erfilter.cpp 39.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
#include <fstream>

using namespace std;

namespace cv
{

ERStat::ERStat(int init_level, int init_pixel, int init_x, int init_y) : pixel(init_pixel),
               level(init_level), area(0), perimeter(0), euler(0), probability(1.0),
               parent(0), child(0), next(0), prev(0), local_maxima(0),
               max_probability_ancestor(0), min_probability_ancestor(0)
{
    rect = Rect(init_x,init_y,1,1);
    raw_moments[0] = 0.0;
    raw_moments[1] = 0.0;
    central_moments[0] = 0.0;
    central_moments[1] = 0.0;
    central_moments[2] = 0.0;
    crossings = new std::deque<int>();
    crossings->push_back(0);
}


// derivative classes


// the classe implementing the interface for the 1st and 2nd stages of Neumann and Matas algorithm
class CV_EXPORTS ERFilterNM : public ERFilter
{
public:
    //Constructor
    ERFilterNM();
    //Destructor
    ~ERFilterNM() {};

    float minProbability;
    bool  nonMaxSuppression;
    float minProbabilityDiff;

    // the key method. Takes image on input, vector of ERStat is output for the first stage,
    // input/output - for the second one.
    void run( InputArray image, std::vector<ERStat>& regions );

protected:
    int thresholdDelta;
    float maxArea;
    float minArea;

    Ptr<ERFilter::Callback> classifier;

    // count of the rejected/accepted regions
    int num_rejected_regions;
    int num_accepted_regions;

public:

    // set/get methods to set the algorithm properties,
    void setCallback(const Ptr<ERFilter::Callback>& cb);
    void setThresholdDelta(int thresholdDelta);
    void setMinArea(float minArea);
    void setMaxArea(float maxArea);
    void setMinProbability(float minProbability);
    void setMinProbabilityDiff(float minProbabilityDiff);
    void setNonMaxSuppression(bool nonMaxSuppression);
    int  getNumRejected();

private:
    // pointer to the input/output regions vector
    std::vector<ERStat> *regions;
    // image mask used for feature calculations
    Mat region_mask;

    // extract the component tree and store all the ER regions
    void er_tree_extract( InputArray image );
    // accumulate a pixel into an ER
    void er_add_pixel( ERStat *parent, int x, int y, int non_boundary_neighbours,
                       int non_boundary_neighbours_horiz,
                       int d_C1, int d_C2, int d_C3 );
    // merge an ER with its nested parent
    void er_merge( ERStat *parent, ERStat *child );
    // recursively walk the tree and clean memory
    void er_tree_clean( ERStat *er );
    // copy extracted regions into the output vector
    ERStat* er_save( ERStat *er, ERStat *parent, ERStat *prev );
    // recursively walk the tree and filter (remove) regions using the callback classifier
    ERStat* er_tree_filter( InputArray image, ERStat *stat, ERStat *parent, ERStat *prev );
    // recursively walk the tree selecting only regions with local maxima probability
    ERStat* er_tree_nonmax_suppression( ERStat *er, ERStat *parent, ERStat *prev );
};


// default 1st stage classifier
class CV_EXPORTS ERClassifierNM1 : public ERFilter::Callback
{
public:
    //Constructor
    ERClassifierNM1();
    // Destructor
    ~ERClassifierNM1() {};

    // The classifier must return probability measure for the region.
    double eval(const ERStat& stat);

private:
    CvBoost boost;
};

// default 2nd stage classifier
class CV_EXPORTS ERClassifierNM2 : public ERFilter::Callback
{
public:
    //constructor
    ERClassifierNM2();
    // Destructor
    ~ERClassifierNM2() {};

    // The classifier must return probability measure for the region.
    double eval(const ERStat& stat);

private:
    CvBoost boost;
};





// default constructor
ERFilterNM::ERFilterNM()
{
    thresholdDelta = 1;
    minArea = 0.;
    maxArea = 1.;
    minProbability = 0.;
    nonMaxSuppression = false;
    minProbabilityDiff = 1.;
    num_accepted_regions = 0;
    num_rejected_regions = 0;
    classifier = NULL;
}

// the key method. Takes image on input, vector of ERStat is output for the first stage,
// input/output for the second one.
void ERFilterNM::run( InputArray image, std::vector<ERStat>& _regions )
{

    // assert correct image type
    CV_Assert( image.getMat().type() == CV_8UC1 );

    regions = &_regions;
    region_mask = Mat::zeros(image.getMat().rows+2, image.getMat().cols+2, CV_8UC1);

