canny.cl 19.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
//    Peng Xiao, pengxiao@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

// Smoothing perpendicular to the derivative direction with a triangle filter
// only support 3x3 Sobel kernel
// h (-1) =  1, h (0) =  2, h (1) =  1
// h'(-1) = -1, h'(0) =  0, h'(1) =  1
// thus sobel 2D operator can be calculated as:
// h'(x, y) = h'(x)h(y) for x direction
//
// src		input 8bit single channel image data
// dx_buf	output dx buffer
// dy_buf	output dy buffer

__kernel void __attribute__((reqd_work_group_size(16, 16, 1)))
calcSobelRowPass
    (__global const uchar * src, int src_step, int src_offset, int rows, int cols,
     __global uchar * dx_buf, int dx_buf_step, int dx_buf_offset,
     __global uchar * dy_buf, int dy_buf_step, int dy_buf_offset)
{
    int gidx = get_global_id(0);
    int gidy = get_global_id(1);

    int lidx = get_local_id(0);
    int lidy = get_local_id(1);

    __local int smem[16][18];

    smem[lidy][lidx + 1] = src[mad24(src_step, min(gidy, rows - 1), gidx + src_offset)];
    if (lidx == 0)
    {
        smem[lidy][0]  = src[mad24(src_step, min(gidy, rows - 1), max(gidx - 1,  0)        + src_offset)];
        smem[lidy][17] = src[mad24(src_step, min(gidy, rows - 1), min(gidx + 16, cols - 1) + src_offset)];
    }
    barrier(CLK_LOCAL_MEM_FENCE);

    if (gidy < rows && gidx < cols)
    {
        *(__global short *)(dx_buf + mad24(gidy, dx_buf_step, gidx * (int)sizeof(short) + dx_buf_offset)) =
            smem[lidy][lidx + 2] - smem[lidy][lidx];
        *(__global short *)(dy_buf + mad24(gidy, dy_buf_step, gidx * (int)sizeof(short) + dy_buf_offset)) =
            smem[lidy][lidx] + 2 * smem[lidy][lidx + 1] + smem[lidy][lidx + 2];
    }
}

inline int calc(short x, short y)
{
#ifdef L2GRAD
    return x * x + y * y;
#else
    return (x >= 0 ? x : -x) + (y >= 0 ? y : -y);
#endif
}

// calculate the magnitude of the filter pass combining both x and y directions
// This is the non-buffered version(non-3x3 sobel)
//
// dx_buf		dx buffer, calculated from calcSobelRowPass
// dy_buf		dy buffer, calculated from calcSobelRowPass
// dx			direvitive in x direction output
// dy			direvitive in y direction output
// mag			magnitude direvitive of xy output

__kernel void calcMagnitude(__global const uchar * dxptr, int dx_step, int dx_offset,
                            __global const uchar * dyptr, int dy_step, int dy_offset,
                            __global uchar * magptr, int mag_step, int mag_offset, int rows, int cols)
{
    int x = get_global_id(0);
    int y = get_global_id(1);

    if (y < rows && x < cols)
    {
        int dx_index = mad24(dx_step, y, x * (int)sizeof(short) + dx_offset);
        int dy_index = mad24(dy_step, y, x * (int)sizeof(short) + dy_offset);
        int mag_index = mad24(mag_step, y + 1, (x + 1) * (int)sizeof(int) + mag_offset);

        __global const short * dx = (__global const short *)(dxptr + dx_index);
        __global const short * dy = (__global const short *)(dyptr + dy_index);
        __global int * mag = (__global int *)(magptr + mag_index);

