1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Wenju He, wenju@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#define CELL_WIDTH 8
#define CELL_HEIGHT 8
#define CELLS_PER_BLOCK_X 2
#define CELLS_PER_BLOCK_Y 2
#define NTHREADS 256
#define CV_PI_F M_PI_F
#ifdef INTEL_DEVICE
#define QANGLE_TYPE int
#define QANGLE_TYPE2 int2
#else
#define QANGLE_TYPE uchar
#define QANGLE_TYPE2 uchar2
#endif
//----------------------------------------------------------------------------
// Histogram computation
// 12 threads for a cell, 12x4 threads per block
// Use pre-computed gaussian and interp_weight lookup tables
__kernel void compute_hists_lut_kernel(
const int cblock_stride_x, const int cblock_stride_y,
const int cnbins, const int cblock_hist_size, const int img_block_width,
const int blocks_in_group, const int blocks_total,
const int grad_quadstep, const int qangle_step,
__global const float* grad, __global const QANGLE_TYPE* qangle,
__global const float* gauss_w_lut,
__global float* block_hists, __local float* smem)
{
const int lx = get_local_id(0);
const int lp = lx / 24; /* local group id */
const int gid = get_group_id(0) * blocks_in_group + lp;/* global group id */
const int gidY = gid / img_block_width;
const int gidX = gid - gidY * img_block_width;
const int lidX = lx - lp * 24;
const int lidY = get_local_id(1);
const int cell_x = lidX / 12;
const int cell_y = lidY;
const int cell_thread_x = lidX - cell_x * 12;
__local float* hists = smem + lp * cnbins * (CELLS_PER_BLOCK_X *
CELLS_PER_BLOCK_Y * 12 + CELLS_PER_BLOCK_X * CELLS_PER_BLOCK_Y);
__local float* final_hist = hists + cnbins *
(CELLS_PER_BLOCK_X * CELLS_PER_BLOCK_Y * 12);
const int offset_x = gidX * cblock_stride_x + (cell_x << 2) + cell_thread_x;
const int offset_y = gidY * cblock_stride_y + (cell_y << 2);
__global const float* grad_ptr = (gid < blocks_total) ?
grad + offset_y * grad_quadstep + (offset_x << 1) : grad;
__global const QANGLE_TYPE* qangle_ptr = (gid < blocks_total) ?
qangle + offset_y * qangle_step + (offset_x << 1) : qangle;
__local float* hist = hists + 12 * (cell_y * CELLS_PER_BLOCK_Y + cell_x) +
cell_thread_x;
for (int bin_id = 0; bin_id < cnbins; ++bin_id)
hist[bin_id * 48] = 0.f;
const int dist_x = -4 + cell_thread_x - 4 * cell_x;
const int dist_center_x = dist_x - 4 * (1 - 2 * cell_x);
const int dist_y_begin = -4 - 4 * lidY;
for (int dist_y = dist_y_begin; dist_y < dist_y_begin + 12; ++dist_y)
{
float2 vote = (float2) (grad_ptr[0], grad_ptr[1]);
QANGLE_TYPE2 bin = (QANGLE_TYPE2) (qangle_ptr[0], qangle_ptr[1]);
grad_ptr += grad_quadstep;
qangle_ptr += qangle_step;
int dist_center_y = dist_y - 4 * (1 - 2 * cell_y);
int idx = (dist_center_y + 8) * 16 + (dist_center_x + 8);
float gaussian = gauss_w_lut[idx];
idx = (dist_y + 8) * 16 + (dist_x + 8);
float interp_weight = gauss_w_lut[256+idx];
hist[bin.x * 48] += gaussian * interp_weight * vote.x;
hist[bin.y * 48] += gaussian * interp_weight * vote.y;
}
barrier(CLK_LOCAL_MEM_FENCE);
volatile __local float* hist_ = hist;
for (int bin_id = 0; bin_id < cnbins; ++bin_id, hist_ += 48)
{
if (cell_thread_x < 6)
hist_[0] += hist_[6];
barrier(CLK_LOCAL_MEM_FENCE);
if (cell_thread_x < 3)
hist_[0] += hist_[3];
#ifdef CPU
barrier(CLK_LOCAL_MEM_FENCE);
#endif
if (cell_thread_x == 0)
final_hist[(cell_x * 2 + cell_y) * cnbins + bin_id] =
hist_[0] + hist_[1] + hist_[2];
}
barrier(CLK_LOCAL_MEM_FENCE);