    // if regions vector is empty we must extract the entire component tree
    if ( regions->size() == 0 )
    {
        er_tree_extract( image );
        if (nonMaxSuppression)
        {
            vector<ERStat> aux_regions;
            regions->swap(aux_regions);
            regions->reserve(aux_regions.size());
            er_tree_nonmax_suppression( &aux_regions.front(), NULL, NULL );
            aux_regions.clear();
        }
    }
    else // if regions vector is already filled we'll just filter the current regions
    {
        // the tree root must have no parent
        CV_Assert( regions->front().parent == NULL );

        vector<ERStat> aux_regions;
        regions->swap(aux_regions);
        regions->reserve(aux_regions.size());
        er_tree_filter( image, &aux_regions.front(), NULL, NULL );
        aux_regions.clear();
    }
}

// extract the component tree and store all the ER regions
// uses the algorithm described in
// Linear time maximally stable extremal regions, D Nistér, H Stewénius – ECCV 2008
void ERFilterNM::er_tree_extract( InputArray image )
{

    Mat src = image.getMat();
    // assert correct image type
    CV_Assert( src.type() == CV_8UC1 );

    if (thresholdDelta > 1)
    {
        Mat tmp;
        src.copyTo(tmp);
        src.release();
        src = (image.getMat() / thresholdDelta) -1;
    }

    const unsigned char * image_data = src.data;
    int width = src.cols, height = src.rows;

    // the component stack
    vector<ERStat*> er_stack;

    //the quads for euler number calculation
    unsigned char quads[3][4];
    quads[0][0] = 1 << 3;
    quads[0][1] = 1 << 2;
    quads[0][2] = 1 << 1;
    quads[0][3] = 1;
    quads[1][0] = (1<<2)|(1<<1)|(1);
    quads[1][1] = (1<<3)|(1<<1)|(1);
    quads[1][2] = (1<<3)|(1<<2)|(1);
    quads[1][3] = (1<<3)|(1<<2)|(1<<1);
    quads[2][0] = (1<<2)|(1<<1);
    quads[2][1] = (1<<3)|(1);
    quads[2][3] = 255;


    // masks to know if a pixel is accessible and if it has been already added to some region
    vector<bool> accessible_pixel_mask(width * height);
    vector<bool> accumulated_pixel_mask(width * height);

    // heap of boundary pixels
    vector<int> boundary_pixes[256];
    vector<int> boundary_edges[256];

    // add a dummy-component before start
    er_stack.push_back(new ERStat);

    // we'll look initially for all pixels with grey-level lower than a grey-level higher than any allowed in the image
    int threshold_level = (255/thresholdDelta)+1;

    // starting from the first pixel (0,0)
    int current_pixel = 0;
    int current_edge = 0;
    int current_level = image_data[0];
    accessible_pixel_mask[0] = true;

    bool push_new_component = true;

    for (;;) {

        int x = current_pixel % width;
        int y = current_pixel / width;

        // push a component with current level in the component stack
        if (push_new_component)
            er_stack.push_back(new ERStat(current_level, current_pixel, x, y));
        push_new_component = false;

        // explore the (remaining) edges to the neighbors to the current pixel
        for (current_edge = current_edge; current_edge < 4; current_edge++)
        {

            int neighbour_pixel = current_pixel;

            switch (current_edge)
            {
                    case 0: if (x < width - 1) neighbour_pixel = current_pixel + 1;  break;
                    case 1: if (y < height - 1) neighbour_pixel = current_pixel + width; break;
                    case 2: if (x > 0) neighbour_pixel = current_pixel - 1; break;
                    default: if (y > 0) neighbour_pixel = current_pixel - width; break;
            }

            // if neighbour is not accessible, mark it accessible and retreive its grey-level value
            if ( !accessible_pixel_mask[neighbour_pixel] && (neighbour_pixel != current_pixel) )
            {

                int neighbour_level = image_data[neighbour_pixel];
                accessible_pixel_mask[neighbour_pixel] = true;

                // if neighbour level is not lower than current level add neighbour to the boundary heap
                if (neighbour_level >= current_level)
                {

                    boundary_pixes[neighbour_level].push_back(neighbour_pixel);
                    boundary_edges[neighbour_level].push_back(0);

                    // if neighbour level is lower than our threshold_level set threshold_level to neighbour level
                    if (neighbour_level < threshold_level)
                        threshold_level = neighbour_level;

                }
                else // if neighbour level is lower than current add current_pixel (and next edge)
                     // to the boundary heap for later processing
                {

                    boundary_pixes[current_level].push_back(current_pixel);
                    boundary_edges[current_level].push_back(current_edge + 1);

                    // if neighbour level is lower than threshold_level set threshold_level to neighbour level
                    if (current_level < threshold_level)
                        threshold_level = current_level;

