIdx.y + 1][threadIdx.x + 1];
set(map, y, x, e);
n = 0;
if (e == 2)
{
n += smem[threadIdx.y ][threadIdx.x ] == 1;
n += smem[threadIdx.y ][threadIdx.x + 1] == 1;
n += smem[threadIdx.y ][threadIdx.x + 2] == 1;
n += smem[threadIdx.y + 1][threadIdx.x ] == 1;
n += smem[threadIdx.y + 1][threadIdx.x + 2] == 1;
n += smem[threadIdx.y + 2][threadIdx.x ] == 1;
n += smem[threadIdx.y + 2][threadIdx.x + 1] == 1;
n += smem[threadIdx.y + 2][threadIdx.x + 2] == 1;
}
if (n > 0)
{
const int ind = atomic_inc(counter);
st[ind] = (ushort2)(x + 1, y + 1);
}
}
__constant int c_dx[8] = {-1, 0, 1, -1, 1, -1, 0, 1};
__constant int c_dy[8] = {-1, -1, -1, 0, 0, 1, 1, 1};
#define stack_size 512
#define map_index mad24(map_step, pos.y, pos.x * (int)sizeof(int))
__kernel void __attribute__((reqd_work_group_size(128, 1, 1)))
edgesHysteresisGlobal(__global uchar * map, int map_step, int map_offset,
__global ushort2 * st1, __global ushort2 * st2, __global int * counter,
int rows, int cols, int count)
{
map += map_offset;
int lidx = get_local_id(0);
int grp_idx = get_group_id(0);
int grp_idy = get_group_id(1);
__local unsigned int s_counter, s_ind;
__local ushort2 s_st[stack_size];
if (lidx == 0)
s_counter = 0;
barrier(CLK_LOCAL_MEM_FENCE);
int ind = mad24(grp_idy, (int)get_local_size(0), grp_idx);
if (ind < count)
{
ushort2 pos = st1[ind];
if (lidx < 8)
{
pos.x += c_dx[lidx];
pos.y += c_dy[lidx];
if (pos.x > 0 && pos.x <= cols && pos.y > 0 && pos.y <= rows && *(__global int *)(map + map_index) == 1)
{
*(__global int *)(map + map_index) = 2;
ind = atomic_inc(&s_counter);
s_st[ind] = pos;
}
}
barrier(CLK_LOCAL_MEM_FENCE);
while (s_counter > 0 && s_counter <= stack_size - get_local_size(0))
{
const int subTaskIdx = lidx >> 3;
const int portion = min(s_counter, (uint)(get_local_size(0)>> 3));
if (subTaskIdx < portion)
pos = s_st[s_counter - 1 - subTaskIdx];
barrier(CLK_LOCAL_MEM_FENCE);
if (lidx == 0)
s_counter -= portion;
barrier(CLK_LOCAL_MEM_FENCE);
if (subTaskIdx < portion)
{
pos.x += c_dx[lidx & 7];
pos.y += c_dy[lidx & 7];
if (pos.x > 0 && pos.x <= cols && pos.y > 0 && pos.y <= rows && *(__global int *)(map + map_index) == 1)
{
*(__global int *)(map + map_index) = 2;
ind = atomic_inc(&s_counter);
s_st[ind] = pos;
}
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if (s_counter > 0)
{
if (lidx == 0)
{
ind = atomic_add(counter, s_counter);
s_ind = ind - s_counter;
}
barrier(CLK_LOCAL_MEM_FENCE);
ind = s_ind;
for (int i = lidx; i < (int)s_counter; i += get_local_size(0))
st2[ind + i] = s_st[i];
}
}
}
#undef map_index
#undef stack_size
// Get the edge result. egde type of value 2 will be marked as an edge point and set to 255. Otherwise 0.
// map edge type mappings
// dst edge output
__kernel void getEdges(__global const uchar * mapptr, int map_step, int map_offset,
__global uchar * dst, int dst_step, int dst_offset, int rows, int cols)
{
int x = get_global_id(0);
int y = get_global_id(1);
if (y < rows && x < cols)
{
int map_index = mad24(map_step, y + 1, (x + 1) * (int)sizeof(int) + map_offset);
int dst_index = mad24(dst_step, y, x + dst_offset);
__global const int * map = (__global const int *)(mapptr + map_index);
dst[dst_index] = (uchar)(-(map[0] >> 1));
}
}