int tid = (cell_y * CELLS_PER_BLOCK_Y + cell_x) * 12 + cell_thread_x;
if ((tid < cblock_hist_size) && (gid < blocks_total))
{
__global float* block_hist = block_hists +
(gidY * img_block_width + gidX) * cblock_hist_size;
block_hist[tid] = final_hist[tid];
}
}
//-------------------------------------------------------------
// Normalization of histograms via L2Hys_norm
// optimized for the case of 9 bins
__kernel void normalize_hists_36_kernel(__global float* block_hists,
const float threshold, __local float *squares)
{
const int tid = get_local_id(0);
const int gid = get_global_id(0);
const int bid = tid / 36; /* block-hist id, (0 - 6) */
const int boffset = bid * 36; /* block-hist offset in the work-group */
const int hid = tid - boffset; /* histogram bin id, (0 - 35) */
float elem = block_hists[gid];
squares[tid] = elem * elem;
barrier(CLK_LOCAL_MEM_FENCE);
__local float* smem = squares + boffset;
float sum = smem[hid];
if (hid < 18)
smem[hid] = sum = sum + smem[hid + 18];
barrier(CLK_LOCAL_MEM_FENCE);
if (hid < 9)
smem[hid] = sum = sum + smem[hid + 9];
barrier(CLK_LOCAL_MEM_FENCE);
if (hid < 4)
smem[hid] = sum + smem[hid + 4];
barrier(CLK_LOCAL_MEM_FENCE);
sum = smem[0] + smem[1] + smem[2] + smem[3] + smem[8];
elem = elem / (sqrt(sum) + 3.6f);
elem = min(elem, threshold);
barrier(CLK_LOCAL_MEM_FENCE);
squares[tid] = elem * elem;
barrier(CLK_LOCAL_MEM_FENCE);
sum = smem[hid];
if (hid < 18)
smem[hid] = sum = sum + smem[hid + 18];
barrier(CLK_LOCAL_MEM_FENCE);
if (hid < 9)
smem[hid] = sum = sum + smem[hid + 9];
barrier(CLK_LOCAL_MEM_FENCE);
if (hid < 4)
smem[hid] = sum + smem[hid + 4];
barrier(CLK_LOCAL_MEM_FENCE);
sum = smem[0] + smem[1] + smem[2] + smem[3] + smem[8];
block_hists[gid] = elem / (sqrt(sum) + 1e-3f);
}
//-------------------------------------------------------------
// Normalization of histograms via L2Hys_norm
//
inline float reduce_smem(volatile __local float* smem, int size)
{
unsigned int tid = get_local_id(0);
float sum = smem[tid];
if (size >= 512) { if (tid < 256) smem[tid] = sum = sum + smem[tid + 256];
barrier(CLK_LOCAL_MEM_FENCE); }
if (size >= 256) { if (tid < 128) smem[tid] = sum = sum + smem[tid + 128];
barrier(CLK_LOCAL_MEM_FENCE); }
if (size >= 128) { if (tid < 64) smem[tid] = sum = sum + smem[tid + 64];
barrier(CLK_LOCAL_MEM_FENCE); }
#ifdef CPU
if (size >= 64) { if (tid < 32) smem[tid] = sum = sum + smem[tid + 32];
barrier(CLK_LOCAL_MEM_FENCE); }
if (size >= 32) { if (tid < 16) smem[tid] = sum = sum + smem[tid + 16];
barrier(CLK_LOCAL_MEM_FENCE); }
if (size >= 16) { if (tid < 8) smem[tid] = sum = sum + smem[tid + 8];
barrier(CLK_LOCAL_MEM_FENCE); }
if (size >= 8) { if (tid < 4) smem[tid] = sum = sum + smem[tid + 4];
barrier(CLK_LOCAL_MEM_FENCE); }
if (size >= 4) { if (tid < 2) smem[tid] = sum = sum + smem[tid + 2];
barrier(CLK_LOCAL_MEM_FENCE); }
if (size >= 2) { if (tid < 1) smem[tid] = sum = sum + smem[tid + 1];
barrier(CLK_LOCAL_MEM_FENCE); }
#else
if (tid < 32)
{
if (size >= 64) smem[tid] = sum = sum + smem[tid + 32];
#if WAVE_SIZE < 32
} barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 16) {
#endif
if (size >= 32) smem[tid] = sum = sum + smem[tid + 16];
if (size >= 16) smem[tid] = sum = sum + smem[tid + 8];
if (size >= 8) smem[tid] = sum = sum + smem[tid + 4];
if (size >= 4) smem[tid] = sum = sum + smem[tid + 2];
if (size >= 2) smem[tid] = sum = sum + smem[tid + 1];
}
#endif
return sum;
}