                    // consider the new pixel and its grey-level as current pixel
                    current_pixel = neighbour_pixel;
                    current_edge = 0;
                    current_level = neighbour_level;

                    // and push a new component
                    push_new_component = true;
                    break;
                }
            }

        } // else neigbor was already accessible

        if (push_new_component) continue;


        // once here we can add the current pixel to the component at the top of the stack
        // but first we find how many of its neighbours are part of the region boundary (needed for
        // perimeter and crossings calc.) and the increment in quads counts for euler number calc.
        int non_boundary_neighbours = 0;
        int non_boundary_neighbours_horiz = 0;

        unsigned char quad_before[4] = {0,0,0,0};
        unsigned char quad_after[4] = {0,0,0,0};
        quad_after[0] = 1<<1;
        quad_after[1] = 1<<3;
        quad_after[2] = 1<<2;
        quad_after[3] = 1;

        for (int edge = 0; edge < 8; edge++)
        {
            int neighbour4 = -1;
            int neighbour8 = -1;
            int cell = 0;
            switch (edge)
            {
                    case 0: if (x < width - 1) { neighbour4 = neighbour8 = current_pixel + 1;} cell = 5; break;
                    case 1: if ((x < width - 1)&&(y < height - 1)) { neighbour8 = current_pixel + 1 + width;} cell = 8; break;
                    case 2: if (y < height - 1) { neighbour4 = neighbour8 = current_pixel + width;} cell = 7; break;
                    case 3: if ((x > 0)&&(y < height - 1)) { neighbour8 = current_pixel - 1 + width;} cell = 6; break;
                    case 4: if (x > 0) { neighbour4 = neighbour8 = current_pixel - 1;} cell = 3; break;
                    case 5: if ((x > 0)&&(y > 0)) { neighbour8 = current_pixel - 1 - width;} cell = 0; break;
                    case 6: if (y > 0) { neighbour4 = neighbour8 = current_pixel - width;} cell = 1; break;
                    default: if ((x < width - 1)&&(y > 0)) { neighbour8 = current_pixel + 1 - width;} cell = 2; break;
            }
            if ((neighbour4 != -1)&&(accumulated_pixel_mask[neighbour4])&&(image_data[neighbour4]<=image_data[current_pixel]))
            {
                non_boundary_neighbours++;
                if ((edge == 0) || (edge == 4))
                    non_boundary_neighbours_horiz++;
            }

            int pix_value = image_data[current_pixel] + 1;
            if (neighbour8 != -1)
            {
                if (accumulated_pixel_mask[neighbour8])
                    pix_value = image_data[neighbour8];
            }

            if (pix_value<=image_data[current_pixel])
            {
                switch(cell)
                {
                    case 0:
                        quad_before[3] = quad_before[3] | (1<<3);
                        quad_after[3]  = quad_after[3]  | (1<<3);
                        break;
                    case 1:
                        quad_before[3] = quad_before[3] | (1<<2);
                        quad_after[3]  = quad_after[3]  | (1<<2);
                        quad_before[0] = quad_before[0] | (1<<3);
                        quad_after[0]  = quad_after[0]  | (1<<3);
                        break;
                    case 2:
                        quad_before[0] = quad_before[0] | (1<<2);
                        quad_after[0]  = quad_after[0]  | (1<<2);
                        break;
                    case 3:
                        quad_before[3] = quad_before[3] | (1<<1);
                        quad_after[3]  = quad_after[3]  | (1<<1);
                        quad_before[2] = quad_before[2] | (1<<3);
                        quad_after[2]  = quad_after[2]  | (1<<3);
                        break;
                    case 5:
                        quad_before[0] = quad_before[0] | (1);
                        quad_after[0]  = quad_after[0]  | (1);
                        quad_before[1] = quad_before[1] | (1<<2);
                        quad_after[1]  = quad_after[1]  | (1<<2);
                        break;
                    case 6:
                        quad_before[2] = quad_before[2] | (1<<1);
                        quad_after[2]  = quad_after[2]  | (1<<1);
                        break;
                    case 7:
                        quad_before[2] = quad_before[2] | (1);
                        quad_after[2]  = quad_after[2]  | (1);
                        quad_before[1] = quad_before[1] | (1<<1);
                        quad_after[1]  = quad_after[1]  | (1<<1);
                        break;
                    default:
                        quad_before[1] = quad_before[1] | (1);
                        quad_after[1]  = quad_after[1]  | (1);
                        break;
                }
            }

