fast.cpp 20.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
/* This is FAST corner detector, contributed to OpenCV by the author, Edward Rosten.
   Below is the original copyright and the references */

/*
Copyright (c) 2006, 2008 Edward Rosten
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

    *Redistributions of source code must retain the above copyright
     notice, this list of conditions and the following disclaimer.

    *Redistributions in binary form must reproduce the above copyright
     notice, this list of conditions and the following disclaimer in the
     documentation and/or other materials provided with the distribution.

    *Neither the name of the University of Cambridge nor the names of
     its contributors may be used to endorse or promote products derived
     from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

/*
The references are:
 * Machine learning for high-speed corner detection,
   E. Rosten and T. Drummond, ECCV 2006
 * Faster and better: A machine learning approach to corner detection
   E. Rosten, R. Porter and T. Drummond, PAMI, 2009
*/

#include "precomp.hpp"
#include "fast.hpp"
#include "fast_score.hpp"
#include "opencl_kernels_features2d.hpp"
#include "hal_replacement.hpp"
#include "opencv2/core/hal/intrin.hpp"

#include "opencv2/core/openvx/ovx_defs.hpp"

namespace cv
{

template<int patternSize>
void FAST_t(InputArray _img, std::vector<KeyPoint>& keypoints, int threshold, bool nonmax_suppression)
{
    Mat img = _img.getMat();
    const int K = patternSize/2, N = patternSize + K + 1;
    int i, j, k, pixel[25];
    makeOffsets(pixel, (int)img.step, patternSize);

#if CV_SIMD128
    const int quarterPatternSize = patternSize/4;
    v_uint8x16 delta = v_setall_u8(0x80), t = v_setall_u8((char)threshold), K16 = v_setall_u8((char)K);
    bool hasSimd = hasSIMD128();
#if CV_TRY_AVX2
    Ptr<opt_AVX2::FAST_t_patternSize16_AVX2> fast_t_impl_avx2;
    if(CV_CPU_HAS_SUPPORT_AVX2)
        fast_t_impl_avx2 = opt_AVX2::FAST_t_patternSize16_AVX2::getImpl(img.cols, threshold, nonmax_suppression, pixel);
#endif

#endif

    keypoints.clear();

    threshold = std::min(std::max(threshold, 0), 255);

    uchar threshold_tab[512];
    for( i = -255; i <= 255; i++ )
        threshold_tab[i+255] = (uchar)(i < -threshold ? 1 : i > threshold ? 2 : 0);

    AutoBuffer<uchar> _buf((img.cols+16)*3*(sizeof(int) + sizeof(uchar)) + 128);
    uchar* buf[3];
    buf[0] = _buf.data(); buf[1] = buf[0] + img.cols; buf[2] = buf[1] + img.cols;
    int* cpbuf[3];
    cpbuf[0] = (int*)alignPtr(buf[2] + img.cols, sizeof(int)) + 1;
    cpbuf[1] = cpbuf[0] + img.cols + 1;
    cpbuf[2] = cpbuf[1] + img.cols + 1;
    memset(buf[0], 0, img.cols*3);

    for(i = 3; i < img.rows-2; i++)
    {
        const uchar* ptr = img.ptr<uchar>(i) + 3;
        uchar* curr = buf[(i - 3)%3];
        int* cornerpos = cpbuf[(i - 3)%3];
        memset(curr, 0, img.cols);
        int ncorners = 0;

        if( i < img.rows - 3 )
        {
            j = 3;
#if CV_SIMD128
            if( hasSimd )
            {
                if( patternSize == 16 )
                {
#if CV_TRY_AVX2
                    if (fast_t_impl_avx2)
                        fast_t_impl_avx2->process(j, ptr, curr, cornerpos, ncorners);
#endif
                    //vz if (j <= (img.cols - 27)) //it doesn't make sense using vectors for less than 8 elements
                    {
                        for (; j < img.cols - 16 - 3; j += 16, ptr += 16)
                        {
                            v_uint8x16 v = v_load(ptr);
                            v_int8x16 v0 = v_reinterpret_as_s8((v + t) ^ delta);
                            v_int8x16 v1 = v_reinterpret_as_s8((v - t) ^ delta);

