1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2018, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#ifdef HAVE_PROTOBUF
#include "tf_graph_simplifier.hpp"
namespace cv { namespace dnn {
CV__DNN_EXPERIMENTAL_NS_BEGIN
using ::google::protobuf::RepeatedField;
using ::google::protobuf::MapPair;
class Subgraph // Interface to match and replace TensorFlow subgraphs.
{
public:
// Add a node to be matched in the origin graph. Specify ids of nodes that
// are expected to be inputs. Returns id of a newly added node.
// TODO: Replace inputs to std::vector<int> in C++11
int addNodeToMatch(const std::string& op, int input_0 = -1, int input_1 = -1,
int input_2 = -1, int input_3 = -1)
{
int nodeInputs[] = {input_0, input_1, input_2, input_3};
int numInputs = 0;
for (int i = 0; i < 4; ++i)
{
numInputs += (int)(nodeInputs[i] != -1);
}
return addNodeToMatch(op, std::vector<int>(&nodeInputs[0], &nodeInputs[0] + numInputs));
}
int addNodeToMatch(const std::string& op, const std::vector<int>& inputs_)
{
for (int i = 0; i < inputs_.size(); ++i)
{
CV_Assert(inputs_[i] < (int)nodes.size());
}
nodes.push_back(op);
inputs.push_back(inputs_);
return nodes.size() - 1;
}
// Specify resulting node. All the matched nodes in subgraph excluding
// input nodes will be fused into this single node.
// TODO: Replace inputs to std::vector<int> in C++11
void setFusedNode(const std::string& op, int input_0 = -1, int input_1 = -1,
int input_2 = -1, int input_3 = -1, int input_4 = -1,
int input_5 = -1)
{
int nodeInputs[] = {input_0, input_1, input_2, input_3, input_4, input_5};
int numInputs = 0;
for (int i = 0; i < 6; ++i)
{
CV_Assert(nodeInputs[i] < (int)nodes.size());
numInputs += (int)(nodeInputs[i] != -1);
}
setFusedNode(op, std::vector<int>(&nodeInputs[0], &nodeInputs[0] + numInputs));
}
void setFusedNode(const std::string& op, const std::vector<int>& inputs_)
{
fusedNodeInputs = inputs_;
fusedNodeOp = op;
nodesToFuse.clear();
for (int i = 0; i < nodes.size(); ++i)
{
if (std::find(fusedNodeInputs.begin(), fusedNodeInputs.end(), i) == fusedNodeInputs.end() &&
nodes[i] != "Const")
nodesToFuse.push_back(i);
}
}
static const tensorflow::NodeDef& getInputNode(const tensorflow::GraphDef& net,
const tensorflow::NodeDef& node,
int inpId)
{
CV_Assert(inpId < node.input_size());
std::string name = node.input(inpId);
const int numNodes = net.node_size();
for (int i = 0; i < numNodes; ++i)
{
if (net.node(i).name() == name)
return net.node(i);
}
CV_Error(Error::StsParseError, "Input node with name " + name + " not found");
return net.node(0); // just return something
}
// Match TensorFlow subgraph starting from <nodeId> with a set of nodes to be fused.
// Const nodes are skipped during matching. Returns true if nodes are matched and can be fused.
virtual bool match(const tensorflow::GraphDef& net, int nodeId, std::vector<int>& matchedNodesIds)
{
matchedNodesIds.clear();
matchedNodesIds.reserve(nodesToFuse.size());
int numNodes = net.node_size();
for (int i = 0; i < nodesToFuse.size(); ++i)
{
while (nodeId < numNodes && net.node(nodeId).op() == "Const")
{
nodeId += 1;
}
if (nodeId > numNodes - 1)
return false;
const tensorflow::NodeDef& node = net.node(nodeId);
if (node.op() != nodes[nodesToFuse[i]])
return false;
std::vector<int>& inputNodes = inputs[nodesToFuse[i]];
if (inputNodes.size() != node.input_size())
return false;
for (int j = 0; j < inputNodes.size(); ++j)
{
if (nodes[inputNodes[j]].empty()) // Unknown input node type.
continue;
const tensorflow::NodeDef& inpNode = getInputNode(net, node, j);
if (inpNode.op() != nodes[inputNodes[j]])
return false;
}
matchedNodesIds.push_back(nodeId);
nodeId += 1;
}
return true;
}
// Fuse matched subgraph.
void replace(tensorflow::GraphDef& net, const std::vector<int>& matchedNodesIds)
{
// Extract names of input nodes.
std::vector<std::string> inputsNames(fusedNodeInputs.size());
for (int i = 0; i < fusedNodeInputs.size(); ++i)
{
std::string inpName;
// Find input node name looking at inputs of fused nodes.