__kernel void normalize_hists_kernel(
const int nthreads, const int block_hist_size, const int img_block_width,
__global float* block_hists, const float threshold, __local float *squares)
{
const int tid = get_local_id(0);
const int gidX = get_group_id(0);
const int gidY = get_group_id(1);
__global float* hist = block_hists + (gidY * img_block_width + gidX) *
block_hist_size + tid;
float elem = 0.f;
if (tid < block_hist_size)
elem = hist[0];
squares[tid] = elem * elem;
barrier(CLK_LOCAL_MEM_FENCE);
float sum = reduce_smem(squares, nthreads);
float scale = 1.0f / (sqrt(sum) + 0.1f * block_hist_size);
elem = min(elem * scale, threshold);
barrier(CLK_LOCAL_MEM_FENCE);
squares[tid] = elem * elem;
barrier(CLK_LOCAL_MEM_FENCE);
sum = reduce_smem(squares, nthreads);
scale = 1.0f / (sqrt(sum) + 1e-3f);
if (tid < block_hist_size)
hist[0] = elem * scale;
}
//---------------------------------------------------------------------
// Linear SVM based classification
// 48x96 window, 9 bins and default parameters
// 180 threads, each thread corresponds to a bin in a row
__kernel void classify_hists_180_kernel(
const int cdescr_width, const int cdescr_height, const int cblock_hist_size,
const int img_win_width, const int img_block_width,
const int win_block_stride_x, const int win_block_stride_y,
__global const float * block_hists, __global const float* coefs,
float free_coef, float threshold, __global uchar* labels)
{
const int tid = get_local_id(0);
const int gidX = get_group_id(0);
const int gidY = get_group_id(1);
__global const float* hist = block_hists + (gidY * win_block_stride_y *
img_block_width + gidX * win_block_stride_x) * cblock_hist_size;
float product = 0.f;
for (int i = 0; i < cdescr_height; i++)
{
product += coefs[i * cdescr_width + tid] *
hist[i * img_block_width * cblock_hist_size + tid];
}
__local float products[180];
products[tid] = product;
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 90) products[tid] = product = product + products[tid + 90];
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 45) products[tid] = product = product + products[tid + 45];
barrier(CLK_LOCAL_MEM_FENCE);
volatile __local float* smem = products;
#ifdef CPU
if (tid < 13) smem[tid] = product = product + smem[tid + 32];
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 16) smem[tid] = product = product + smem[tid + 16];
barrier(CLK_LOCAL_MEM_FENCE);
if(tid<8) smem[tid] = product = product + smem[tid + 8];
barrier(CLK_LOCAL_MEM_FENCE);
if(tid<4) smem[tid] = product = product + smem[tid + 4];
barrier(CLK_LOCAL_MEM_FENCE);
if(tid<2) smem[tid] = product = product + smem[tid + 2];
barrier(CLK_LOCAL_MEM_FENCE);
#else
if (tid < 13)
{
smem[tid] = product = product + smem[tid + 32];
}
#if WAVE_SIZE < 32
barrier(CLK_LOCAL_MEM_FENCE);
#endif
if (tid < 16)
{
smem[tid] = product = product + smem[tid + 16];
smem[tid] = product = product + smem[tid + 8];
smem[tid] = product = product + smem[tid + 4];
smem[tid] = product = product + smem[tid + 2];
}
#endif
if (tid == 0){
product = product + smem[tid + 1];
labels[gidY * img_win_width + gidX] = (product + free_coef >= threshold);
}
}
//---------------------------------------------------------------------
// Linear SVM based classification
// 64x128 window, 9 bins and default parameters
// 256 threads, 252 of them are used
__kernel void classify_hists_252_kernel(
const int cdescr_width, const int cdescr_height, const int cblock_hist_size,
const int img_win_width, const int img_block_width,