                            v_int8x16 x0 = v_reinterpret_as_s8(v_sub_wrap(v_load(ptr + pixel[0]), delta));
                            v_int8x16 x1 = v_reinterpret_as_s8(v_sub_wrap(v_load(ptr + pixel[quarterPatternSize]), delta));
                            v_int8x16 x2 = v_reinterpret_as_s8(v_sub_wrap(v_load(ptr + pixel[2*quarterPatternSize]), delta));
                            v_int8x16 x3 = v_reinterpret_as_s8(v_sub_wrap(v_load(ptr + pixel[3*quarterPatternSize]), delta));

                            v_int8x16 m0, m1;
                            m0 = (v0 < x0) & (v0 < x1);
                            m1 = (x0 < v1) & (x1 < v1);
                            m0 = m0 | ((v0 < x1) & (v0 < x2));
                            m1 = m1 | ((x1 < v1) & (x2 < v1));
                            m0 = m0 | ((v0 < x2) & (v0 < x3));
                            m1 = m1 | ((x2 < v1) & (x3 < v1));
                            m0 = m0 | ((v0 < x3) & (v0 < x0));
                            m1 = m1 | ((x3 < v1) & (x0 < v1));
                            m0 = m0 | m1;

                            int mask = v_signmask(m0);
                            if( mask == 0 )
                                continue;
                            if( (mask & 255) == 0 )
                            {
                                j -= 8;
                                ptr -= 8;
                                continue;
                            }

                            v_int8x16 c0 = v_setzero_s8();
                            v_int8x16 c1 = v_setzero_s8();
                            v_uint8x16 max0 = v_setzero_u8();
                            v_uint8x16 max1 = v_setzero_u8();
                            for( k = 0; k < N; k++ )
                            {
                                v_int8x16 x = v_reinterpret_as_s8(v_load((ptr + pixel[k])) ^ delta);
                                m0 = v0 < x;
                                m1 = x < v1;

                                c0 = v_sub_wrap(c0, m0) & m0;
                                c1 = v_sub_wrap(c1, m1) & m1;

                                max0 = v_max(max0, v_reinterpret_as_u8(c0));
                                max1 = v_max(max1, v_reinterpret_as_u8(c1));
                            }

                            max0 = v_max(max0, max1);
                            int m = v_signmask(K16 < max0);

                            for( k = 0; m > 0 && k < 16; k++, m >>= 1 )
                            {
                                if(m & 1)
                                {
                                    cornerpos[ncorners++] = j+k;
                                    if(nonmax_suppression)
                                        curr[j+k] = (uchar)cornerScore<patternSize>(ptr+k, pixel, threshold);
                                }
                            }
                        }
                    }
                }
            }
#endif
            for( ; j < img.cols - 3; j++, ptr++ )
            {
                int v = ptr[0];
                const uchar* tab = &threshold_tab[0] - v + 255;
                int d = tab[ptr[pixel[0]]] | tab[ptr[pixel[8]]];

                if( d == 0 )
                    continue;

                d &= tab[ptr[pixel[2]]] | tab[ptr[pixel[10]]];
                d &= tab[ptr[pixel[4]]] | tab[ptr[pixel[12]]];
                d &= tab[ptr[pixel[6]]] | tab[ptr[pixel[14]]];

                if( d == 0 )
                    continue;

                d &= tab[ptr[pixel[1]]] | tab[ptr[pixel[9]]];
                d &= tab[ptr[pixel[3]]] | tab[ptr[pixel[11]]];
                d &= tab[ptr[pixel[5]]] | tab[ptr[pixel[13]]];
                d &= tab[ptr[pixel[7]]] | tab[ptr[pixel[15]]];

                if( d & 1 )
                {
                    int vt = v - threshold, count = 0;

                    for( k = 0; k < N; k++ )
                    {
                        int x = ptr[pixel[k]];
                        if(x < vt)
                        {
                            if( ++count > K )
                            {
                                cornerpos[ncorners++] = j;
                                if(nonmax_suppression)
                                    curr[j] = (uchar)cornerScore<patternSize>(ptr, pixel, threshold);
                                break;
                            }
                        }
                        else
                            count = 0;
                    }
                }

                if( d & 2 )
                {
                    int vt = v + threshold, count = 0;