for (int j = 0; j < matchedNodesIds.size() && inpName.empty(); ++j)
{
const tensorflow::NodeDef &node = net.node(matchedNodesIds[j]);
std::vector<int>& inpIndices = inputs[nodesToFuse[j]];
CV_Assert(node.input_size() == inpIndices.size());
for (int k = 0; k < inpIndices.size(); ++k)
{
if (inpIndices[k] == fusedNodeInputs[i])
{
inpName = node.input(k);
break;
}
}
}
CV_Assert(!inpName.empty());
inputsNames[i] = inpName;
}
// Remove matched nodes except the last one. Indices in ascending order are expected.
tensorflow::NodeDef* node = net.mutable_node(matchedNodesIds.back());
for (int i = matchedNodesIds.size() - 2; i >= 0; --i)
net.mutable_node()->DeleteSubrange(matchedNodesIds[i], 1);
// Modify the last node to be a fused one.
node->set_op(fusedNodeOp);
node->clear_input();
for (int i = 0; i < inputsNames.size(); ++i)
{
node->add_input(inputsNames[i]);
}
std::vector<tensorflow::NodeDef*> inputNodes(inputsNames.size());
for (int i = 0; i < inputsNames.size(); ++i)
{
inputNodes[i] = (tensorflow::NodeDef*)&getInputNode(net, *node, i);
}
finalize(net, node, inputNodes);
}
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef*,
std::vector<tensorflow::NodeDef*>&) {}
private:
std::vector<std::string> nodes; // Nodes to be matched in the origin graph.
std::vector<std::vector<int> > inputs; // Connections of an every node to it's inputs.
std::string fusedNodeOp; // Operation name of resulting fused node.
std::vector<int> nodesToFuse; // Set of nodes to be fused.
std::vector<int> fusedNodeInputs; // Inputs of fused node.
};
class BatchNormSubgraph : public Subgraph
{
public:
BatchNormSubgraph()
{
int input = addNodeToMatch("");
int epsilon = addNodeToMatch("Const");
int moving_variance = addNodeToMatch("Const");
int moving_mean = addNodeToMatch("Const");
int beta = addNodeToMatch("Const");
int gamma = addNodeToMatch("Const");
int add = addNodeToMatch("Add", moving_variance, epsilon);
int rsqrt = addNodeToMatch("Rsqrt", add);
int mul = addNodeToMatch("Mul", rsqrt, gamma);
int mul_1 = addNodeToMatch("Mul", input, mul);
int mul_2 = addNodeToMatch("Mul", moving_mean, mul);
int sub = addNodeToMatch("Sub", beta, mul_2);
addNodeToMatch("Add", mul_1, sub);
setFusedNode("FusedBatchNorm", input, gamma, beta, moving_mean, moving_variance, epsilon);
}
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode,
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE
{
Mat epsMat = getTensorContent(inputNodes.back()->attr().at("value").tensor());
CV_Assert(epsMat.total() == 1, epsMat.type() == CV_32FC1);
fusedNode->mutable_input()->RemoveLast();
fusedNode->clear_attr();
tensorflow::AttrValue epsilon;
epsilon.set_f(epsMat.at<float>(0));
fusedNode->mutable_attr()->insert(MapPair<std::string, tensorflow::AttrValue>("epsilon", epsilon));
}
};
class BatchNormNoGammaSubgraph : public Subgraph
{
public:
BatchNormNoGammaSubgraph()
{
int input = addNodeToMatch("");
int epsilon = addNodeToMatch("Const");
int moving_variance = addNodeToMatch("Const");
int moving_mean = addNodeToMatch("Const");
int beta = addNodeToMatch("Const");
int add = addNodeToMatch("Add", moving_variance, epsilon);
int rsqrt = addNodeToMatch("Rsqrt", add);
int mul = addNodeToMatch("Mul", input, rsqrt);
int mul_1 = addNodeToMatch("Mul", moving_mean, rsqrt);
int sub = addNodeToMatch("Sub", beta, mul_1);
addNodeToMatch("Add", mul, sub);
// There is a fake reference to beta that will be replaced to a new gamma tensor.
setFusedNode("FusedBatchNorm", input, beta, beta, moving_mean, moving_variance, epsilon);
}
virtual void finalize(tensorflow::GraphDef& net, tensorflow::NodeDef* fusedNode,
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE
{
Mat epsMat = getTensorContent(inputNodes.back()->attr().at("value").tensor());
CV_Assert(epsMat.total() == 1, epsMat.type() == CV_32FC1);
fusedNode->mutable_input()->RemoveLast();
fusedNode->clear_attr();
tensorflow::AttrValue epsilon;
epsilon.set_f(epsMat.at<float>(0));
fusedNode->mutable_attr()->insert(MapPair<std::string, tensorflow::AttrValue>("epsilon", epsilon));
tensorflow::NodeDef* gamma = net.add_node();
gamma->set_op("Const");
gamma->set_name(fusedNode->name() + "/gamma");
// Just put a single value to recognize this node as Const.
