1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
#include "precomp.hpp"
#include <climits>
#include <algorithm>
#include <cstdarg>
namespace cv{namespace optim{
using std::vector;
#ifdef ALEX_DEBUG
#define dprintf(x) printf x
static void print_matrix(const Mat& x){
print(x);
printf("\n");
}
static void print_simplex_state(const Mat& c,const Mat& b,double v,const std::vector<int> N,const std::vector<int> B){
printf("\tprint simplex state\n");
printf("v=%g\n",v);
printf("here c goes\n");
print_matrix(c);
printf("non-basic: ");
print(Mat(N));
printf("\n");
printf("here b goes\n");
print_matrix(b);
printf("basic: ");
print(Mat(B));
printf("\n");
}
#else
#define dprintf(x)
#define print_matrix(x)
#define print_simplex_state(c,b,v,N,B)
#endif
/**Due to technical considerations, the format of input b and c is somewhat special:
*both b and c should be one column bigger than corresponding b and c of linear problem and the leftmost column will be used internally
by this procedure - it should not be cleaned before the call to procedure and may contain mess after
it also initializes N and B and does not make any assumptions about their init values
* @return SOLVELP_UNFEASIBLE if problem is unfeasible, 0 if feasible.
*/
static int initialize_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B,vector<unsigned int>& indexToRow);
static inline void pivot(Mat_<double>& c,Mat_<double>& b,double& v,vector<int>& N,vector<int>& B,int leaving_index,
int entering_index,vector<unsigned int>& indexToRow);
/**@return SOLVELP_UNBOUNDED means the problem is unbdd, SOLVELP_MULTI means multiple solutions, SOLVELP_SINGLE means one solution.
*/
static int inner_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B,vector<unsigned int>& indexToRow);
static void swap_columns(Mat_<double>& A,int col1,int col2);
#define SWAP(type,a,b) {type tmp=(a);(a)=(b);(b)=tmp;}
//return codes:-2 (no_sol - unbdd),-1(no_sol - unfsbl), 0(single_sol), 1(multiple_sol=>least_l2_norm)
int solveLP(const Mat& Func, const Mat& Constr, Mat& z){
dprintf(("call to solveLP\n"));
//sanity check (size, type, no. of channels)
CV_Assert(Func.type()==CV_64FC1 || Func.type()==CV_32FC1);
CV_Assert(Constr.type()==CV_64FC1 || Constr.type()==CV_32FC1);
CV_Assert((Func.rows==1 && (Constr.cols-Func.cols==1))||
(Func.cols==1 && (Constr.cols-Func.rows==1)));
//copy arguments for we will shall modify them
Mat_<double> bigC=Mat_<double>(1,(Func.rows==1?Func.cols:Func.rows)+1),
bigB=Mat_<double>(Constr.rows,Constr.cols+1);
if(Func.rows==1){
Func.convertTo(bigC.colRange(1,bigC.cols),CV_64FC1);
}else{
Mat FuncT=Func.t();
FuncT.convertTo(bigC.colRange(1,bigC.cols),CV_64FC1);
}
Constr.convertTo(bigB.colRange(1,bigB.cols),CV_64FC1);
double v=0;
vector<int> N,B;
vector<unsigned int> indexToRow;
if(initialize_simplex(bigC,bigB,v,N,B,indexToRow)==SOLVELP_UNFEASIBLE){
return SOLVELP_UNFEASIBLE;
}
Mat_<double> c=bigC.colRange(1,bigC.cols),
b=bigB.colRange(1,bigB.cols);
int res=0;
if((res=inner_simplex(c,b,v,N,B,indexToRow))==SOLVELP_UNBOUNDED){
return SOLVELP_UNBOUNDED;
}
//return the optimal solution
z.create(c.cols,1,CV_64FC1);
MatIterator_<double> it=z.begin<double>();
for(int i=1;i<=c.cols;i++,it++){
if(indexToRow[i]<N.size()){
*it=0;
}else{
*it=b.at<double>(indexToRow[i]-N.size(),b.cols-1);
}
}
return res;
}
static int initialize_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B,vector<unsigned int>& indexToRow){
N.resize(c.cols);
N[0]=0;
for (std::vector<int>::iterator it = N.begin()+1 ; it != N.end(); ++it){
*it=it[-1]+1;
}
B.resize(b.rows);
B[0]=N.size();
for (std::vector<int>::iterator it = B.begin()+1 ; it != B.end(); ++it){
*it=it[-1]+1;
}
indexToRow.resize(c.cols+b.rows);
indexToRow[0]=0;
for (std::vector<unsigned int>::iterator it = indexToRow.begin()+1 ; it != indexToRow.end(); ++it){
*it=it[-1]+1;
}
v=0;
int k=0;
{
double min=DBL_MAX;
for(int i=0;i<b.rows;i++){
if(b(i,b.cols-1)<min){
min=b(i,b.cols-1);
k=i;
}
}
}
if(b(k,b.cols-1)>=0){
N.erase(N.begin());