                    for( k = 0; k < N; k++ )
                    {
                        int x = ptr[pixel[k]];
                        if(x > vt)
                        {
                            if( ++count > K )
                            {
                                cornerpos[ncorners++] = j;
                                if(nonmax_suppression)
                                    curr[j] = (uchar)cornerScore<patternSize>(ptr, pixel, threshold);
                                break;
                            }
                        }
                        else
                            count = 0;
                    }
                }
            }
        }

        cornerpos[-1] = ncorners;

        if( i == 3 )
            continue;

        const uchar* prev = buf[(i - 4 + 3)%3];
        const uchar* pprev = buf[(i - 5 + 3)%3];
        cornerpos = cpbuf[(i - 4 + 3)%3];
        ncorners = cornerpos[-1];

        for( k = 0; k < ncorners; k++ )
        {
            j = cornerpos[k];
            int score = prev[j];
            if( !nonmax_suppression ||
               (score > prev[j+1] && score > prev[j-1] &&
                score > pprev[j-1] && score > pprev[j] && score > pprev[j+1] &&
                score > curr[j-1] && score > curr[j] && score > curr[j+1]) )
            {
                keypoints.push_back(KeyPoint((float)j, (float)(i-1), 7.f, -1, (float)score));
            }
        }
    }
}

#ifdef HAVE_OPENCL
template<typename pt>
struct cmp_pt
{
    bool operator ()(const pt& a, const pt& b) const { return a.y < b.y || (a.y == b.y && a.x < b.x); }
};

static bool ocl_FAST( InputArray _img, std::vector<KeyPoint>& keypoints,
                     int threshold, bool nonmax_suppression, int maxKeypoints )
{
    UMat img = _img.getUMat();
    if( img.cols < 7 || img.rows < 7 )
        return false;
    size_t globalsize[] = { (size_t)img.cols-6, (size_t)img.rows-6 };

    ocl::Kernel fastKptKernel("FAST_findKeypoints", ocl::features2d::fast_oclsrc);
    if (fastKptKernel.empty())
        return false;

    UMat kp1(1, maxKeypoints*2+1, CV_32S);

    UMat ucounter1(kp1, Rect(0,0,1,1));
    ucounter1.setTo(Scalar::all(0));

    if( !fastKptKernel.args(ocl::KernelArg::ReadOnly(img),
                            ocl::KernelArg::PtrReadWrite(kp1),
                            maxKeypoints, threshold).run(2, globalsize, 0, true))
        return false;

    Mat mcounter;
    ucounter1.copyTo(mcounter);
    int i, counter = mcounter.at<int>(0);
    counter = std::min(counter, maxKeypoints);

    keypoints.clear();

    if( counter == 0 )
        return true;

    if( !nonmax_suppression )
    {
        Mat m;
        kp1(Rect(0, 0, counter*2+1, 1)).copyTo(m);
        const Point* pt = (const Point*)(m.ptr<int>() + 1);
        for( i = 0; i < counter; i++ )
            keypoints.push_back(KeyPoint((float)pt[i].x, (float)pt[i].y, 7.f, -1, 1.f));
    }
    else
    {
        UMat kp2(1, maxKeypoints*3+1, CV_32S);
        UMat ucounter2 = kp2(Rect(0,0,1,1));
        ucounter2.setTo(Scalar::all(0));

        ocl::Kernel fastNMSKernel("FAST_nonmaxSupression", ocl::features2d::fast_oclsrc);
        if (fastNMSKernel.empty())
            return false;

        size_t globalsize_nms[] = { (size_t)counter };
        if( !fastNMSKernel.args(ocl::KernelArg::PtrReadOnly(kp1),
                                ocl::KernelArg::PtrReadWrite(kp2),
                                ocl::KernelArg::ReadOnly(img),
                                counter, counter).run(1, globalsize_nms, 0, true))
            return false;

        Mat m2;
        kp2(Rect(0, 0, counter*3+1, 1)).copyTo(m2);
        Point3i* pt2 = (Point3i*)(m2.ptr<int>() + 1);
        int newcounter = std::min(m2.at<int>(0), counter);

        std::sort(pt2, pt2 + newcounter, cmp_pt<Point3i>());

        for( i = 0; i < newcounter; i++ )
            keypoints.push_back(KeyPoint((float)pt2[i].x, (float)pt2[i].y, 7.f, -1, (float)pt2[i].z));
    }

    return true;
}
#endif


#ifdef HAVE_OPENVX
namespace ovx {
    template <> inline bool skipSmallImages<VX_KERNEL_FAST_CORNERS>(int w, int h) { return w*h < 800 * 600; }
}
static bool openvx_FAST(InputArray _img, std::vector<KeyPoint>& keypoints,
                        int _threshold, bool nonmaxSuppression, int type)
{
    using namespace ivx;