        }

        int C_before[3] = {0, 0, 0};
        int C_after[3] = {0, 0, 0};

        for (int p=0; p<3; p++)
        {
            for (int q=0; q<4; q++)
            {
                if ( (quad_before[0] == quads[p][q]) && ((p<2)||(q<2)) )
                    C_before[p]++;
                if ( (quad_before[1] == quads[p][q]) && ((p<2)||(q<2)) )
                    C_before[p]++;
                if ( (quad_before[2] == quads[p][q]) && ((p<2)||(q<2)) )
                    C_before[p]++;
                if ( (quad_before[3] == quads[p][q]) && ((p<2)||(q<2)) )
                    C_before[p]++;

                if ( (quad_after[0] == quads[p][q]) && ((p<2)||(q<2)) )
                    C_after[p]++;
                if ( (quad_after[1] == quads[p][q]) && ((p<2)||(q<2)) )
                    C_after[p]++;
                if ( (quad_after[2] == quads[p][q]) && ((p<2)||(q<2)) )
                    C_after[p]++;
                if ( (quad_after[3] == quads[p][q]) && ((p<2)||(q<2)) )
                    C_after[p]++;
            }
        }

        int d_C1 = C_after[0]-C_before[0];
        int d_C2 = C_after[1]-C_before[1];
        int d_C3 = C_after[2]-C_before[2];

        er_add_pixel(er_stack.back(), x, y, non_boundary_neighbours, non_boundary_neighbours_horiz, d_C1, d_C2, d_C3);
        accumulated_pixel_mask[current_pixel] = true;

        // if we have processed all the possible threshold levels (the hea is empty) we are done!
        if (threshold_level == (255/thresholdDelta)+1)
        {

            // save the extracted regions into the output vector
            regions->reserve(num_accepted_regions+1);
            er_save(er_stack.back(), NULL, NULL);

            // clean memory
            er_tree_clean(er_stack.back());
            er_stack.clear();

            return;
        }


        // pop the heap of boundary pixels
        current_pixel = boundary_pixes[threshold_level].back();
        boundary_pixes[threshold_level].erase(boundary_pixes[threshold_level].end()-1);
        current_edge  = boundary_edges[threshold_level].back();
        boundary_edges[threshold_level].erase(boundary_edges[threshold_level].end()-1);

        while (boundary_pixes[threshold_level].empty() && (threshold_level < (255/thresholdDelta)+1))
            threshold_level++;


        int new_level = image_data[current_pixel];

        // if the new pixel has higher grey value than the current one
        if (new_level != current_level) {

            current_level = new_level;

            // process components on the top of the stack until we reach the higher grey-level
            while (er_stack.back()->level < new_level)
            {
                ERStat* er = er_stack.back();
                er_stack.erase(er_stack.end()-1);

                if (new_level < er_stack.back()->level)
                {
                    er_stack.push_back(new ERStat(new_level, current_pixel, current_pixel%width, current_pixel/width));
                    er_merge(er_stack.back(), er);
                    break;
                }

                er_merge(er_stack.back(), er);
            }

        }

    }
}

// accumulate a pixel into an ER
void ERFilterNM::er_add_pixel(ERStat *parent, int x, int y, int non_border_neighbours,
                                                            int non_border_neighbours_horiz,
                                                            int d_C1, int d_C2, int d_C3)
{
    parent->area++;
    parent->perimeter += 4 - 2*non_border_neighbours;

    if (parent->crossings->size()>0)
    {
        if (y<parent->rect.y) parent->crossings->push_front(2);
        else if (y>parent->rect.br().y-1) parent->crossings->push_back(2);
        else {
            parent->crossings->at(y - parent->rect.y) += 2-2*non_border_neighbours_horiz;
        }
    } else {
        parent->crossings->push_back(2);
    }

    parent->euler += (d_C1 - d_C2 + 2*d_C3) / 4;

    int new_x1 = min(parent->rect.x,x);
    int new_y1 = min(parent->rect.y,y);
    int new_x2 = max(parent->rect.br().x-1,x);
    int new_y2 = max(parent->rect.br().y-1,y);
    parent->rect.x = new_x1;
    parent->rect.y = new_y1;
    parent->rect.width  = new_x2-new_x1+1;
    parent->rect.height = new_y2-new_y1+1;

    parent->raw_moments[0] += x;
    parent->raw_moments[1] += y;

    parent->central_moments[0] += x * x;
    parent->central_moments[1] += x * y;
    parent->central_moments[2] += y * y;
}