        mag[0] = calc(dx[0], dy[0]);
    }
}

// calculate the magnitude of the filter pass combining both x and y directions
// This is the buffered version(3x3 sobel)
//
// dx_buf		dx buffer, calculated from calcSobelRowPass
// dy_buf		dy buffer, calculated from calcSobelRowPass
// dx			direvitive in x direction output
// dy			direvitive in y direction output
// mag			magnitude direvitive of xy output
__kernel void __attribute__((reqd_work_group_size(16, 16, 1)))
calcMagnitude_buf
    (__global const short * dx_buf, int dx_buf_step, int dx_buf_offset,
     __global const short * dy_buf, int dy_buf_step, int dy_buf_offset,
     __global short * dx, int dx_step, int dx_offset,
     __global short * dy, int dy_step, int dy_offset,
     __global int * mag, int mag_step, int mag_offset,
     int rows, int cols)
{
    dx_buf_step    /= sizeof(*dx_buf);
    dx_buf_offset  /= sizeof(*dx_buf);
    dy_buf_step    /= sizeof(*dy_buf);
    dy_buf_offset  /= sizeof(*dy_buf);
    dx_step    /= sizeof(*dx);
    dx_offset  /= sizeof(*dx);
    dy_step    /= sizeof(*dy);
    dy_offset  /= sizeof(*dy);
    mag_step   /= sizeof(*mag);
    mag_offset /= sizeof(*mag);

    int gidx = get_global_id(0);
    int gidy = get_global_id(1);

    int lidx = get_local_id(0);
    int lidy = get_local_id(1);

    __local short sdx[18][16];
    __local short sdy[18][16];

    sdx[lidy + 1][lidx] = dx_buf[gidx + min(gidy, rows - 1) * dx_buf_step + dx_buf_offset];
    sdy[lidy + 1][lidx] = dy_buf[gidx + min(gidy, rows - 1) * dy_buf_step + dy_buf_offset];
    if (lidy == 0)
    {
        sdx[0][lidx]  = dx_buf[gidx + min(max(gidy - 1, 0), rows - 1) * dx_buf_step + dx_buf_offset];
        sdx[17][lidx] = dx_buf[gidx + min(gidy + 16, rows - 1)        * dx_buf_step + dx_buf_offset];

        sdy[0][lidx]  = dy_buf[gidx + min(max(gidy - 1, 0), rows - 1) * dy_buf_step + dy_buf_offset];
        sdy[17][lidx] = dy_buf[gidx + min(gidy + 16, rows - 1)        * dy_buf_step + dy_buf_offset];
    }
    barrier(CLK_LOCAL_MEM_FENCE);

    if (gidx < cols && gidy < rows)
    {
        short x =  sdx[lidy][lidx] + 2 * sdx[lidy + 1][lidx] + sdx[lidy + 2][lidx];
        short y = -sdy[lidy][lidx] + sdy[lidy + 2][lidx];

        dx[gidx + gidy * dx_step + dx_offset] = x;
        dy[gidx + gidy * dy_step + dy_offset] = y;

        mag[(gidx + 1) + (gidy + 1) * mag_step + mag_offset] = calc(x, y);
    }
}


//////////////////////////////////////////////////////////////////////////////////////////
// 0.4142135623730950488016887242097 is tan(22.5)

#define CANNY_SHIFT 15
#define TG22        (int)(0.4142135623730950488016887242097f*(1<<CANNY_SHIFT) + 0.5f)

// First pass of edge detection and non-maximum suppression
// edgetype is set to for each pixel:
// 0 - below low thres, not an edge
// 1 - maybe an edge
// 2 - is an edge, either magnitude is greater than high thres, or
//     Given estimates of the image gradients, a search is then carried out
//     to determine if the gradient magnitude assumes a local maximum in the gradient direction.
//     if the rounded gradient angle is zero degrees (i.e. the edge is in the north-south direction) the point will be considered to be on the edge if its gradient magnitude is greater than the magnitudes in the west and east directions,
//     if the rounded gradient angle is 90 degrees (i.e. the edge is in the east-west direction) the point will be considered to be on the edge if its gradient magnitude is greater than the magnitudes in the north and south directions,
//     if the rounded gradient angle is 135 degrees (i.e. the edge is in the north east-south west direction) the point will be considered to be on the edge if its gradient magnitude is greater than the magnitudes in the north west and south east directions,
//     if the rounded gradient angle is 45 degrees (i.e. the edge is in the north west-south east direction)the point will be considered to be on the edge if its gradient magnitude is greater than the magnitudes in the north east and south west directions.
//
// dx, dy		direvitives of x and y direction
// mag			magnitudes calculated from calcMagnitude function
// map			output containing raw edge types