    // Nonmax suppression is done differently in OpenCV than in OpenVX
    // 9/16 is the only supported mode in OpenVX
    if(nonmaxSuppression || type != FastFeatureDetector::TYPE_9_16)
        return false;

    Mat imgMat = _img.getMat();
    if(imgMat.empty() || imgMat.type() != CV_8UC1)
        return false;

    if (ovx::skipSmallImages<VX_KERNEL_FAST_CORNERS>(imgMat.cols, imgMat.rows))
        return false;

    try
    {
        Context context = ovx::getOpenVXContext();
        Image img = Image::createFromHandle(context, Image::matTypeToFormat(imgMat.type()),
                                            Image::createAddressing(imgMat), (void*)imgMat.data);
        ivx::Scalar threshold = ivx::Scalar::create<VX_TYPE_FLOAT32>(context, _threshold);
        vx_size capacity = imgMat.cols * imgMat.rows;
        Array corners = Array::create(context, VX_TYPE_KEYPOINT, capacity);

        ivx::Scalar numCorners = ivx::Scalar::create<VX_TYPE_SIZE>(context, 0);

        IVX_CHECK_STATUS(vxuFastCorners(context, img, threshold, (vx_bool)nonmaxSuppression, corners, numCorners));

        size_t nPoints = numCorners.getValue<vx_size>();
        keypoints.clear(); keypoints.reserve(nPoints);
        std::vector<vx_keypoint_t> vxCorners;
        corners.copyTo(vxCorners);
        for(size_t i = 0; i < nPoints; i++)
        {
            vx_keypoint_t kp = vxCorners[i];
            //if nonmaxSuppression is false, kp.strength is undefined
            keypoints.push_back(KeyPoint((float)kp.x, (float)kp.y, 7.f, -1, kp.strength));
        }

#ifdef VX_VERSION_1_1
        //we should take user memory back before release
        //(it's not done automatically according to standard)
        img.swapHandle();
#endif
    }
    catch (const RuntimeError & e)
    {
        VX_DbgThrow(e.what());
    }
    catch (const WrapperError & e)
    {
        VX_DbgThrow(e.what());
    }

    return true;
}

#endif

static inline int hal_FAST(cv::Mat& src, std::vector<KeyPoint>& keypoints, int threshold, bool nonmax_suppression, int type)
{
    if (threshold > 20)
        return CV_HAL_ERROR_NOT_IMPLEMENTED;

    cv::Mat scores(src.size(), src.type());

    int error = cv_hal_FAST_dense(src.data, src.step, scores.data, scores.step, src.cols, src.rows, type);

    if (error != CV_HAL_ERROR_OK)
        return error;

    cv::Mat suppressedScores(src.size(), src.type());

    if (nonmax_suppression)
    {
        error = cv_hal_FAST_NMS(scores.data, scores.step, suppressedScores.data, suppressedScores.step, scores.cols, scores.rows);

        if (error != CV_HAL_ERROR_OK)
            return error;
    }
    else
    {
        suppressedScores = scores;
    }

    if (!threshold && nonmax_suppression) threshold = 1;

    cv::KeyPoint kpt(0, 0, 7.f, -1, 0);

    unsigned uthreshold = (unsigned) threshold;

    int ofs = 3;

    int stride = (int)suppressedScores.step;
    const unsigned char* pscore = suppressedScores.data;

    keypoints.clear();

    for (int y = ofs; y + ofs < suppressedScores.rows; ++y)
    {
        kpt.pt.y = (float)(y);
        for (int x = ofs; x + ofs < suppressedScores.cols; ++x)
        {
            unsigned score = pscore[y * stride + x];
            if (score > uthreshold)
            {
                kpt.pt.x = (float)(x);
                kpt.response = (nonmax_suppression != 0) ? (float)((int)score - 1) : 0.f;
                keypoints.push_back(kpt);
            }
        }
    }

    return CV_HAL_ERROR_OK;
}

void FAST(InputArray _img, std::vector<KeyPoint>& keypoints, int threshold, bool nonmax_suppression, int type)
{
    CV_INSTRUMENT_REGION();