// merge an ER with its nested parent
void ERFilterNM::er_merge(ERStat *parent, ERStat *child)
{

    parent->area += child->area;

    parent->perimeter += child->perimeter;


    for (int i=parent->rect.y; i<=min(parent->rect.br().y-1,child->rect.br().y-1); i++)
        if (i-child->rect.y >= 0)
            parent->crossings->at(i-parent->rect.y) += child->crossings->at(i-child->rect.y);

    for (int i=parent->rect.y-1; i>=child->rect.y; i--)
        if (i-child->rect.y < (int)child->crossings->size())
            parent->crossings->push_front(child->crossings->at(i-child->rect.y));
        else
            parent->crossings->push_front(0);

    for (int i=parent->rect.br().y; i<child->rect.y; i++)
        parent->crossings->push_back(0);

    for (int i=max(parent->rect.br().y,child->rect.y); i<=child->rect.br().y-1; i++)
        parent->crossings->push_back(child->crossings->at(i-child->rect.y));

    parent->euler += child->euler;

    int new_x1 = min(parent->rect.x,child->rect.x);
    int new_y1 = min(parent->rect.y,child->rect.y);
    int new_x2 = max(parent->rect.br().x-1,child->rect.br().x-1);
    int new_y2 = max(parent->rect.br().y-1,child->rect.br().y-1);
    parent->rect.x = new_x1;
    parent->rect.y = new_y1;
    parent->rect.width  = new_x2-new_x1+1;
    parent->rect.height = new_y2-new_y1+1;

    parent->raw_moments[0] += child->raw_moments[0];
    parent->raw_moments[1] += child->raw_moments[1];

    parent->central_moments[0] += child->central_moments[0];
    parent->central_moments[1] += child->central_moments[1];
    parent->central_moments[2] += child->central_moments[2];

    vector<int> m_crossings;
    m_crossings.push_back(child->crossings->at((int)(child->rect.height)/6));
    m_crossings.push_back(child->crossings->at((int)3*(child->rect.height)/6));
    m_crossings.push_back(child->crossings->at((int)5*(child->rect.height)/6));
    std::sort(m_crossings.begin(), m_crossings.end());
    child->med_crossings = (float)m_crossings.at(1);

    // free unnecessary mem
    child->crossings->clear();
    delete(child->crossings);
    child->crossings = NULL;

    // recover the original grey-level
    child->level = child->level*thresholdDelta;

    // before saving calculate P(child|character) and filter if possible
    if (classifier != NULL)
    {
        child->probability = classifier->eval(*child);
    }

    if ( ((classifier!=NULL)?(child->probability >= minProbability):true) &&
         ((child->area >= (minArea*region_mask.rows*region_mask.cols)) &&
          (child->area <= (maxArea*region_mask.rows*region_mask.cols))) )
    {

        num_accepted_regions++;

        child->next = parent->child;
        if (parent->child)
            parent->child->prev = child;
        parent->child = child;
        child->parent = parent;

    } else {

        num_rejected_regions++;

        if (child->prev !=NULL)
            child->prev->next = child->next;

        ERStat *new_child = child->child;
        if (new_child != NULL)
        {
            while (new_child->next != NULL)
                new_child = new_child->next;
            new_child->next = parent->child;
            if (parent->child)
                parent->child->prev = new_child;
            parent->child   = child->child;
            child->child->parent = parent;
        }

        // free mem
        if(child->crossings)
        {
            child->crossings->clear();
            delete(child->crossings);
            child->crossings = NULL;
        }
        delete(child);
    }

}

// recursively walk the tree and clean memory
void ERFilterNM::er_tree_clean( ERStat *stat )
{
        for (ERStat * child = stat->child; child; child = child->next)
        {
            er_tree_clean(child);
        }
        if (stat->crossings)
        {
            stat->crossings->clear();
            delete(stat->crossings);
            stat->crossings = NULL;
        }
        delete stat;
}

// copy extracted regions into the output vector
ERStat* ERFilterNM::er_save( ERStat *er, ERStat *parent, ERStat *prev )
{

    regions->push_back(*er);

    regions->back().parent = parent;
    if (prev != NULL)
      prev->next = &(regions->back());
    else if (parent != NULL)
      parent->child = &(regions->back());

    ERStat *old_prev = NULL;
    ERStat *this_er  = &regions->back();

    if (nonMaxSuppression)
    {
        if (this_er->parent == NULL)
        {
            this_er->probability = 0; //TODO this makes sense in order to select at least one region in short tree's but is it really necessary?
            this_er->max_probability_ancestor = this_er;
            this_er->min_probability_ancestor = this_er;
        }
        else
        {
            this_er->max_probability_ancestor = (this_er->probability > parent->max_probability_ancestor->probability)? this_er :  parent->max_probability_ancestor;

            this_er->min_probability_ancestor = (this_er->probability < parent->min_probability_ancestor->probability)? this_er :  parent->min_probability_ancestor;

            if ( (this_er->max_probability_ancestor->probability > minProbability) && (this_er->max_probability_ancestor->probability - this_er->min_probability_ancestor->probability > minProbabilityDiff))
            {