const int win_block_stride_x, const int win_block_stride_y,
__global const float * block_hists, __global const float* coefs,
float free_coef, float threshold, __global uchar* labels)
{
const int tid = get_local_id(0);
const int gidX = get_group_id(0);
const int gidY = get_group_id(1);
__global const float* hist = block_hists + (gidY * win_block_stride_y *
img_block_width + gidX * win_block_stride_x) * cblock_hist_size;
float product = 0.f;
if (tid < cdescr_width)
{
for (int i = 0; i < cdescr_height; i++)
product += coefs[i * cdescr_width + tid] *
hist[i * img_block_width * cblock_hist_size + tid];
}
__local float products[NTHREADS];
products[tid] = product;
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 128) products[tid] = product = product + products[tid + 128];
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 64) products[tid] = product = product + products[tid + 64];
barrier(CLK_LOCAL_MEM_FENCE);
volatile __local float* smem = products;
#ifdef CPU
if(tid<32) smem[tid] = product = product + smem[tid + 32];
barrier(CLK_LOCAL_MEM_FENCE);
if(tid<16) smem[tid] = product = product + smem[tid + 16];
barrier(CLK_LOCAL_MEM_FENCE);
if(tid<8) smem[tid] = product = product + smem[tid + 8];
barrier(CLK_LOCAL_MEM_FENCE);
if(tid<4) smem[tid] = product = product + smem[tid + 4];
barrier(CLK_LOCAL_MEM_FENCE);
if(tid<2) smem[tid] = product = product + smem[tid + 2];
barrier(CLK_LOCAL_MEM_FENCE);
#else
if (tid < 32)
{
smem[tid] = product = product + smem[tid + 32];
#if WAVE_SIZE < 32
} barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 16) {
#endif
smem[tid] = product = product + smem[tid + 16];
smem[tid] = product = product + smem[tid + 8];
smem[tid] = product = product + smem[tid + 4];
smem[tid] = product = product + smem[tid + 2];
}
#endif
if (tid == 0){
product = product + smem[tid + 1];
labels[gidY * img_win_width + gidX] = (product + free_coef >= threshold);
}
}
//---------------------------------------------------------------------
// Linear SVM based classification
// 256 threads
__kernel void classify_hists_kernel(
const int cdescr_size, const int cdescr_width, const int cblock_hist_size,
const int img_win_width, const int img_block_width,
const int win_block_stride_x, const int win_block_stride_y,
__global const float * block_hists, __global const float* coefs,
float free_coef, float threshold, __global uchar* labels)
{
const int tid = get_local_id(0);
const int gidX = get_group_id(0);
const int gidY = get_group_id(1);
__global const float* hist = block_hists + (gidY * win_block_stride_y *
img_block_width + gidX * win_block_stride_x) * cblock_hist_size;
float product = 0.f;
for (int i = tid; i < cdescr_size; i += NTHREADS)
{
int offset_y = i / cdescr_width;
int offset_x = i - offset_y * cdescr_width;
product += coefs[i] *
hist[offset_y * img_block_width * cblock_hist_size + offset_x];
}
__local float products[NTHREADS];
products[tid] = product;
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 128) products[tid] = product = product + products[tid + 128];
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 64) products[tid] = product = product + products[tid + 64];
barrier(CLK_LOCAL_MEM_FENCE);
volatile __local float* smem = products;
#ifdef CPU
if(tid<32) smem[tid] = product = product + smem[tid + 32];
barrier(CLK_LOCAL_MEM_FENCE);
if(tid<16) smem[tid] = product = product + smem[tid + 16];