gamma->mutable_attr()->insert(MapPair<std::string, tensorflow::AttrValue>("value", epsilon));
fusedNode->set_input(1, gamma->name());
}
};
// tf.contrib.layers.flatten
class FlattenSubgraph : public Subgraph
{
public:
FlattenSubgraph()
{
int input = addNodeToMatch("");
int shape = addNodeToMatch("Const");
int stack = addNodeToMatch("Const");
int stack_1 = addNodeToMatch("Const");
int stack_2 = addNodeToMatch("Const");
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
int shape_pack = addNodeToMatch("Const");
int pack = addNodeToMatch("Pack", strided_slice, shape_pack);
addNodeToMatch("Reshape", input, pack);
setFusedNode("Flatten", input);
}
};
// tf.contrib.layers.flatten in case of unknown batch size
class FlattenShapeSubgraph : public Subgraph
{
public:
FlattenShapeSubgraph()
{
int input = addNodeToMatch("");
int shape = addNodeToMatch("Shape", input);
int stack = addNodeToMatch("Const");
int stack_1 = addNodeToMatch("Const");
int stack_2 = addNodeToMatch("Const");
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
int shape_pack = addNodeToMatch("Const");
int pack = addNodeToMatch("Pack", strided_slice, shape_pack);
addNodeToMatch("Reshape", input, pack);
setFusedNode("Flatten", input);
}
};
// K.layers.Softmax
class SoftMaxKerasSubgraph : public Subgraph
{
public:
SoftMaxKerasSubgraph()
{
int input = addNodeToMatch("");
int maxReductionIndices = addNodeToMatch("Const");
int smMax = addNodeToMatch("Max", input, maxReductionIndices);
int smSub = addNodeToMatch("Sub", input, smMax);
int smExp = addNodeToMatch("Exp", smSub);
int sumReductionIndices = addNodeToMatch("Const");
int smSum = addNodeToMatch("Sum", smExp, sumReductionIndices);
addNodeToMatch("RealDiv", smExp, smSum);
setFusedNode("Softmax", input);
}
};
class ReLU6KerasSubgraph : public Subgraph
{
public:
ReLU6KerasSubgraph()
{
int input = addNodeToMatch("");
int relu = addNodeToMatch("Relu", input);
int maxValue = addNodeToMatch("Const");
int clipValue = addNodeToMatch("Const");
int minimum = addNodeToMatch("Minimum", relu, maxValue);
addNodeToMatch("Maximum", minimum, clipValue);
setFusedNode("Relu6", input);
}
virtual bool match(const tensorflow::GraphDef& net, int nodeId, std::vector<int>& matchedNodesIds) CV_OVERRIDE
{
if (!Subgraph::match(net, nodeId, matchedNodesIds))
return false;
Mat maxValue = getTensorContent(net.node(nodeId + 1).attr().at("value").tensor());
return maxValue.type() == CV_32FC1 && maxValue.total() == 1 && maxValue.at<float>(0) == 6;
}
};
// Keras' reshape stores output shape in separate Const nodes by one value.
// Need to merge them into a single Const node.
class ReshapeKerasSubgraph : public Subgraph
{
public:
ReshapeKerasSubgraph(int _numOutDims) : numOutDims(_numOutDims)
{
int input = addNodeToMatch("");
int shape = addNodeToMatch("Shape", input);
int stack = addNodeToMatch("Const");
int stack_1 = addNodeToMatch("Const");
int stack_2 = addNodeToMatch("Const");
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2);
std::vector<int> ids(1 + numOutDims);
ids[0] = strided_slice;
for (int i = 0; i < numOutDims; ++i)
ids[1 + i] = addNodeToMatch("Const");
int pack = addNodeToMatch("Pack", ids);
addNodeToMatch("Reshape", input, pack);
ids[0] = input;
setFusedNode("Reshape", ids);
}
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode,
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE
{
std::vector<int> shape(numOutDims + 1); // batch size in Keras is implicit.