__kernel void __attribute__((reqd_work_group_size(16,16,1)))
calcMap(
    __global const uchar * dx, int dx_step, int dx_offset,
    __global const uchar * dy, int dy_step, int dy_offset,
    __global const uchar * mag, int mag_step, int mag_offset,
    __global uchar * map, int map_step, int map_offset,
    int rows, int cols, int low_thresh, int high_thresh)
{
    __local int smem[18][18];

    int gidx = get_global_id(0);
    int gidy = get_global_id(1);

    int lidx = get_local_id(0);
    int lidy = get_local_id(1);

    int grp_idx = get_global_id(0) & 0xFFFFF0;
    int grp_idy = get_global_id(1) & 0xFFFFF0;

    int tid = lidx + lidy * 16;
    int lx = tid % 18;
    int ly = tid / 18;

    mag += mag_offset;
    if (ly < 14)
        smem[ly][lx] = *(__global const int *)(mag +
            mad24(mag_step, min(grp_idy + ly, rows - 1), (int)sizeof(int) * (grp_idx + lx)));
    if (ly < 4 && grp_idy + ly + 14 <= rows && grp_idx + lx <= cols)
        smem[ly + 14][lx] = *(__global const int *)(mag +
            mad24(mag_step, min(grp_idy + ly + 14, rows - 1), (int)sizeof(int) * (grp_idx + lx)));
    barrier(CLK_LOCAL_MEM_FENCE);

    if (gidy < rows && gidx < cols)
    {
        // 0 - the pixel can not belong to an edge
        // 1 - the pixel might belong to an edge
        // 2 - the pixel does belong to an edge
        int edge_type = 0;
        int m = smem[lidy + 1][lidx + 1];

        if (m > low_thresh)
        {
            short xs = *(__global const short *)(dx + mad24(gidy, dx_step, dx_offset + (int)sizeof(short) * gidx));
            short ys = *(__global const short *)(dy + mad24(gidy, dy_step, dy_offset + (int)sizeof(short) * gidx));
            int x = abs(xs), y = abs(ys);

            int tg22x = x * TG22;
            y <<= CANNY_SHIFT;

            if (y < tg22x)
            {
                if (m > smem[lidy + 1][lidx] && m >= smem[lidy + 1][lidx + 2])
                    edge_type = 1 + (int)(m > high_thresh);
            }
            else
            {
                int tg67x = tg22x + (x << (1 + CANNY_SHIFT));
                if (y > tg67x)
                {
                    if (m > smem[lidy][lidx + 1]&& m >= smem[lidy + 2][lidx + 1])
                        edge_type = 1 + (int)(m > high_thresh);
                }
                else
                {
                    int s = (xs ^ ys) < 0 ? -1 : 1;
                    if (m > smem[lidy][lidx + 1 - s]&& m > smem[lidy + 2][lidx + 1 + s])
                        edge_type = 1 + (int)(m > high_thresh);
                }
            }
        }
        *(__global int *)(map + mad24(map_step, gidy + 1, (gidx + 1) * (int)sizeof(int) + map_offset)) = edge_type;
    }
}

#undef CANNY_SHIFT
#undef TG22

struct PtrStepSz
{
    __global uchar * ptr;
    int step, rows, cols;
};

inline int get(struct PtrStepSz data, int y, int x)
{
    return *(__global int *)(data.ptr + mad24(data.step, y + 1, (int)sizeof(int) * (x + 1)));
}

inline void set(struct PtrStepSz data, int y, int x, int value)
{
    *(__global int *)(data.ptr + mad24(data.step, y + 1, (int)sizeof(int) * (x + 1))) = value;
}

// perform Hysteresis for pixel whose edge type is 1
//
// If candidate pixel (edge type is 1) has a neighbour pixel (in 3x3 area) with type 2, it is believed to be part of an edge and
// marked as edge. Each thread will iterate for 16 times to connect local edges.
// Candidate pixel being identified as edge will then be tested if there is nearby potiential edge points. If there is, counter will
// be incremented by 1 and the point location is stored. These potiential candidates will be processed further in next kernel.
//
// map		raw edge type results calculated from calcMap.
// stack	the potiential edge points found in this kernel call
// counter	the number of potiential edge points