barrier(CLK_LOCAL_MEM_FENCE);
if(tid<8) smem[tid] = product = product + smem[tid + 8];
barrier(CLK_LOCAL_MEM_FENCE);
if(tid<4) smem[tid] = product = product + smem[tid + 4];
barrier(CLK_LOCAL_MEM_FENCE);
if(tid<2) smem[tid] = product = product + smem[tid + 2];
barrier(CLK_LOCAL_MEM_FENCE);
#else
if (tid < 32)
{
smem[tid] = product = product + smem[tid + 32];
#if WAVE_SIZE < 32
} barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 16) {
#endif
smem[tid] = product = product + smem[tid + 16];
smem[tid] = product = product + smem[tid + 8];
smem[tid] = product = product + smem[tid + 4];
smem[tid] = product = product + smem[tid + 2];
}
#endif
if (tid == 0){
smem[tid] = product = product + smem[tid + 1];
labels[gidY * img_win_width + gidX] = (product + free_coef >= threshold);
}
}
//----------------------------------------------------------------------------
// Extract descriptors
__kernel void extract_descrs_by_rows_kernel(
const int cblock_hist_size, const int descriptors_quadstep,
const int cdescr_size, const int cdescr_width, const int img_block_width,
const int win_block_stride_x, const int win_block_stride_y,
__global const float* block_hists, __global float* descriptors)
{
int tid = get_local_id(0);
int gidX = get_group_id(0);
int gidY = get_group_id(1);
// Get left top corner of the window in src
__global const float* hist = block_hists + (gidY * win_block_stride_y *
img_block_width + gidX * win_block_stride_x) * cblock_hist_size;
// Get left top corner of the window in dst
__global float* descriptor = descriptors +
(gidY * get_num_groups(0) + gidX) * descriptors_quadstep;
// Copy elements from src to dst
for (int i = tid; i < cdescr_size; i += NTHREADS)
{
int offset_y = i / cdescr_width;
int offset_x = i - offset_y * cdescr_width;
descriptor[i] = hist[offset_y * img_block_width * cblock_hist_size + offset_x];
}
}
__kernel void extract_descrs_by_cols_kernel(
const int cblock_hist_size, const int descriptors_quadstep, const int cdescr_size,
const int cnblocks_win_x, const int cnblocks_win_y, const int img_block_width,
const int win_block_stride_x, const int win_block_stride_y,
__global const float* block_hists, __global float* descriptors)
{
int tid = get_local_id(0);
int gidX = get_group_id(0);
int gidY = get_group_id(1);
// Get left top corner of the window in src
__global const float* hist = block_hists + (gidY * win_block_stride_y *
img_block_width + gidX * win_block_stride_x) * cblock_hist_size;
// Get left top corner of the window in dst
__global float* descriptor = descriptors +
(gidY * get_num_groups(0) + gidX) * descriptors_quadstep;
// Copy elements from src to dst
for (int i = tid; i < cdescr_size; i += NTHREADS)
{
int block_idx = i / cblock_hist_size;
int idx_in_block = i - block_idx * cblock_hist_size;
int y = block_idx / cnblocks_win_x;
int x = block_idx - y * cnblocks_win_x;
descriptor[(x * cnblocks_win_y + y) * cblock_hist_size + idx_in_block] =
hist[(y * img_block_width + x) * cblock_hist_size + idx_in_block];
}
}
//----------------------------------------------------------------------------
// Gradients computation
__kernel void compute_gradients_8UC4_kernel(
const int height, const int width,
const int img_step, const int grad_quadstep, const int qangle_step,
const __global uchar4 * img, __global float * grad, __global QANGLE_TYPE * qangle,
const float angle_scale, const char correct_gamma, const int cnbins)
{
const int x = get_global_id(0);