                this_er->max_probability_ancestor->local_maxima = true;
                //TODO check here if the last local_maxima can be also suppressed, is the following correct?
                //if (this_er->min_probability_ancestor->local_maxima)
                //  this_er->min_probability_ancestor->local_maxima = false;

                this_er->max_probability_ancestor = this_er;
                this_er->min_probability_ancestor = this_er;
            }
        }
    }

    for (ERStat * child = er->child; child; child = child->next)
    {
        old_prev = er_save(child, this_er, old_prev);
    }

    return this_er;
}

// recursively walk the tree and filter (remove) regions using the callback classifier
ERStat* ERFilterNM::er_tree_filter ( InputArray image, ERStat * stat, ERStat *parent, ERStat *prev )
{
    Mat src = image.getMat();
    // assert correct image type
    CV_Assert( src.type() == CV_8UC1 );

    //Fill the region and calculate 2nd stage features
    Mat region = region_mask(Rect(Point(stat->rect.x,stat->rect.y),Point(stat->rect.br().x+2,stat->rect.br().y+2)));
    region = Scalar(0);
    int newMaskVal = 255;
    int flags = 4 + (newMaskVal << 8) + FLOODFILL_FIXED_RANGE + FLOODFILL_MASK_ONLY;
    Rect rect;

    floodFill( src(Rect(Point(stat->rect.x,stat->rect.y),Point(stat->rect.br().x,stat->rect.br().y))),
               region, Point(stat->pixel%src.cols - stat->rect.x, stat->pixel/src.cols - stat->rect.y),
               Scalar(255), &rect, Scalar(stat->level), Scalar(0), flags );
    rect.width += 2;
    rect.height += 2;
    region = region(rect);

    vector<vector<Point> > contours;
    vector<Point> contour_poly;
    vector<Vec4i> hierarchy;
    findContours( region, contours, hierarchy, RETR_TREE, CHAIN_APPROX_NONE, Point(0, 0) );
    //TODO check epsilon parameter of approxPolyDP (set empirically) : we want more precission
    //     if the region is very small because otherwise we'll loose all the convexities
    approxPolyDP( Mat(contours[0]), contour_poly, max(rect.width,rect.height)/25, true );


    bool was_convex = false;
    int  num_inflexion_points = 0;

    for (int p = 0 ; p<(int)contour_poly.size(); p++)
    {
        int p_prev = p-1;
        int p_next = p+1;
        if (p_prev == -1)
            p_prev = contour_poly.size()-1;
        if (p_next == (int)contour_poly.size())
            p_next = 0;

        double angle_next = atan2((double)(contour_poly[p_next].y-contour_poly[p].y),
                                  (double)(contour_poly[p_next].x-contour_poly[p].x));
        double angle_prev = atan2((double)(contour_poly[p_prev].y-contour_poly[p].y),
                                  (double)(contour_poly[p_prev].x-contour_poly[p].x));
        if ( angle_next < 0 )
            angle_next = 2.*CV_PI + angle_next;

        double angle = (angle_next - angle_prev);
        if (angle > 2.*CV_PI)
            angle = angle - 2.*CV_PI;
        else if (angle < 0)
            angle = 2.*CV_PI + std::abs(angle);

        if (p>0)
        {
            if ( ((angle > CV_PI)&&(!was_convex)) || ((angle < CV_PI)&&(was_convex)) )
                num_inflexion_points++;
        }
        was_convex = (angle > CV_PI);

    }

    floodFill(region, Point(0,0), Scalar(255), 0);
    int holes_area = region.cols*region.rows-countNonZero(region);

    int hull_area = 0;

    {

        vector<Point> hull;
        convexHull(contours[0], hull, false);
        hull_area = (int)contourArea(hull);
    }


    stat->hole_area_ratio = (float)holes_area / stat->area;
    stat->convex_hull_ratio = (float)hull_area / (float)contourArea(contours[0]);
    stat->num_inflexion_points = (float)num_inflexion_points;


    // calculate P(child|character) and filter if possible
    if ( (classifier != NULL) && (stat->parent != NULL) )
    {
        stat->probability = classifier->eval(*stat);
    }

    if ( ( ((classifier != NULL)?(stat->probability >= minProbability):true) &&
          ((stat->area >= minArea*region_mask.rows*region_mask.cols) &&
           (stat->area <= maxArea*region_mask.rows*region_mask.cols)) ) ||
        (stat->parent == NULL) )
    {

        num_accepted_regions++;
        regions->push_back(*stat);

        regions->back().parent = parent;
        regions->back().next   = NULL;
        regions->back().child  = NULL;

        if (prev != NULL)
            prev->next = &(regions->back());
        else if (parent != NULL)
            parent->child = &(regions->back());