__kernel void __attribute__((reqd_work_group_size(16,16,1)))
edgesHysteresisLocal
    (__global uchar * map_ptr, int map_step, int map_offset,
     __global ushort2 * st, __global unsigned int * counter,
    int rows, int cols)
{
    struct PtrStepSz map = { map_ptr + map_offset, map_step, rows + 1, cols + 1 };

    __local int smem[18][18];

    int2 blockIdx = (int2)(get_group_id(0), get_group_id(1));
    int2 blockDim = (int2)(get_local_size(0), get_local_size(1));
    int2 threadIdx = (int2)(get_local_id(0), get_local_id(1));

    const int x = blockIdx.x * blockDim.x + threadIdx.x;
    const int y = blockIdx.y * blockDim.y + threadIdx.y;

    smem[threadIdx.y + 1][threadIdx.x + 1] = x < map.cols && y < map.rows ? get(map, y, x) : 0;
    if (threadIdx.y == 0)
        smem[0][threadIdx.x + 1] = x < map.cols ? get(map, y - 1, x) : 0;
    if (threadIdx.y == blockDim.y - 1)
        smem[blockDim.y + 1][threadIdx.x + 1] = y + 1 < map.rows ? get(map, y + 1, x) : 0;
    if (threadIdx.x == 0)
        smem[threadIdx.y + 1][0] = y < map.rows ? get(map, y, x - 1) : 0;
    if (threadIdx.x == blockDim.x - 1)
        smem[threadIdx.y + 1][blockDim.x + 1] = x + 1 < map.cols && y < map.rows ? get(map, y, x + 1) : 0;
    if (threadIdx.x == 0 && threadIdx.y == 0)
        smem[0][0] = y > 0 && x > 0 ? get(map, y - 1, x - 1) : 0;
    if (threadIdx.x == blockDim.x - 1 && threadIdx.y == 0)
        smem[0][blockDim.x + 1] = y > 0 && x + 1 < map.cols ? get(map, y - 1, x + 1) : 0;
    if (threadIdx.x == 0 && threadIdx.y == blockDim.y - 1)
        smem[blockDim.y + 1][0] = y + 1 < map.rows && x > 0 ? get(map, y + 1, x - 1) : 0;
    if (threadIdx.x == blockDim.x - 1 && threadIdx.y == blockDim.y - 1)
        smem[blockDim.y + 1][blockDim.x + 1] = y + 1 < map.rows && x + 1 < map.cols ? get(map, y + 1, x + 1) : 0;

    barrier(CLK_LOCAL_MEM_FENCE);

    if (x >= cols || y >= rows)
        return;

    int n;

    #pragma unroll
    for (int k = 0; k < 16; ++k)
    {
        n = 0;

        if (smem[threadIdx.y + 1][threadIdx.x + 1] == 1)
        {
            n += smem[threadIdx.y    ][threadIdx.x    ] == 2;
            n += smem[threadIdx.y    ][threadIdx.x + 1] == 2;
            n += smem[threadIdx.y    ][threadIdx.x + 2] == 2;

            n += smem[threadIdx.y + 1][threadIdx.x    ] == 2;
            n += smem[threadIdx.y + 1][threadIdx.x + 2] == 2;

            n += smem[threadIdx.y + 2][threadIdx.x    ] == 2;
            n += smem[threadIdx.y + 2][threadIdx.x + 1] == 2;
            n += smem[threadIdx.y + 2][threadIdx.x + 2] == 2;
        }

        if (n > 0)
            smem[threadIdx.y + 1][threadIdx.x + 1] = 2;
    }

    const int e = smem[threadIdx.y + 1][threadIdx.x + 1];
    set(map, y, x, e);
    n = 0;

    if (e == 2)
    {
        n += smem[threadIdx.y    ][threadIdx.x    ] == 1;
        n += smem[threadIdx.y    ][threadIdx.x + 1] == 1;
        n += smem[threadIdx.y    ][threadIdx.x + 2] == 1;

        n += smem[threadIdx.y + 1][threadIdx.x    ] == 1;
        n += smem[threadIdx.y + 1][threadIdx.x + 2] == 1;

        n += smem[threadIdx.y + 2][threadIdx.x    ] == 1;
        n += smem[threadIdx.y + 2][threadIdx.x + 1] == 1;
        n += smem[threadIdx.y + 2][threadIdx.x + 2] == 1;
    }

    if (n > 0)
    {
        const int ind = atomic_inc(counter);
        st[ind] = (ushort2)(x + 1, y + 1);
    }
}