const int tid = get_local_id(0);
const int gSizeX = get_local_size(0);
const int gidY = get_group_id(1);
__global const uchar4* row = img + gidY * img_step;
__local float sh_row[(NTHREADS + 2) * 3];
uchar4 val;
if (x < width)
val = row[x];
else
val = row[width - 2];
sh_row[tid + 1] = val.x;
sh_row[tid + 1 + (NTHREADS + 2)] = val.y;
sh_row[tid + 1 + 2 * (NTHREADS + 2)] = val.z;
if (tid == 0)
{
val = row[max(x - 1, 1)];
sh_row[0] = val.x;
sh_row[(NTHREADS + 2)] = val.y;
sh_row[2 * (NTHREADS + 2)] = val.z;
}
if (tid == gSizeX - 1)
{
val = row[min(x + 1, width - 2)];
sh_row[gSizeX + 1] = val.x;
sh_row[gSizeX + 1 + (NTHREADS + 2)] = val.y;
sh_row[gSizeX + 1 + 2 * (NTHREADS + 2)] = val.z;
}
barrier(CLK_LOCAL_MEM_FENCE);
if (x < width)
{
float4 a = (float4) (sh_row[tid], sh_row[tid + (NTHREADS + 2)],
sh_row[tid + 2 * (NTHREADS + 2)], 0);
float4 b = (float4) (sh_row[tid + 2], sh_row[tid + 2 + (NTHREADS + 2)],
sh_row[tid + 2 + 2 * (NTHREADS + 2)], 0);
float4 dx;
if (correct_gamma == 1)
dx = sqrt(b) - sqrt(a);
else
dx = b - a;
float4 dy = (float4) 0.f;
if (gidY > 0 && gidY < height - 1)
{
a = convert_float4(img[(gidY - 1) * img_step + x].xyzw);
b = convert_float4(img[(gidY + 1) * img_step + x].xyzw);
if (correct_gamma == 1)
dy = sqrt(b) - sqrt(a);
else
dy = b - a;
}
float4 mag = hypot(dx, dy);
float best_dx = dx.x;
float best_dy = dy.x;
float mag0 = mag.x;
if (mag0 < mag.y)
{
best_dx = dx.y;
best_dy = dy.y;
mag0 = mag.y;
}
if (mag0 < mag.z)
{
best_dx = dx.z;
best_dy = dy.z;
mag0 = mag.z;
}
float ang = (atan2(best_dy, best_dx) + CV_PI_F) * angle_scale - 0.5f;
int hidx = (int)floor(ang);
ang -= hidx;
hidx = (hidx + cnbins) % cnbins;
qangle[(gidY * qangle_step + x) << 1] = hidx;
qangle[((gidY * qangle_step + x) << 1) + 1] = (hidx + 1) % cnbins;
grad[(gidY * grad_quadstep + x) << 1] = mag0 * (1.f - ang);
grad[((gidY * grad_quadstep + x) << 1) + 1] = mag0 * ang;
}
}
__kernel void compute_gradients_8UC1_kernel(
const int height, const int width,
const int img_step, const int grad_quadstep, const int qangle_step,
__global const uchar * img, __global float * grad, __global QANGLE_TYPE * qangle,
const float angle_scale, const char correct_gamma, const int cnbins)
{
const int x = get_global_id(0);
const int tid = get_local_id(0);
const int gSizeX = get_local_size(0);
const int gidY = get_group_id(1);
__global const uchar* row = img + gidY * img_step;
__local float sh_row[NTHREADS + 2];
if (x < width)
sh_row[tid + 1] = row[x];
else
sh_row[tid + 1] = row[width - 2];
if (tid == 0)
sh_row[0] = row[max(x - 1, 1)];
if (tid == gSizeX - 1)
sh_row[gSizeX + 1] = row[min(x + 1, width - 2)];
barrier(CLK_LOCAL_MEM_FENCE);
if (x < width)
{
float dx;
if (correct_gamma == 1)
dx = sqrt(sh_row[tid + 2]) - sqrt(sh_row[tid]);
else
dx = sh_row[tid + 2] - sh_row[tid];
float dy = 0.f;
if (gidY > 0 && gidY < height - 1)
{
float a = (float) img[ (gidY + 1) * img_step + x ];
float b = (float) img[ (gidY - 1) * img_step + x ];
if (correct_gamma == 1)
dy = sqrt(a) - sqrt(b);
else
dy = a - b;
}
float mag = hypot(dx, dy);
float ang = (atan2(dy, dx) + CV_PI_F) * angle_scale - 0.5f;
int hidx = (int)floor(ang);
ang -= hidx;
hidx = (hidx + cnbins) % cnbins;
qangle[ (gidY * qangle_step + x) << 1 ] = hidx;
qangle[ ((gidY * qangle_step + x) << 1) + 1 ] = (hidx + 1) % cnbins;
grad[ (gidY * grad_quadstep + x) << 1 ] = mag * (1.f - ang);
grad[ ((gidY * grad_quadstep + x) << 1) + 1 ] = mag * ang;
}
}