        ERStat *old_prev = NULL;
        ERStat *this_er  = &regions->back();

        for (ERStat * child = stat->child; child; child = child->next)
        {
            old_prev = er_tree_filter(image, child, this_er, old_prev);
        }

        return this_er;

    } else {

        num_rejected_regions++;

        ERStat *old_prev = prev;

        for (ERStat * child = stat->child; child; child = child->next)
        {
            old_prev = er_tree_filter(image, child, parent, old_prev);
        }

        return old_prev;
    }

}

// recursively walk the tree selecting only regions with local maxima probability
ERStat* ERFilterNM::er_tree_nonmax_suppression ( ERStat * stat, ERStat *parent, ERStat *prev )
{

    if ( ( stat->local_maxima ) || ( stat->parent == NULL ) )
    {

        regions->push_back(*stat);

        regions->back().parent = parent;
        regions->back().next   = NULL;
        regions->back().child  = NULL;

        if (prev != NULL)
            prev->next = &(regions->back());
        else if (parent != NULL)
            parent->child = &(regions->back());

        ERStat *old_prev = NULL;
        ERStat *this_er  = &regions->back();

        for (ERStat * child = stat->child; child; child = child->next)
        {
            old_prev = er_tree_nonmax_suppression( child, this_er, old_prev );
        }

        return this_er;

    } else {

        num_rejected_regions++;
        num_accepted_regions--;

        ERStat *old_prev = prev;

        for (ERStat * child = stat->child; child; child = child->next)
        {
            old_prev = er_tree_nonmax_suppression( child, parent, old_prev );
        }

        return old_prev;
    }

}

void ERFilterNM::setCallback(const Ptr<ERFilter::Callback>& cb)
{
    classifier = cb;
};

void ERFilterNM::setMinArea(float _minArea)
{
    CV_Assert( (_minArea >= 0) && (_minArea < maxArea) );
    minArea = _minArea;
    return;
};

void ERFilterNM::setMaxArea(float _maxArea)
{
    CV_Assert(_maxArea <= 1);
    CV_Assert(minArea < _maxArea);
    maxArea = _maxArea;
    return;
};

void ERFilterNM::setThresholdDelta(int _thresholdDelta)
{
    CV_Assert( (_thresholdDelta > 0) && (_thresholdDelta <= 128) );
    thresholdDelta = _thresholdDelta;
    return;
};

void ERFilterNM::setMinProbability(float _minProbability)
{
    CV_Assert( (_minProbability >= 0.0) && (_minProbability <= 1.0) );
    minProbability = _minProbability;
    return;
};

void ERFilterNM::setMinProbabilityDiff(float _minProbabilityDiff)
{
    CV_Assert( (_minProbabilityDiff >= 0.0) && (_minProbabilityDiff <= 1.0) );
    minProbabilityDiff = _minProbabilityDiff;
    return;
};

void ERFilterNM::setNonMaxSuppression(bool _nonMaxSuppression)
{
    nonMaxSuppression = _nonMaxSuppression;
    return;
};

int ERFilterNM::getNumRejected()
{
    return num_rejected_regions;
};




// load default 1st stage classifier if found
ERClassifierNM1::ERClassifierNM1()
{

    if (ifstream("./trained_classifierNM1.xml"))
    {
        // The file with default classifier exists
        boost.load("./trained_classifierNM1.xml", "boost");
    }
    else if (ifstream("./training/trained_classifierNM1.xml"))
    {
        // The file with default classifier exists
        boost.load("./training/trained_classifierNM1.xml", "boost");
    }
    else
    {
        // File not found
        CV_Error(CV_StsBadArg, "Default classifier ./trained_classifierNM1.xml not found!");
    }
};

double ERClassifierNM1::eval(const ERStat& stat)
{
    //Classify
    float arr[] = {0,(float)(stat.rect.width)/(stat.rect.height), // aspect ratio
                     sqrt((float)(stat.area))/stat.perimeter, // compactness
                     (float)(1-stat.euler), //number of holes
                     stat.med_crossings};

    vector<float> sample (arr, arr + sizeof(arr) / sizeof(arr[0]) );

    float votes = boost.predict( Mat(sample), Mat(), Range::all(), false, true );

    // Logistic Correction returns a probability value (in the range(0,1))
    return (double)1-(double)1/(1+exp(-2*votes));
};