__constant int c_dx[8] = {-1,  0,  1, -1, 1, -1, 0, 1};
__constant int c_dy[8] = {-1, -1, -1,  0, 0,  1, 1, 1};


#define stack_size 512
#define map_index mad24(map_step, pos.y, pos.x * (int)sizeof(int))

__kernel void __attribute__((reqd_work_group_size(128, 1, 1)))
edgesHysteresisGlobal(__global uchar * map, int map_step, int map_offset,
    __global ushort2 * st1, __global ushort2 * st2, __global int * counter,
    int rows, int cols, int count)
{
    map += map_offset;

    int lidx = get_local_id(0);

    int grp_idx = get_group_id(0);
    int grp_idy = get_group_id(1);

    __local unsigned int s_counter, s_ind;
    __local ushort2 s_st[stack_size];

    if (lidx == 0)
        s_counter = 0;
    barrier(CLK_LOCAL_MEM_FENCE);

    int ind = mad24(grp_idy, (int)get_local_size(0), grp_idx);

    if (ind < count)
    {
        ushort2 pos = st1[ind];
        if (lidx < 8)
        {
            pos.x += c_dx[lidx];
            pos.y += c_dy[lidx];
            if (pos.x > 0 && pos.x <= cols && pos.y > 0 && pos.y <= rows && *(__global int *)(map + map_index) == 1)
            {
                *(__global int *)(map + map_index) = 2;
                ind = atomic_inc(&s_counter);
                s_st[ind] = pos;
            }
        }
        barrier(CLK_LOCAL_MEM_FENCE);

        while (s_counter > 0 && s_counter <= stack_size - get_local_size(0))
        {
            const int subTaskIdx = lidx >> 3;
            const int portion = min(s_counter, (uint)(get_local_size(0)>> 3));

            if (subTaskIdx < portion)
                pos = s_st[s_counter - 1 - subTaskIdx];
            barrier(CLK_LOCAL_MEM_FENCE);

            if (lidx == 0)
                s_counter -= portion;
            barrier(CLK_LOCAL_MEM_FENCE);

            if (subTaskIdx < portion)
            {
                pos.x += c_dx[lidx & 7];
                pos.y += c_dy[lidx & 7];
                if (pos.x > 0 && pos.x <= cols && pos.y > 0 && pos.y <= rows && *(__global int *)(map + map_index) == 1)
                {
                    *(__global int *)(map + map_index) = 2;
                    ind = atomic_inc(&s_counter);
                    s_st[ind] = pos;
                }
            }
            barrier(CLK_LOCAL_MEM_FENCE);
        }

        if (s_counter > 0)
        {
            if (lidx == 0)
            {
                ind = atomic_add(counter, s_counter);
                s_ind = ind - s_counter;
            }
            barrier(CLK_LOCAL_MEM_FENCE);

            ind = s_ind;
            for (int i = lidx; i < (int)s_counter; i += get_local_size(0))
                st2[ind + i] = s_st[i];
        }
    }
}

#undef map_index
#undef stack_size

// Get the edge result. egde type of value 2 will be marked as an edge point and set to 255. Otherwise 0.
// map		edge type mappings
// dst		edge output

__kernel void getEdges(__global const uchar * mapptr, int map_step, int map_offset,
                       __global uchar * dst, int dst_step, int dst_offset, int rows, int cols)
{
    int x = get_global_id(0);
    int y = get_global_id(1);

    if (y < rows && x < cols)
    {
        int map_index = mad24(map_step, y + 1, (x + 1) * (int)sizeof(int) + map_offset);
        int dst_index = mad24(dst_step, y, x + dst_offset);

        __global const int * map = (__global const int *)(mapptr + map_index);

        dst[dst_index] = (uchar)(-(map[0] >> 1));
    }
}