for (std::vector<unsigned int>::iterator it = indexToRow.begin()+1 ; it != indexToRow.end(); ++it){
--(*it);
}
return 0;
}
Mat_<double> old_c=c.clone();
c=0;
c(0,0)=-1;
for(int i=0;i<b.rows;i++){
b(i,0)=-1;
}
print_simplex_state(c,b,v,N,B);
dprintf(("\tWE MAKE PIVOT\n"));
pivot(c,b,v,N,B,k,0,indexToRow);
print_simplex_state(c,b,v,N,B);
inner_simplex(c,b,v,N,B,indexToRow);
dprintf(("\tAFTER INNER_SIMPLEX\n"));
print_simplex_state(c,b,v,N,B);
if(indexToRow[0]>=N.size()){
int iterator_offset=indexToRow[0]-N.size();
if(b(iterator_offset,b.cols-1)>0){
return SOLVELP_UNFEASIBLE;
}
pivot(c,b,v,N,B,iterator_offset,0,indexToRow);
}
vector<int>::iterator iterator;
{
int iterator_offset=indexToRow[0];
iterator=N.begin()+iterator_offset;
std::iter_swap(iterator,N.begin());
SWAP(int,indexToRow[*iterator],indexToRow[0]);
swap_columns(c,iterator_offset,0);
swap_columns(b,iterator_offset,0);
}
dprintf(("after swaps\n"));
print_simplex_state(c,b,v,N,B);
//start from 1, because we ignore x_0
c=0;
v=0;
for(int I=1;I<old_c.cols;I++){
if(indexToRow[I]<N.size()){
dprintf(("I=%d from nonbasic\n",I));
int iterator_offset=indexToRow[I];
c(0,iterator_offset)+=old_c(0,I);
print_matrix(c);
}else{
dprintf(("I=%d from basic\n",I));
int iterator_offset=indexToRow[I]-N.size();
c-=old_c(0,I)*b.row(iterator_offset).colRange(0,b.cols-1);
v+=old_c(0,I)*b(iterator_offset,b.cols-1);
print_matrix(c);
}
}
dprintf(("after restore\n"));
print_simplex_state(c,b,v,N,B);
N.erase(N.begin());
for (std::vector<unsigned int>::iterator it = indexToRow.begin()+1 ; it != indexToRow.end(); ++it){
--(*it);
}
return 0;
}
static int inner_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B,vector<unsigned int>& indexToRow){
int count=0;
for(;;){
dprintf(("iteration #%d\n",count));
count++;
static MatIterator_<double> pos_ptr;
int e=-1,pos_ctr=0,min_var=INT_MAX;
bool all_nonzero=true;
for(pos_ptr=c.begin();pos_ptr!=c.end();pos_ptr++,pos_ctr++){
if(*pos_ptr==0){
all_nonzero=false;
}
if(*pos_ptr>0){
if(N[pos_ctr]<min_var){
e=pos_ctr;
min_var=N[pos_ctr];
}
}
}
if(e==-1){
dprintf(("hello from e==-1\n"));
print_matrix(c);
if(all_nonzero==true){
return SOLVELP_SINGLE;
}else{
return SOLVELP_MULTI;
}
}
int l=-1;
min_var=INT_MAX;
double min=DBL_MAX;
int row_it=0;
MatIterator_<double> min_row_ptr=b.begin();
for(MatIterator_<double> it=b.begin();it!=b.end();it+=b.cols,row_it++){
double myite=0;
//check constraints, select the tightest one, reinforcing Bland's rule
if((myite=it[e])>0){
double val=it[b.cols-1]/myite;
if(val<min || (val==min && B[row_it]<min_var)){
min_var=B[row_it];
min_row_ptr=it;
min=val;
l=row_it;
}
}
}
if(l==-1){
return SOLVELP_UNBOUNDED;
}
dprintf(("the tightest constraint is in row %d with %g\n",l,min));
pivot(c,b,v,N,B,l,e,indexToRow);
dprintf(("objective, v=%g\n",v));
print_matrix(c);
dprintf(("constraints\n"));
print_matrix(b);
dprintf(("non-basic: "));
print_matrix(Mat(N));
dprintf(("basic: "));
print_matrix(Mat(B));
}
}
static inline void pivot(Mat_<double>& c,Mat_<double>& b,double& v,vector<int>& N,vector<int>& B,
int leaving_index,int entering_index,vector<unsigned int>& indexToRow){
double Coef=b(leaving_index,entering_index);
for(int i=0;i<b.cols;i++){
if(i==entering_index){
b(leaving_index,i)=1/Coef;
}else{
b(leaving_index,i)/=Coef;
}
}
for(int i=0;i<b.rows;i++){
if(i!=leaving_index){
double coef=b(i,entering_index);
for(int j=0;j<b.cols;j++){
if(j==entering_index){
b(i,j)=-coef*b(leaving_index,j);
}else{
b(i,j)-=(coef*b(leaving_index,j));
}
}
}
}
//objective function
Coef=c(0,entering_index);
for(int i=0;i<(b.cols-1);i++){
if(i==entering_index){
c(0,i)=-Coef*b(leaving_index,i);
}else{
c(0,i)-=Coef*b(leaving_index,i);
}
}
dprintf(("v was %g\n",v));
v+=Coef*b(leaving_index,b.cols-1);
SWAP(int,N[entering_index],B[leaving_index]);
SWAP(int,indexToRow[N[entering_index]],indexToRow[B[leaving_index]]);
}
static inline void swap_columns(Mat_<double>& A,int col1,int col2){
for(int i=0;i<A.rows;i++){
double tmp=A(i,col1);
A(i,col1)=A(i,col2);
A(i,col2)=tmp;
}
}
}}