    CV_OCL_RUN(_img.isUMat() && type == FastFeatureDetector::TYPE_9_16,
               ocl_FAST(_img, keypoints, threshold, nonmax_suppression, 10000));

    cv::Mat img = _img.getMat();
    CALL_HAL(fast_dense, hal_FAST, img, keypoints, threshold, nonmax_suppression, type);

    size_t keypoints_count;
    CALL_HAL(fast, cv_hal_FAST, img.data, img.step, img.cols, img.rows,
             (uchar*)(keypoints.data()), &keypoints_count, threshold, nonmax_suppression, type);

    CV_OVX_RUN(true,
               openvx_FAST(_img, keypoints, threshold, nonmax_suppression, type))

    switch(type) {
    case FastFeatureDetector::TYPE_5_8:
        FAST_t<8>(_img, keypoints, threshold, nonmax_suppression);
        break;
    case FastFeatureDetector::TYPE_7_12:
        FAST_t<12>(_img, keypoints, threshold, nonmax_suppression);
        break;
    case FastFeatureDetector::TYPE_9_16:
#ifdef HAVE_TEGRA_OPTIMIZATION
        if(tegra::useTegra() && tegra::FAST(_img, keypoints, threshold, nonmax_suppression))
          break;
#endif
        FAST_t<16>(_img, keypoints, threshold, nonmax_suppression);
        break;
    }
}


void FAST(InputArray _img, std::vector<KeyPoint>& keypoints, int threshold, bool nonmax_suppression)
{
    CV_INSTRUMENT_REGION();

    FAST(_img, keypoints, threshold, nonmax_suppression, FastFeatureDetector::TYPE_9_16);
}


class FastFeatureDetector_Impl CV_FINAL : public FastFeatureDetector
{
public:
    FastFeatureDetector_Impl( int _threshold, bool _nonmaxSuppression, int _type )
    : threshold(_threshold), nonmaxSuppression(_nonmaxSuppression), type((short)_type)
    {}

    void detect( InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask ) CV_OVERRIDE
    {
        CV_INSTRUMENT_REGION();

        if(_image.empty())
        {
            keypoints.clear();
            return;
        }

        Mat mask = _mask.getMat(), grayImage;
        UMat ugrayImage;
        _InputArray gray = _image;
        if( _image.type() != CV_8U )
        {
            _OutputArray ogray = _image.isUMat() ? _OutputArray(ugrayImage) : _OutputArray(grayImage);
            cvtColor( _image, ogray, COLOR_BGR2GRAY );
            gray = ogray;
        }
        FAST( gray, keypoints, threshold, nonmaxSuppression, type );
        KeyPointsFilter::runByPixelsMask( keypoints, mask );
    }

    void set(int prop, double value)
    {
        if(prop == THRESHOLD)
            threshold = cvRound(value);
        else if(prop == NONMAX_SUPPRESSION)
            nonmaxSuppression = value != 0;
        else if(prop == FAST_N)
            type = cvRound(value);
        else
            CV_Error(Error::StsBadArg, "");
    }

    double get(int prop) const
    {
        if(prop == THRESHOLD)
            return threshold;
        if(prop == NONMAX_SUPPRESSION)
            return nonmaxSuppression;
        if(prop == FAST_N)
            return type;
        CV_Error(Error::StsBadArg, "");
        return 0;
    }

    void setThreshold(int threshold_) CV_OVERRIDE { threshold = threshold_; }
    int getThreshold() const CV_OVERRIDE { return threshold; }

    void setNonmaxSuppression(bool f) CV_OVERRIDE { nonmaxSuppression = f; }
    bool getNonmaxSuppression() const CV_OVERRIDE { return nonmaxSuppression; }

    void setType(int type_) CV_OVERRIDE { type = type_; }
    int getType() const CV_OVERRIDE { return type; }

    int threshold;
    bool nonmaxSuppression;
    int type;
};

Ptr<FastFeatureDetector> FastFeatureDetector::create( int threshold, bool nonmaxSuppression, int type )
{
    return makePtr<FastFeatureDetector_Impl>(threshold, nonmaxSuppression, type);
}

String FastFeatureDetector::getDefaultName() const
{
    return (Feature2D::getDefaultName() + ".FastFeatureDetector");
}

}