shape[0] = -1;
for (int i = 0; i < numOutDims; ++i)
{
shape[1 + i] = inputNodes[1 + i]->attr().at("value").tensor().int_val(0);
}
tensorflow::TensorProto* shapeTensor = inputNodes[1]->mutable_attr()->at("value").mutable_tensor();
fusedNode->mutable_input()->DeleteSubrange(2, numOutDims - 1);
shapeTensor->clear_int_val();
for (int i = 0; i < shape.size(); ++i)
{
shapeTensor->add_int_val(shape[i]);
}
}
private:
int numOutDims;
};
void simplifySubgraphs(tensorflow::GraphDef& net)
{
std::vector<Ptr<Subgraph> > subgraphs;
subgraphs.push_back(Ptr<Subgraph>(new BatchNormSubgraph()));
subgraphs.push_back(Ptr<Subgraph>(new BatchNormNoGammaSubgraph()));
subgraphs.push_back(Ptr<Subgraph>(new FlattenSubgraph()));
subgraphs.push_back(Ptr<Subgraph>(new FlattenShapeSubgraph()));
subgraphs.push_back(Ptr<Subgraph>(new SoftMaxKerasSubgraph()));
subgraphs.push_back(Ptr<Subgraph>(new ReLU6KerasSubgraph()));
subgraphs.push_back(Ptr<Subgraph>(new ReshapeKerasSubgraph(3)));
int numNodes = net.node_size();
std::vector<int> matchedNodesIds;
for (int i = 0; i < numNodes; ++i)
{
for (int j = 0; j < subgraphs.size(); ++j)
{
if (subgraphs[j]->match(net, i, matchedNodesIds))
{
subgraphs[j]->replace(net, matchedNodesIds);
numNodes -= matchedNodesIds.size() - 1; // #matchedNodes removed and one added.
break;
}
}
}
}
void RemoveIdentityOps(tensorflow::GraphDef& net)
{
typedef std::map<String, String> IdentityOpsMap;
IdentityOpsMap identity_ops;
std::vector<int> identity_ops_idx;
int layersCount = net.node_size();
for (int li = 0; li < layersCount; li++)
{
const tensorflow::NodeDef &layer = net.node(li);
String type = layer.op();
if (type == "Identity" || type == "Dropout") {
identity_ops_idx.push_back(li);
identity_ops[layer.name()] = layer.input(0);
}
}
for (int li = 0; li < layersCount; li++)
{
tensorflow::NodeDef* layer = net.mutable_node(li);
for (int input_id = 0; input_id < layer->input_size(); input_id++) {
String input_op_name = layer->input(input_id);
IdentityOpsMap::iterator it = identity_ops.find(input_op_name);
if (it != identity_ops.end()) {
layer->set_input(input_id, it->second);
}
}
}
std::sort(identity_ops_idx.begin(), identity_ops_idx.end());
int removed_nodes = 0;
for(size_t i = 0; i < identity_ops_idx.size(); i++) {
int start_id = identity_ops_idx[i] - removed_nodes;
net.mutable_node()->DeleteSubrange(start_id, 1);
removed_nodes++;
}
}
Mat getTensorContent(const tensorflow::TensorProto &tensor)
{
std::string content = tensor.tensor_content();
switch (tensor.dtype())
{
case tensorflow::DT_FLOAT:
{
if (!content.empty())
return Mat(1, content.size() / sizeof(float), CV_32FC1, (void*)content.c_str()).clone();
else
{
const RepeatedField<float>& field = tensor.float_val();
CV_Assert(!field.empty());
return Mat(1, field.size(), CV_32FC1, (void*)field.data()).clone();
}
}
case tensorflow::DT_DOUBLE:
{
if (!content.empty())
return Mat(1, content.size() / sizeof(double), CV_64FC1, (void*)content.c_str()).clone();
else
{
const RepeatedField<double>& field = tensor.double_val();
CV_Assert(!field.empty());
return Mat(1, field.size(), CV_64FC1, (void*)field.data()).clone();
}
}
case tensorflow::DT_INT32:
{
if (!content.empty())
return Mat(1, content.size() / sizeof(int32_t), CV_32SC1, (void*)content.c_str()).clone();
else
{
const RepeatedField<int32_t>& field = tensor.int_val();
CV_Assert(!field.empty());
return Mat(1, field.size(), CV_32SC1, (void*)field.data()).clone();
}
}
case tensorflow::DT_HALF:
{
Mat halfs;
if (!content.empty())
{
static const int kHalfSize = 2;
halfs = Mat(1, content.size() / kHalfSize, CV_16UC1, (void*)content.c_str());
}
else
{
const RepeatedField<int32_t>& field = tensor.half_val();
CV_Assert(!field.empty());
Mat ints(1, field.size(), CV_32SC1, (void*)field.data());
ints.convertTo(halfs, CV_16UC1);
}
// Reinterpret as a signed shorts just for a convertFp16 call.
Mat halfsSigned(halfs.size(), CV_16SC1, halfs.data);
Mat floats(halfs.size(), CV_32FC1);
convertFp16(halfsSigned, floats);
return floats;
}
case tensorflow::DT_QUINT8:
{
CV_Assert(!content.empty());
return Mat(1, content.size(), CV_8UC1, (void*)content.c_str()).clone();
}
default:
CV_Error(Error::StsError, "Tensor's data type is not supported");
break;
}
return Mat();
}
CV__DNN_EXPERIMENTAL_NS_END
}} // namespace dnn, namespace cv
#endif // HAVE_PROTOBUF