// load default 2nd stage classifier if found
ERClassifierNM2::ERClassifierNM2()
{

    if (ifstream("./trained_classifierNM2.xml"))
    {
        // The file with default classifier exists
        boost.load("./trained_classifierNM2.xml", "boost");
    }
    else if (ifstream("./training/trained_classifierNM2.xml"))
    {
        // The file with default classifier exists
        boost.load("./training/trained_classifierNM2.xml", "boost");
    }
    else
    {
        // File not found
        CV_Error(CV_StsBadArg, "Default classifier ./trained_classifierNM2.xml not found!");
    }
};

double ERClassifierNM2::eval(const ERStat& stat)
{
    //Classify
    float arr[] = {0,(float)(stat.rect.width)/(stat.rect.height), // aspect ratio
                     sqrt((float)(stat.area))/stat.perimeter, // compactness
                     (float)(1-stat.euler), //number of holes
                     stat.med_crossings, stat.hole_area_ratio,
                     stat.convex_hull_ratio, stat.num_inflexion_points};

    vector<float> sample (arr, arr + sizeof(arr) / sizeof(arr[0]) );

    float votes = boost.predict( Mat(sample), Mat(), Range::all(), false, true );

    // Logistic Correction returns a probability value (in the range(0,1))
    return (double)1-(double)1/(1+exp(-2*votes));
};


/*!
    Create an Extremal Region Filter for the 1st stage classifier of N&M algorithm
    Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012

    The component tree of the image is extracted by a threshold increased step by step
    from 0 to 255, incrementally computable descriptors (aspect_ratio, compactness,
    number of holes, and number of horizontal crossings) are computed for each ER
    and used as features for a classifier which estimates the class-conditional
    probability P(er|character). The value of P(er|character) is tracked using the inclusion
    relation of ER across all thresholds and only the ERs which correspond to local maximum
    of the probability P(er|character) are selected (if the local maximum of the
    probability is above a global limit pmin and the difference between local maximum and
    local minimum is greater than minProbabilityDiff).

    \param  cb                Callback with the classifier.
                              if omitted tries to load a default classifier from file trained_classifierNM1.xml
    \param  thresholdDelta    Threshold step in subsequent thresholds when extracting the component tree
    \param  minArea           The minimum area (% of image size) allowed for retreived ER's
    \param  minArea           The maximum area (% of image size) allowed for retreived ER's
    \param  minProbability    The minimum probability P(er|character) allowed for retreived ER's
    \param  nonMaxSuppression Whenever non-maximum suppression is done over the branch probabilities
    \param  minProbability    The minimum probability difference between local maxima and local minima ERs
*/
Ptr<ERFilter> createERFilterNM1(const Ptr<ERFilter::Callback>& cb, int thresholdDelta,
                                float minArea, float maxArea, float minProbability,
                                bool nonMaxSuppression, float minProbabilityDiff)
{

    CV_Assert( (minProbability >= 0.) && (minProbability <= 1.) );
    CV_Assert( (minArea < maxArea) && (minArea >=0.) && (maxArea <= 1.) );
    CV_Assert( (thresholdDelta >= 0) && (thresholdDelta <= 128) );
    CV_Assert( (minProbabilityDiff >= 0.) && (minProbabilityDiff <= 1.) );

    Ptr<ERFilterNM> filter = new ERFilterNM();

    if (cb == NULL)
        filter->setCallback(new ERClassifierNM1());
    else
        filter->setCallback(cb);

    filter->setThresholdDelta(thresholdDelta);
    filter->setMinArea(minArea);
    filter->setMaxArea(maxArea);
    filter->setMinProbability(minProbability);
    filter->setNonMaxSuppression(nonMaxSuppression);
    filter->setMinProbabilityDiff(minProbabilityDiff);
    return (Ptr<ERFilter>)filter;
}

/*!
    Create an Extremal Region Filter for the 2nd stage classifier of N&M algorithm
    Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012

    In the second stage, the ERs that passed the first stage are classified into character
    and non-character classes using more informative but also more computationally expensive
    features. The classifier uses all the features calculated in the first stage and the following
    additional features: hole area ratio, convex hull ratio, and number of outer inflexion points.

    \param  cb             Callback with the classifier
                           if omitted tries to load a default classifier from file trained_classifierNM2.xml
    \param  minProbability The minimum probability P(er|character) allowed for retreived ER's
*/
Ptr<ERFilter> createERFilterNM2(const Ptr<ERFilter::Callback>& cb, float minProbability)
{

    CV_Assert( (minProbability >= 0.) && (minProbability <= 1.) );

    Ptr<ERFilterNM> filter = new ERFilterNM();


    if (cb == NULL)
        filter->setCallback(new ERClassifierNM2());
    else
        filter->setCallback(cb);

    filter->setMinProbability(minProbability);
    return (Ptr<ERFilter>)filter;
}

}